IRTF HIP Research Group                                     T. Henderson
Internet-Draft                                        The Boeing Company
Intended status: Informational                                 A. Gurtov
Expires: April 29, 2010                                             HIIT
                                                        October 26, 2009


                         HIP Experiment Report
                      draft-irtf-hip-experiment-06

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on April 29, 2010.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.








Henderson & Gurtov       Expires April 29, 2010                 [Page 1]


Internet-Draft            HIP Experiment Report             October 2009


Abstract

   This document is a report from the IRTF HIP research group
   documenting the collective experiences and lessons learned from
   studies, related experimentation, and designs completed by the
   research group.  The documents summarizes implications of adding HIP
   to host protocol stacks, Internet infrastructure, and applications.
   The perspective of a network operator, as well as a list of HIP
   experiments, are presented as well.










































Henderson & Gurtov       Expires April 29, 2010                 [Page 2]


Internet-Draft            HIP Experiment Report             October 2009


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
     1.1.  What is HIP? . . . . . . . . . . . . . . . . . . . . . . .  4
     1.2.  Scope  . . . . . . . . . . . . . . . . . . . . . . . . . .  4
     1.3.  Organization . . . . . . . . . . . . . . . . . . . . . . .  6
   2.  Host Stack Implications  . . . . . . . . . . . . . . . . . . .  7
     2.1.  Modifications to TCP/IP stack implementations  . . . . . .  7
       2.1.1.  ESP implementation extensions  . . . . . . . . . . . .  9
     2.2.  User-space implementations . . . . . . . . . . . . . . . . 10
     2.3.  Issues common to both implementation approaches  . . . . . 10
       2.3.1.  User-space handling of HITs  . . . . . . . . . . . . . 10
       2.3.2.  Resolving HITs to addresses  . . . . . . . . . . . . . 11
       2.3.3.  IPsec management API extensions  . . . . . . . . . . . 12
       2.3.4.  Transport protocol issues  . . . . . . . . . . . . . . 12
       2.3.5.  Legacy NAT traversal . . . . . . . . . . . . . . . . . 13
       2.3.6.  Local management of host identity namespace  . . . . . 14
       2.3.7.  Interactions with host firewalls . . . . . . . . . . . 14
     2.4.  IPv4 vs. IPv6 issues . . . . . . . . . . . . . . . . . . . 14
     2.5.  What have early adopters learned from experience?  . . . . 15
   3.  Infrastructure Implications  . . . . . . . . . . . . . . . . . 17
     3.1.  Impact on DNS  . . . . . . . . . . . . . . . . . . . . . . 17
     3.2.  HIP aware middleboxes  . . . . . . . . . . . . . . . . . . 17
     3.3.  HIT resolution infrastructure  . . . . . . . . . . . . . . 17
     3.4.  Rendezvous servers . . . . . . . . . . . . . . . . . . . . 18
   4.  Application Implications . . . . . . . . . . . . . . . . . . . 19
     4.1.  Static vs. dynamic linking of resolver library . . . . . . 19
     4.2.  Using a native HIP API . . . . . . . . . . . . . . . . . . 19
     4.3.  Latency  . . . . . . . . . . . . . . . . . . . . . . . . . 19
   5.  Network Operator's Perspective . . . . . . . . . . . . . . . . 20
     5.1.  Management of the host identity namespace  . . . . . . . . 20
     5.2.  Use of ESP encryption  . . . . . . . . . . . . . . . . . . 20
     5.3.  Access control lists based on HITs . . . . . . . . . . . . 21
     5.4.  Firewall issues  . . . . . . . . . . . . . . . . . . . . . 21
   6.  User Privacy Issues  . . . . . . . . . . . . . . . . . . . . . 23
   7.  Experimental Basis of this Report  . . . . . . . . . . . . . . 25
   8.  Related Work on ID/Locator Split . . . . . . . . . . . . . . . 27
   9.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 29
   10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 34











Henderson & Gurtov       Expires April 29, 2010                 [Page 3]


Internet-Draft            HIP Experiment Report             October 2009


1.  Introduction

   This document summarizes the work and experiences of the Host
   Identity Protocol IRTF Research Group (HIP-RG) from the 2004-09
   timeframe.  The HIP-RG was chartered to explore the possible benefits
   and consequences of deploying the Host Identity Protocol architecture
   [RFC4423] in the Internet.

1.1.  What is HIP?

   The Host Identity Protocol architecture introduces a new name space,
   the "host identity" name space, to the Internet architecture.  The
   express purpose of this new name space is to allow for the decoupling
   of identifiers (host identities) and locators (IP addresses) at the
   internetworking layer of the architecture.  The contributors to HIP
   have expected that HIP will enable alternative solutions for several
   of the Internet's challenging technical problems, including
   potentially host mobility, host multihoming, site multihoming, IPv6
   transition, and network-level security.  Although there have been
   many architectural proposals to decouple identifiers and locators
   over the past 20 years, HIP is one of the most actively developed
   proposal in this area.

   The Host Identity Protocol itself provides a rapid exchange of host
   identities (public keys) between hosts and uses a Sigma-compliant
   Diffie-Hellman key exchange to establish shared secrets between such
   endpoints [RFC5201].  The protocol is designed to be resistant to
   Denial-of-Service (DoS) and Man-in-the-middle (MitM) attacks, and
   when used together with another suitable security protocol, such as
   Encapsulated Security Payload (ESP) [RFC4303], it provides encryption
   and/or authentication protection for upper layer protocols such as
   TCP and UDP, while enabling continuity of communications across
   network layer address changes.

   A number of experimental RFC specifications were published by the
   IETF's HIP Working Group, including the HIP base protocol [RFC5201],
   ESP encapsulation [RFC5202], registration extensions [RFC5203], HIP
   rendezvous servers [RFC5204], DNS resource records [RFC5205], and
   mobility management [RFC5206].  Host identities are represented as
   ORCHIDs [RFC4853] in Internet protocols.  Additionally, the research
   group published one RFC on requirements for traversing NATs and
   firewalls [RFC5207].

1.2.  Scope

   The research group has been tasked with producing an "experiment
   report" documenting the collective experiences and lessons learned
   from other studies, related experimentation, and designs completed by



Henderson & Gurtov       Expires April 29, 2010                 [Page 4]


Internet-Draft            HIP Experiment Report             October 2009


   the research group.  The question of whether the basic identifier/
   locator split assumption is valid falls beyond the scope of this
   research group.  When indicated by its studies, the HIP RG can
   suggest extensions and modifications to the protocol and
   architecture.  It has also been in scope for the RG to study, in a
   wider sense, the consequences and effects that wide-scale adoption of
   any type of separation of the identifier and locator roles of IP
   addresses is likely to have.

   During the timeframe of this report (2004-09), several research
   projects and open source software projects were formed to study HIP.
   These projects have been developing software enabling HIP to be used
   according to the experimental RFCs as well as supporting extensions
   not yet specified by RFCs.

   The research group has been most active in two areas.  First and
   foremost, the research group has studied extensions to the HIP
   protocol that went beyond the scope and charter of the IETF HIP
   working group and the set of RFCs (RFC 5201-5206) published in April
   2008.  Some of this work (NAT traversal, certificate formats for HIP,
   legacy application support, and a native sockets API for HIP)
   ultimately flowed into the IETF HIP working group upon its recharter
   in 2008.  Other extensions (e.g.  HIP in the i3 overlay, use of
   distributed hash tables for HIT-based lookups, mobile router
   extensions, etc.) are either still being worked on in the research
   group or have been abandoned.  Most of the energy of the research
   group during this time period has been in studying extensions of HIP
   protocols or the application of HIP to new problem domains (such as
   the Internet of Things).  Second, the research group has discussed
   the progress and outcome of the implementations and experiments
   conducted so far, as well as discussing perspectives from different
   participants (end users, operators, enterprises) on HIP deployment.
   It is this latter category of work (and not the extensions to HIP) on
   which this report is focused.

   Finally, the research group was chartered to study, but did not
   rigorously study (due to lack of inputs), the following questions:

   o  Objective comparisons of HIP with other mechanisms (although the
      research group did hold some discussions concerning the relation
      of HIP to other efforts such as the End-Middle-End (EME) research
      group, the Routing research group (RRG) and shim6-based
      protocols).

   o  Large scale deployments (thousands of hosts or greater).

   o  Exploration of whether introducing an identity/locator mechanism
      would be architecturally sound, deployed at wide scale.



Henderson & Gurtov       Expires April 29, 2010                 [Page 5]


Internet-Draft            HIP Experiment Report             October 2009


   o  Changes to the HIP baseline architecture and protocol, or other
      identity/locator separation architectures.

1.3.  Organization

   In this report, we summarize the collective experience of early
   implementers and adopters of HIP, organized as follows:

   o  Section 2 describes the implications of supporting HIP on an end-
      host.

   o  Section 3 covers a number of issues regarding the deployment of
      and interaction with network infrastructure, including middlebox
      traversal, name resolution, ACLs, and HIP infrastructure such as
      rendezvous servers.

   Whereas the two previous sections focus on the implementation and
   deployment of the network plumbing to make HIP work, the next three
   focus on the impact on users and operators of the network.

   o  Section 4 examines how the support of HIP in the host and network
      infrastructure affects applications; whether and how HIP provides
      benefits or drawbacks to HIP-enabled and legacy applications.

   o  Section 5 provides an operator's perspective on HIP deployment.

   o  Section 6 discusses user privacy issues.

   In closing, in Section 7, we list the experimental activities and
   research that have contributed to this report, and in Section 8 we
   briefly summarize related work.




















Henderson & Gurtov       Expires April 29, 2010                 [Page 6]


Internet-Draft            HIP Experiment Report             October 2009


2.  Host Stack Implications

   HIP is primarily an extension to the TCP/IP stack of Internet hosts,
   and in this section we summarize some experiences that several
   implementation groups have encountered in adding this extension.  Our
   discussion here draws on experience of implementers in adding HIP to
   general-purpose computing platforms such as laptops, desktops,
   servers, and PDAs.  There are two primary ways to support HIP on such
   an end host.  The first is to make changes to the kernel
   implementation to directly support the decoupling of identifier and
   locator.  Although this type of modification has data throughput
   performance benefits, it is also the more challenging to deploy.  The
   second approach is to implement all HIP processing in user-space, and
   configure the kernel to route packets through user-space for HIP
   processing.

   The following public HIP implementations are known and actively
   maintained:

   o  HIP4BSD (http://www.hip4inter.net)-- FreeBSD kernel modifications
      and user-space keying daemon;

   o  HIPL (http://infrahip.hiit.fi)-- Linux kernel and user-space
      implementation;

   o  OpenHIP (http://www.openhip.org)-- User-space keying daemon and
      packet processing for Linux, Windows XP and Vista, and Apple OS X.

   In the following, we first describe issues specific to the way in
   which HIP is added to a stack, then we discuss general issues
   surrounding both implementation approaches.

2.1.  Modifications to TCP/IP stack implementations

   In this section, we focus on the support of HIP assuming the
   following:

   o  HIP is implemented by directly changing the TCP/IP stack
      implementation

   o  Applications (using the sockets API) are unaware of HIP

   A common way to partition the HIP implementation is to implement a
   keying daemon in user-space that interacts with kernel-level support
   for ESP, as shown in Figure 1.  However, the HIPL project
   demonstrates that it is also possible to support HIP with a purely
   kernel-level implementation.




Henderson & Gurtov       Expires April 29, 2010                 [Page 7]


Internet-Draft            HIP Experiment Report             October 2009


    +--------------------+                       +--------------------+
    |                    |                       |                    |
    |   +------------+   |                       |   +------------+   |
    |   |    Key     |   |         HIP           |   |    Key     |   |
    |   | Management | <-+-----------------------+-> | Management |   |
    |   |  Process   |   |                       |   |  Process   |   |
    |   +------------+   |                       |   +------------+   |
    |         ^          |                       |         ^          |
    |         |          |                       |         |          |
    |         v          |                       |         v          |
    |   +------------+   |                       |   +------------+   |
    |   |   IPsec-   |   |        ESP            |   |   IPsec-   |   |
    |   |  extended  |   |                       |   |  extended  |   |
    |   |   Stack    | <-+-----------------------+-> |   Stack    |   |
    |   |            |   |                       |   |            |   |
    |   +------------+   |                       |   +------------+   |
    |                    |                       |                    |
    |                    |                       |                    |
    |     Initiator      |                       |     Responder      |
    +--------------------+                       +--------------------+

                      Figure 1: HIP deployment model

   Figure 2 summarizes the main implementation impact of supporting HIP,
   and is discussed further in subsequent sections.  To enable HIP
   natively in an implementation requires extensions to the key
   management interface (here depicted as PF_KEY API [RFC2367]) with the
   security association database (SAD) and security policy database
   (SPD), changes to the ESP implementation itself to support BEET-mode
   processing [I-D.nikander-esp-beet-mode], extensions to the name
   resolution library, and (in the future) interactions with transport
   protocols to respond correctly to mobility and multihoming events.



















Henderson & Gurtov       Expires April 29, 2010                 [Page 8]


Internet-Draft            HIP Experiment Report             October 2009


                  |-----------------------|
    --------      |   ----------     ----------
    | HIP  |--    ----|  App v6 |    |  App v4 |
    -------- |    |   ----------     ----------
      |      |    |       | HIT           | LSI
      |    ------------   | AF_INET6      | AF_INET
      |    | resolver |   |               |
      |    ------------   |  sockets API  |        user-space
    --|-------------------|-------------------------------
      | sockets and       |               |        kernel
      | PF_KEY API    ---------           |
      |-------------> |TCP/UDP|<-----------
      |               ---------
      |                   |
    ----------        ---------
    | SAD/SPD|<-----> | ESP   |  {HIT_s, HIT_d} <-> SPI
    ----------        ---------  {HIT_s, HIT_d, SPI} <-> {IP_s, IP_d, SPI}
                          |
                      ---------
                      |  IP   |
                      ---------

    Figure 2: Overview of typical implementation changes to support HIP

   Legacy applications can continue to use the standard AF_INET6 (for
   IPv6) and AF_INET (for IPv4) socket API.  IPv6 applications bind
   directly to a Host Identity Tag (HIT), which is a part of IPv6
   address space reserved for ORCHIDs.  IPv4 applications bind to a
   Local Scope Identifier (LSI) that has significance only within a
   host; the HIP layer translates between LSIs and HITs and IP addresses
   that are still used underneath for HIP base exchange.

2.1.1.  ESP implementation extensions

   HIP uses a Bound End-to-End Tunnel (BEET) mode of ESP operation,
   which mixes tunnel-mode semantics with transport-mode syntax.  BEET
   is not supported by all operating system distributions at present, so
   kernel modifications might be needed to obtain true kernel support
   using existing IPsec code.  At the time of writing, the BEET mode has
   been integrated to Linux and FreeBSD kernels.

   The HIPL project has contributed an IPsec BEET patch for the Linux
   kernel.  The patch could potentially allow all implementations of HIP
   to run in the userspace and use a common interface towards the
   kernel.  Still, the BEET patch alone does not enable the
   opportunistic HIP mode when HIP identifiers are used at the IP-based
   socket API, because there is no way to name the responder host at the
   onset of socket and Security Association creation.



Henderson & Gurtov       Expires April 29, 2010                 [Page 9]


Internet-Draft            HIP Experiment Report             October 2009


   Another inconvenience experienced in current Linux implementations
   (due to the native IPsec implementation, not HIP specifically) is a
   loss of the first data packet that triggers the HIP association
   establishment.  Instead, this packet should be cached and transmitted
   after the association is established.

2.2.  User-space implementations

   HIP can be implemented entirely in user-space, an approach that is
   essential for supporting HIP on hosts for which operating system
   modifications are not possible.  Even on modifiable operating
   systems, there is often a significant deployment advantage in
   deploying HIP only as a user-space implementation.  All three open-
   source implementations provide user-space implementations including
   packaging (RPMs, self-extracting installers) typical of application
   deployment on the target systems.

   When HIP is deployed in user-space, some technique is necessary to
   identify packets that require HIP processing and divert them to user-
   space for such processing, and to re-inject them into the stack for
   further transport protocol processing.  A commonly used technique is
   to deploy a virtual device in the kernel such as a TAP device,
   although operating systems may provide other means for diverting
   packets to user-space.  Routing or packet filtering rules must be
   applied to divert the right packets to these devices.

   As an example, the user-space implementation may install a route that
   directs all packets with destination addresses corresponding to HITs
   or LSIs to such a virtual device.  In the user-space daemon, the ESP
   header and possibly UDP header is applied, an outer IP address
   replaces the HIT, and the packet is resent to the kernel.  In the
   receive direciton, a raw socket bound to ESP or a UDP port number may
   be used to receive HIP-protected packets.  HIP signaling packets
   themselves may be sent and received by a socket bound to the HIP
   protocol number or UDP port when UDP encapsulation is used.

2.3.  Issues common to both implementation approaches

2.3.1.  User-space handling of HITs

   Much initial experimentation with HIP has involved using HITs
   directly in IPv6 socket calls, without any resolution infrastructure
   to learn the HIT based on, for example, a domain name, or to resolve
   the IP address.  To experiment with HIP using HITs requires some a
   priori HIT exchange, in the absence of a resolution service.  Manual
   exchange of HITs has been a major inconvenience for experimentation.
   It can be overcome via 1) opportunistic HIP mode, 2) storing HITs in
   DNS AAAA entries and looking them up by domain name, 3) name



Henderson & Gurtov       Expires April 29, 2010                [Page 10]


Internet-Draft            HIP Experiment Report             October 2009


   resolution service for HITs such as OpenDHT
   [I-D.ahrenholz-hiprg-dht], 4) a HIT exchange service, or 5) link
   local broadcast for experiments on the same link.  Opportunistic mode
   involves a "leap of faith" to accept and learn of the peer's
   identity, in much the same way that ssh works today.

   At the time of writing, option 1) is only supported by OpenHIP, and
   option 2) is only supported by HIP4BSD.  Implementing the first
   approach in a clean way is challenging, as HITs need to be known when
   an application binds or connects to a socket.  Approach 2) has been
   difficult in practice due to resistance of sysadmins to include AAAA
   entries for HITs in the DNS server, and is a non-standards-compliant
   use of the resource record.  However, using a widely available third-
   party DNS service is possible and has a low cost.  Approach 3) is
   being progressed with two independent implementations of a HIP-
   OpenDHT interface.  At the moment, the easiest way for enabling
   experimentation appears to be the approach 4) when a shell script
   based on SSH and SCP can connect to a peer machine and copy HITs to
   the local configuration files.  However, this approach is not
   scalable or secure for the long run.

2.3.2.  Resolving HITs to addresses

   When HIP is used in opportunistic mode, the initiator does not know
   the responder's HIT but does know its IP address.  In most other
   cases, however, the kernel or applications may know the HITs and not
   the IP addresses; in this case, an IP address resolution step for
   HITs must take place.

   A few techniques have been experimented with.  First, OpenDHT can
   also use HITs as keys for IP address records.  Second, work by
   Ponomarev has shown that the reverse DNS tree may be used for reverse
   lookups of the ORCHID space [I-D.ponomarev-hip-hit2ip].  Third, the
   need for resolution may trigger some type of HIP bootstrap message,
   similar in some sense to an ARP message (to resolve the HIT).  The
   BOS packet used to be present in the early revisions of the HIP base
   specifications, but was removed from the final specifications due to
   insufficient interest at the time.  The HIPL implementation currently
   sends an I1 to a link broadcast IP address if it doesn't know the IP
   address of the peer.  It has triggered warnings in some Windows hosts
   running firewall software, that classified broadcasts with unknown
   protocol number as intrusion attempts.  It is likely that UDP
   tunneling as in NAT traversal extensions will fix this problem.
   However, the utility of this technique is limited to the local link.







Henderson & Gurtov       Expires April 29, 2010                [Page 11]


Internet-Draft            HIP Experiment Report             October 2009


2.3.3.  IPsec management API extensions

   A generic key management API for IP security is known as PF_KEY API
   [RFC2367].  PK_KEY is a socket protocol family that can be used by
   trusted applications to access the IPsec key engine in the operating
   system.

   HIP-related extensions to PF_KEY interface define a new protocol
   IPPROTO_HIP.  Their main functionality is replacing TCP and UDP
   checksum with a HIP checksum in incoming and outgoing packets.
   PF_KEY extensions are implemented as a patch to the Linux kernel,
   which creates certain inconveniences for users who need to install
   kernel sources and recompile them after patching.

2.3.4.  Transport protocol issues

   When an application triggers a HIP base exchange through the
   transport protocol, the first data packet can be lost unless the HIP
   and IPsec implementation is able to buffer the packet until the base
   exchange completes and IPsec SAs are set up.  The loss of the data
   packet, when it is a TCP SYN packet, results into TCP timeout of 1
   second [RFC2988] that unnecessarily delays the application.  A loss
   of a UDP packet can cause even longer timeouts in applications.
   Therefore, it was found to be important for HIP implementations to
   support the buffering of the packet.  On the other hand, if the HIP
   base exchange takes longer than 1 second, which is the case on
   lightweight devices, a spurious timeout can occur at the transport
   layer.  The HIP implementation could prevent this scenario by
   manipulating timeout values at the transport layer or, alternatively,
   drop the original or retransmitted duplicate packet

   The multihoming support in [RFC5206] is stated for the purpose of
   failover, when a host starts using an alternative locator when a
   current locator fails.  A host deploying multihoming for load
   balancing can simultaneously transmit data from several locators to
   utilize bandwidth over parallel network paths or to reduce the
   latency.  Such a scenario creates several issues at the transport
   layer, related to congestion control and error recovery.  In
   particular, if packets from a single TCP connection are sent over
   different paths, they can experience different propagation delays.

   When packets take different paths to reach the destination, they can
   arrive in a different order than transmitted, an effect known as
   packet reordering.  Packet reordering degrades the performance of
   reliable transport protocols, such as TCP and SCTP, or the
   application if unreliable UDP transport protocol is used [RFC4653]
   [RFC3522].




Henderson & Gurtov       Expires April 29, 2010                [Page 12]


Internet-Draft            HIP Experiment Report             October 2009


   The use of paths with different characteristics can also impact the
   estimate of a retransmission timer at the sender's transport layer.
   TCP uses a smoothed average of the path's Round Trip Time and its
   variation as the estimate for a retransmission timeout.  After the
   retransmission timer expires, the sender retransmits all outstanding
   packets in go-back-N fashion.

   When multihoming is used for simultaneous data transmission from
   several locators, there can easily be scenarios when the
   retransmission timeout does not correspond to the actual value.  When
   packets simply experience different RTT, its variation is high, which
   sets the retransmission timeout value unnecessarily high.  When
   packets are lost, the sender waits excessively long before
   retransmitting.  Fortunately, modern TCP implementations deploying
   Selective Acknowledgments (SACK) and Limited Transmit are not relying
   on retransmission timeouts except when most outstanding packets are
   lost.

   Load balancing among several paths requires some estimate of each
   path's capacity.  The TCP congestion control algorithm assumes that
   all packets flow along the same path.  To perform load balancing, the
   HIP layer can attempt to estimate parameters such as delay,
   bandwidth, and loss rate of each path.  A HIP scheduler could then
   distribute packets among the paths according to their capacity and
   delay, to maximize overall utilization and minimize reordering.  The
   design of the scheduler is a topic of current research work; none are
   reported to exist.  Different network paths can have different
   Maximum Transmission Unit (MTU) sizes.  Transport protocols perform
   MTU discovery typically only in the beginning of a connection.  As
   HIP hides mobility from the transport layer, it can happen that
   packets on the new path get fragmented without knowledge of the
   transport protocol.  To solve this problem, the HIP layer could
   inform the transport layer of mobility events.  This method, known as
   transport triggers, is still under research although initial
   specification attempts have been made in the IETF.

2.3.5.  Legacy NAT traversal

   Legacy NAT traversal for outbound-initiated connections to a publicly
   addressed responder has been implemented by all three HIP
   implementations; two (HIPL and HIP4BSD) implement ICE techniques for
   inbound NAT traversal.  UDP encapsulation is now the default mode of
   HIP operation for OpenHIP's IPv4 HIP implementation.  Finding an IPv6
   NAT implementation for experiments has been difficult.  NAT traversal
   is expected to be a major mode of HIP operation in the future.






Henderson & Gurtov       Expires April 29, 2010                [Page 13]


Internet-Draft            HIP Experiment Report             October 2009


2.3.6.  Local management of host identity namespace

   One issue not being addressed by most experimental implementations is
   how to manage possibly multiple host identities (some may be
   unpublished).  This is akin to source address selection for transport
   sockets.  How much HIP policy to expose to users is a user interface
   issue.  Default or automatic configuration guesses might have
   undesirable privacy implications for the user.

   HIIT has implemented an extension of native API to control multiple
   host identities (refer to Karlsson's Master's thesis).

   There are security and privacy issues with storing private keys
   securely on a host.  Current implementations simply store private
   keys in a file that is readable only by applications with root
   privileges.  This may not be a sufficient level of protection, as
   keys could be read directly from the disk or e.g. some application
   with set-user-id flag.  In a Boeing pilot project, temporary
   certificates are planned to be generated from a key on a USB SIM chip
   and used in the HIP base exchange.  Use of certificates in HIP
   requires extensions to the HIP specifications.  Another option is
   encrypting keys on disks and keeping a passkey in memory (like in SSL
   certificates on servers, that ask for a password when booting Linux).

2.3.7.  Interactions with host firewalls

   HIP is presently an experimental protocol, and some default firewall
   configuration scripts on popular Linux distributions do not permit
   such traffic.  Determining which rules to modify without compromising
   other performance can be tricky; the default rule set on one popular
   Linux distribution has over one hundred rules.  Moreover, it may be
   the case that the end user has no control over the firewall settings,
   if administered by an enterprise IT department.

2.4.  IPv4 vs. IPv6 issues

   HIP has been oriented towards IPv6 deployment, but many
   implementations have added support also for IPv4.  HIP supports IPv6
   applications well, as the HITs are used from the general IPv6 address
   space using the ORCHID prefix.  HITs are statistically unique,
   although are not routable at the IP layer.  Therefore a mapping
   between HITs and routable IP addresses is necessary at the HIP layer,
   unless an overlay network is available to route packets based on
   HITs.

   For IPv4 applications, a 32-bit Local Scope Identifier (LSI) is
   necessary at the socket API.  The LSI is an alias for a host identity
   and is only meaningful within one host.  Note that an IPv4 address



Henderson & Gurtov       Expires April 29, 2010                [Page 14]


Internet-Draft            HIP Experiment Report             October 2009


   may be used as an LSI if it is configured to refer to a particular
   host identity on a given host, or LSIs may be drawn from an
   unallocated IPv4 address range.

   HIP makes it possible to use IPv6 applications over the IPv4 network
   and vice versa.  The interfamily portion of the BEET patch in the
   Linux kernel was found more difficult to complete compared with the
   single-family processing, and is presently not part of Linux kernel.
   All three open source HIP implementations have demonstrated some form
   of interfamily handoff support.

2.5.  What have early adopters learned from experience?

   Implementing HIP in current stacks or as overlays on unmodified
   stacks has generally been successful.  Below are some caveats and
   open issues.

   Experimental results comparing kernel vs. userspace HIP
   implementations in terms of performance and DoS resilience would be
   useful.  If the kernel implementation is shown to perform
   significantly better than the userspace implementation, it may be a
   sufficient justification to incorporate HIP within the kernel.
   However, experiences on general purpose laptops and servers suggests
   that for typical client use of HIP, user-space implementations
   perform adequately.

   The experience with attempting to integrate the HIPL kernel-based
   keying implementation to the official Linux kernel has been
   unsuccessful.  Although counter-examples exist, e.g.  SCTP is a large
   unit in the kernel, the Linux community resisted incorporating the
   HIP code.  The kernel developers felt that since MIP and IKE are
   implemented as user-space signaling daemons in Linux, that should be
   an approach for HIP too.  Furthermore, the kernel-patch was somewhat
   big, affecting the kernel in many places and having several
   databases.  The Linux kernel maintainers did eventually accept the
   BEET patch.

   Opportunities for misconfiguration of the Linux kernel have been a
   side effect of the need to patch the kernel.  Mistakenly disabling a
   configuration option or compiling a feature as a module instead of
   statically caused many installation problems.  Some scripts that
   could verify that the configuration is appropriate could help to
   solve this problem, as could fully user-space test implementations.

   Installing several HIP implementations onto a single machine creates
   some complications.  Depending on the installation prefix specified,
   all implementations may store some files in /etc/hip directory and
   use the /proc filesystem to report status.  While direct conflicts in



Henderson & Gurtov       Expires April 29, 2010                [Page 15]


Internet-Draft            HIP Experiment Report             October 2009


   filenames were luckily avoided, it might have been better to
   coordinate from the beginning so that different implementations, for
   example, use different subdirectories.  However, we expect this issue
   to be of significance only to HIP developers but not for an average
   user.  Some users have been explicitly asking about co-existence of
   HIP with other VPN and Mobile IP software.  E.g., on Windows those
   tend to install own versions of TAP drivers which might conflict with
   the driver used by the OpenHIP implementation.











































Henderson & Gurtov       Expires April 29, 2010                [Page 16]


Internet-Draft            HIP Experiment Report             October 2009


3.  Infrastructure Implications

   This section focuses on the deployment of infrastructure to support
   HIP hosts.

3.1.  Impact on DNS

   HIP DNS extensions [RFC5205] were developed by NEC Eurolabs and
   contributed to OpenHIP.  There is not much experimental evidence with
   them, however, as early adopters have chosen to typically deploy HIT
   to IP mappings manually, or to experiment with DHTs.  Legacy
   applications do not query for HIP resource records.

   Initially, HITs were expected to be stored as AAAA entries in DNS.
   This is a source of potential confusion for HIP unaware applications
   that cannot distinguish between a HIT and a valid IPv6 address.  It
   is not clear whether this technique has been experimented with.

3.2.  HIP aware middleboxes

   A design of a HIP registration protocol for architectured NATs (NATs
   that are HIP aware and use HIP identifiers to distinguish between
   hosts) has been completed and published as RFC 5204.  Performance
   measurement results with a prototype are available, but
   experimentation on a wide scale is still missing.  RFC 5207 provides
   a problem statement for HIP-aware NATs and middleboxes [RFC5207].

   As argued by Aura et al. [paper.hipanalysis], the encryption of the
   Initiator HI prevents policy-based NAT and firewall support for HIP.
   The catch is that when the HI is encrypted, middle boxes in the
   network cannot verify the signature on I2 and, thus, cannot safely
   create a state for the HIP association.  On the other hand, if the HI
   is not encrypted, a stateful middle box like a NAT can process I2 and
   create a protocol state for the session.  It may be possible to push
   the I1/R1 exchange into the firewall and to filter false puzzle
   solutions at the firewall.  The encryption of HI-I prevents such
   middle-box implementations.

3.3.  HIT resolution infrastructure

   OpenDHT HIT-to-IP address resolution has been implemented by Aalborg
   University, Denmark and by Boeing for OpenHIP.  (Add references).

   The prototype of the Host Identity Indirection Infrastructure (Hi3)
   has been implemented using OpenHIP and i3 software.  A set of 25 i3
   servers is running on PlanetLab.  While a PlanetLab account is
   required to run the servers, anybody can openly use the provided
   service.



Henderson & Gurtov       Expires April 29, 2010                [Page 17]


Internet-Draft            HIP Experiment Report             October 2009


   The main idea is to transmit HIP control packets using the i3 system
   as a lookup and rendezvous service, while transmitting data packets
   efficiently end-to-end using IPsec.  Performance measurements are
   being executed, comparing the association setup latency, throughput,
   and RTT of Hi3 with plain IP, HIP and i3.

   One difficulty has been with debugging the i3 system.  In some cases
   the messages did not traverse i3 correctly; due to its distributed
   nature and lack of tracing tools, making the system work has been
   challenging.  Fortunately, these shortcomings are being addressed.

   NATs and firewalls have been a major disturbance in HIP experiments.
   Many networks did not allow incoming UDP packets to go through,
   therefore, preventing messages from i3 servers to reach the client.

   So far the Hi3 system has been evaluated on a larger scale only
   analytically.  The problem is that running a larger number of clients
   to create a sufficient load for the server is difficult.  A cluster
   on the order of a hundred Linux servers is needed for this purpose.
   Contacts to a State Supercomputer Centre in Finland have not been
   successful so far.  A possible opportunity is to use one of existing
   Emulab installations, e.g. in Utah for these tests.

3.4.  Rendezvous servers

   A rendezvous server (RVS) [RFC5204] has been implemented by HIIT for
   HIPL, [RFC5204] and an implementation also exists for OpenHIP.
   Initial experimentation with the HIPL implementation produced the
   following observations.

   o  RVS is essential for fast initial contact; DynDNS is not as fast
      yet.

   o  RVS improves fault tolerance for multihoming.

   o  Registration of a HIP host to RVS loads the host significantly.

   The following advanced concepts need further study.

   o  Multiple RVS per host for fault tolerance (e.g. one rendezvous
      node crashes), and an algorithm for selecting the best RVS.

   o  Load balancing.  A RVS server could distribute I1s to different
      responders if the responder's identity is shared or opportunistic
      HIP is used.

   o  Offering a rendezvous service in a P2P fashion by HIP hosts.




Henderson & Gurtov       Expires April 29, 2010                [Page 18]


Internet-Draft            HIP Experiment Report             October 2009


4.  Application Implications

   In a deployed HIP environment, applications may be HIP-aware or HIP-
   unaware.  RFC5338 [RFC5338] describes various techniques to allow HIP
   to support unmodified applications.  Below are listed some additional
   application considerations.

4.1.  Static vs. dynamic linking of resolver library

   One way to support legacy applications that use dynamic linking is to
   dynamically interpose a modified resolver library.  Using HIPL,
   several legacy applications were shown to work without changes using
   dynamic re-linking of the resolver library.  This way, Firefox web
   browser successfully worked with an Apache web server.  The re-
   linking just requires configuring a LD_PRELOAD system variable that
   can be easily done in a user shell profile file or as a start-up
   wrapper for an application.

4.2.  Using a native HIP API

   Several applications, including telnet and FTP, have been ported to
   use a native HIP API in the HIPL project.  A concern that FTP would
   not work due to the problem of application referral, i.e. passing the
   IP address within application messages, was solved.  FTP is shown to
   work well in the passive and active modes [paper.namespace].

4.3.  Latency

   Some applications may be sensitive to additional RTTs or processing
   due to HIP resolutions or the protocol itself.  For instance, page
   load speed for web browsers is a critical metric for browser
   designers.  Some applications or deployments may not wish to trade
   application speed for the security and mobility management that HIP
   offers.

















Henderson & Gurtov       Expires April 29, 2010                [Page 19]


Internet-Draft            HIP Experiment Report             October 2009


5.  Network Operator's Perspective

   There is no known deployment of HIP by a data service provider.
   However, some issues regarding HIP have been brought to the HIP
   research group by a network provider and are summarized below and in
   [I-D.dietz-hip-operator-issues].

5.1.  Management of the host identity namespace

   When a network operator deploys HIP for its customers, several issues
   with management of host identities arise.  The operator may prefer to
   generate the host identity itself rather than let each host create
   the identities.  Several factors can create such a need.  Public-
   private key generation is a demanding operation that can take tens of
   seconds on a lightweight device, such as a mobile phone.  After
   generating a host identity, the operator can immediately insert it to
   its own AAA databases and network firewalls.  Finally, the users
   would not need to be concerned with technical details of host
   identity management.

   The operator may use a Public Key Infrastructure (PKI) to certify
   host identities of its customers.  Then, it uses the private key of
   operator's Certificate Authority to sign the public key of its
   customers.  This way, third parties possessing the public key of the
   CA can verify the customer's host identity and use this information
   e.g. for admission control to roaming infrastructure.  Such practice
   raises the security level of HIP when self-signed host identities are
   used.

   When the operator is using neither PKI nor DNSSEC host names, the
   problem of securely exchanging host identities remains.  When HIP is
   used in opportunistic mode, a man-in-the-middle can still intercept
   the exchange and replace the host identities with its own.  The
   signaling provided by the SIP protocol could be used to deliver host
   identities if it is secured by existing mechanisms in operator's
   network.

5.2.  Use of ESP encryption

   The research group has discussed whether operators can provide
   "value-added" services and priority, and comply with wiretapping
   laws, if all sessions are encrypted.  This is not so much a HIP issue
   as a general IPsec issue.

   The processing power of mobile devices also must be considered.  One
   study evaluated the use of HIP and ESP on lightweight devices (Nokia
   N770 Internet Tablets having 200 MHz processors) [paper.mobiarch].
   The overhead of using ESP on such platform was found to be tolerable,



Henderson & Gurtov       Expires April 29, 2010                [Page 20]


Internet-Draft            HIP Experiment Report             October 2009


   about 30% in terms of throughput.  With a bulk TCP transfer over
   WiFi, transfer without HIP was producing 4.86 Mbps, while over ESP
   security associations set up by HIP it was 3.27 Mbps.

5.3.  Access control lists based on HITs

   A firewall typically separates an organization's network from the
   rest of the Internet.  An Access Control List (ACL) specifies packet
   forwarding policies in the firewall.  Current firewalls can filter
   out packets based on IP addresses, transport protocol, and port
   values.  These values are often unprotected in data packets and can
   be spoofed by an attacker.  By trying out common well-known ports and
   a range of IP addresses, an attacker can often penetrate the firewall
   defenses.

   Furthermore, legacy firewalls often disallow IPsec traffic and drop
   HIP control packets.  HIP allows the ACLs to be protected based on a
   field that may be authenticated by middleboxes.  However, HITs are
   not aggregatable, so ACLs may be longer when using HITs and harder to
   deal with by human users.

   Some system administrators find it irritating to see trimmed hex
   sequences in the netstat output displaying HITs.  They prefer
   understandable names and also have reverse zones (locally) for
   RFC1918 addresses from another network with thousands of hosts which
   nobody could remember by heart.

   Additionally, operators would like to grant access to the clients
   from domains such as example.com regardless of their current locators
   or HITs.  This is difficult without a forward confirmed reverse DNS
   to use for reputation purposes.

5.4.  Firewall issues

   HIIT has implemented a HIP firewall based on Linux iptables
   [thesis.vehmersalo].  Firewalls can be stateless, filtering packets
   based only on the ACL, and stateful, which can follow and remember
   packet flows.  Stateless firewalls are simple to implement but
   provide only coarse-grained protection.  However, their performance
   can be efficient since packet processing requires little memory or
   CPU resources.  A stateful firewall determines if a packet belongs to
   an existing flow or starts a new flow.  A flow identifier combines
   information from several protocol headers to classify packets.  A
   firewall removes the state when the flow terminates (e.g., a TCP
   connection is closed) or after a timeout.  A firewall can drop
   suspicious packets that fail a checksum or contain sequence numbers
   outside of the current sliding window.  A transparent firewall does
   not require that hosts within the protected network register or even



Henderson & Gurtov       Expires April 29, 2010                [Page 21]


Internet-Draft            HIP Experiment Report             October 2009


   know of the existence of the firewall.  An explicit firewall requires
   registration and authentication from the hosts.

   A HIP-aware firewall identifies flows using HITs of communicating
   hosts, as well as SPI values and IP addresses.  The firewall must
   link together the HIP base exchange and consequent IPsec ESP data
   packets.  The firewall, therefore, must be stateful.  During the base
   exchange, the firewall learns the SPI values from I2 and R2 packets.
   Then, the firewall only allows ESP packets with a known SPI value and
   arriving from the same IP address as during the base exchange.  If
   the correspondent host changes its location and the IP address, the
   firewall learns about the changes by following the mobility update
   packets.

   A HIP host can register to the firewall using the usual procedure
   [RFC5203].  The registration enables the host and the firewall to
   authenticate each other.  In a common case where the Initiator and
   Responder hosts are located behind different firewalls, the Initiator
   may need to register with its own firewall and afterward with the
   Responder's firewall.































Henderson & Gurtov       Expires April 29, 2010                [Page 22]


Internet-Draft            HIP Experiment Report             October 2009


6.  User Privacy Issues

   Using public keys for identifying hosts creates a privacy problem as
   third parties can determine the source host even if attached to a
   different location in the network.  Various transactions of the host
   could be linked together if the host uses the same public key.
   Furthermore, using a static IP address also allows linking of
   transactions of the host.  Multiplexing multiple hosts behind a
   single NAT or using short address leases from DHCP can reduce the
   problem of user tracking.  However, IPv6 addresses could eliminate
   NAT translation and cause additional security issues related to the
   use of MAC addresses in IPv6 address autoconfiguration.

   All two-round-trip variations of the Diffie Hellman key exchange
   using public keys for authentication are vulnerable to identity
   theft.  The Responder must not generate the shared session key before
   receiving two messages from the Initiator, to avoid DoS attacks.  If
   the Responder sends its public key in the first reply message to the
   Initiator, the Responder's identity will be revealed to third
   parties.  Therefore, the public key is sent encrypted in the second
   message of the base exchange.  The Initiator cannot determine the
   identity of the Responder after receiving the last message of the key
   exchange.  As the result, an active attacker can find out the public
   key and identity of the Initiator by pretending to be a trusted
   correspondent host.  The Initiator's public key is sent encrypted in
   the third message of the Diffie Hellman key exchange and can be
   decrypted by an attacker based on the established session key.

   DNS records can provide information combining host identity and
   location information, the host public key, and host IP address.
   Therefore, identity and location privacy are related and should be
   treated in an integrated approach.  The goal of the BLIND is to
   provide a framework for identity and location privacy [paper.blind].
   The identity protection is achieved by hiding the actual public keys
   from third parties so that only the trusted correspondent hosts can
   recognize the keys.  Location privacy is achieved by integrating
   traffic forwarding with NAT translation and decoupling host
   identities from locators.  The use of random IP and MAC addresses
   also reduces the issue of location privacy shifting the focus to
   protecting host identifiers from third parties.

   To prevent revealing the identity, the host public key and its hash
   (HIT) can be encrypted with a secret key known beforehand to both
   Initiator and Responder.  However, this is a requirement that cannot
   be easily implemented in practice.  The BLIND framework provides
   protection from active and passive attackers using a modified two-
   round-trip Diffie Hellman key exchange protocol.  If the host avoids
   storing its public keys in the reverse DNS or DHT repository, the



Henderson & Gurtov       Expires April 29, 2010                [Page 23]


Internet-Draft            HIP Experiment Report             October 2009


   framework achieves full location and identity privacy.

   A natural approach to reducing privacy threats of persistent
   identifiers is to replace them with short-lived identifiers that are
   changed regularly to prevent user tracking.  Furthermore, identifiers
   must be changed simultaneously at all protocol layers, otherwise an
   adversary could still link the new identifier through looking at the
   identifier at another protocol layer that remained the same after the
   change.  The HIP privacy architecture that simultaneously changes
   identifiers on MAC, IP, and HIP/IPsec layers was developed in TKK
   [thesis.takkinen].  The default frequency of changes is every 6 to 10
   minutes.  Unfortunately, each change causes a delay of 3 seconds, and
   possibly loss of data packets, which might be unacceptable for real-
   time applications.  HIP could be extended in the future to allow
   active sessions to migrate identities.




































Henderson & Gurtov       Expires April 29, 2010                [Page 24]


Internet-Draft            HIP Experiment Report             October 2009


7.  Experimental Basis of this Report

   This report is derived from reported experiences and research results
   of early adopters, implementers, and research activities.  In
   particular, a number of implementations have been in development
   since 2002 (Section 2).

   One production-level deployment of HIP has been reported.  Boeing has
   described how it uses HIP to build layer-2 VPNs over untrusted
   wireless networks.  This use case is not a traditional end-host-based
   use of HIP but rather is one that uses HIP-aware middleboxes to
   create ESP tunnels on-demand between provider-edge (PE) devices.

   The InfraHIP II project is deploying HIP infrastructure (test
   servers, rendezvous and relay servers) in the public Internet.

   The following is a possibly incomplete list of current research
   activities related to HIP.

   o  Boeing (T. Henderson, J. Ahrenholz, J. Meegan.  OpenHIP
      implementation, Secure Mobile Architecture)

   o  NomadicLab, Ericsson (P. Jokela, P. Nikander, J. Melen.  BSD HIP
      implementation)

   o  HIIT (A. Gurtov, M. Komu, A. Pathak, D. Beltrami.  HIPL, legacy
      NAT traversal, firewall, i3, native API)

   o  UCB (D. Joseph, HIP proxy implementation)

   o  Laboratory of Computer Architecture and Networks, Polytechnic
      School of University of Sao Paulo, Brazil (T. Carvalho, HIP
      measurements, Hi3)

   o  Telecom Italia (M. Morelli, comparing existing HIP
      implementations)

   o  NEC Heidelberg (L. Eggert, M. Esteban, V. Schmitt working on RVS
      implementation, DNS, NAT traversal)

   o  U. of Hamburg-Harburg (M. Shanmugam, A. Nagarajan, HIP
      registration protocol)

   o  U. of Tuebingen (K. Wehrle, T. Lebenslauf to work on Hi3 or HIP-
      OpenDHT)

   o  University of Parma (UNIPR), Department of Information Engineering
      Parma, Italy.  N. Fedotova (HIP for P2P)



Henderson & Gurtov       Expires April 29, 2010                [Page 25]


Internet-Draft            HIP Experiment Report             October 2009


   o  Siemens (H. Tschofenig, HIP middleboxes)

   o  Denmark (Aalborg University, Lars Roost, Gustav Haraldsson, Per
      Toft, HIP evaluation project, OpenDHT-HIP interface)

   o  Microsoft Research, Cambridge (T. Aura, HIP analysis)

   o  MIT (H. Balakrishnan.  Delegation-Oriented Architecture)











































Henderson & Gurtov       Expires April 29, 2010                [Page 26]


Internet-Draft            HIP Experiment Report             October 2009


8.  Related Work on ID/Locator Split

   This section briefly summarizes the related work on ID/locator split
   with particular focus on recent IETF and IRTF activity.  In the
   academic research community, several related proposals were explored
   prior to the founding of this research group, such as the Internet
   Indirection Infrastructure (i3) [paper.i3], IPNL [paper.layered],
   DataRouter [paper.datarouter], Network Pointers [paper.netpointers],
   FARA [paper.fara], and TRIAD [paper.triad].

   The topic of whether a new name space is needed for the Internet is
   controversial.  The Name Space Research Group (NSRG) at the IRTF was
   not able to reach consensus on the issue, nor even to publish a final
   report.  Yet, there seems to be little disagreement that, for many
   scenarios, some level of indirection from network name to network
   location is essential or highly desirable to provide adequate
   service.  Mobile IP [RFC3775] is one example that reuses an existing
   name space for host naming.  Since Mobile IP was finalized, many new
   variants to providing this indirection have been suggested.  Even
   prior to Mobile IP, the IETF has published informational documents
   describing architectures separating network name and location,
   including the work of Jerome Saltzer [RFC1498], and Nimrod [RFC1992].

   Most recently, there has been standardization and development efforts
   in the IETF and IRTF as follows:

   o  The Site Multihoming in IPv6 (multi6) WG documented the ways that
      multihoming is currently implemented in IPv4 networks and
      evaluated several approaches for advanced multihoming.  The
      security threats and impact on transport protocols were covered
      during the evaluation.  The work continued in another WG, Site
      Multihoming by IPv6 Intermediation (shim6), which focusing on
      specifications of one selected approach [I-D.ietf-shim6-proto].
      shim6 uses the approach of inserting a shim layer between the IP
      and the transport layers that hides effects of changes in the set
      of available addresses.  The applications are using one active
      address that enables referrals.  Shim6 relies on cryptographically
      generated IPv6 addresses to solve the address ownership problem.
      HIP and shim6 are architecturally similar and use a common format
      for control packets.  HIP specifications define only simple
      multihoming scenarios leaving such important issues as interface
      selection untouched.  Shim6 offers complementary functionality
      that can be be reused in HIP.  The OpenHIP implementation
      integrates HIP and shim6 protocols in the same framework, with the
      goal of allowing HIP to reuse the shim6 failure detection
      protocol.





Henderson & Gurtov       Expires April 29, 2010                [Page 27]


Internet-Draft            HIP Experiment Report             October 2009


   o  The IRTF Routing Research Group (RRG) has explored a class of
      solutions to the global routing scalability problem that involve
      either separation of the existing IP address space into those used
      for identifiers and locators as in LISP ([I-D.ietf-lisp]) and Six/
      One Router ([I-D.vogt-rrg-six-one]), and those advocating a fuller
      separation of these roles including ILNP ([I-D.rja-ilnp-intro]),
      and RANGI ([I-D.xu-rangi]).

   o  The End-Middle-End research group considered the potential for an
      explicit signaling and policy control plane for middleboxes and
      endpoints [I-D.irtf-eme-francis-nutss-design], and at a joint
      meeting at IETF 69, the HIP and EME research groups discussed
      whether the EME framework could help HIP with middlebox traversal.

   Although the HIP research group has not formally tried to compare HIP
   with other ID/locator split approaches, such discussions have
   occurred on other lists such as the Routing research group mailing
   list, and a comparison of HIP's mobility management solution with
   other approaches was published in [I-D.thaler-mobility-comparison].
































Henderson & Gurtov       Expires April 29, 2010                [Page 28]


Internet-Draft            HIP Experiment Report             October 2009


9.  Acknowledgments

   Miika Komu and Pekka Nikander have provided helpful comments on
   earlier versions of this draft.















































Henderson & Gurtov       Expires April 29, 2010                [Page 29]


Internet-Draft            HIP Experiment Report             October 2009


10.  References

   [RFC2988]  Paxson, V. and M. Allman, "Computing TCP's Retransmission
              Timer", RFC 2988, November 2000.

   [RFC4423]  Moskowitz, R. and P. Nikander, "Host Identity Protocol
              (HIP) Architecture", RFC 4423, May 2006.

   [RFC5201]  Moskowitz, R., Nikander, P., Jokela, P., and T. Henderson,
              "Host Identity Protocol", RFC 5201, April 2008.

   [RFC5202]  Jokela, P., Moskowitz, R., and P. Nikander, "Using the
              Encapsulating Security Payload (ESP) Transport Format with
              the Host Identity Protocol (HIP)", RFC 5202, April 2008.

   [RFC5203]  Laganier, J., Koponen, T., and L. Eggert, "Host Identity
              Protocol (HIP) Registration Extension", RFC 5203,
              April 2008.

   [RFC5204]  Laganier, J. and L. Eggert, "Host Identity Protocol (HIP)
              Rendezvous Extension", RFC 5204, April 2008.

   [RFC5205]  Nikander, P. and J. Laganier, "Host Identity Protocol
              (HIP) Domain Name System (DNS) Extensions", RFC 5205,
              April 2008.

   [RFC5206]  Nikander, P., Henderson, T., Vogt, C., and J. Arkko, "End-
              Host Mobility and Multihoming with the Host Identity
              Protocol", RFC 5206, April 2008.

   [RFC5207]  Stiemerling, M., Quittek, J., and L. Eggert, "NAT and
              Firewall Traversal Issues of Host Identity Protocol (HIP)
              Communication", RFC 5207, April 2008.

   [RFC4853]  Housley, R., "Cryptographic Message Syntax (CMS) Multiple
              Signer Clarification", RFC 4853, April 2007.

   [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
              RFC 4303, December 2005.

   [RFC3775]  Johnson, D., Perkins, C., and J. Arkko, "Mobility Support
              in IPv6", RFC 3775, June 2004.

   [RFC1498]  Saltzer, J., "On the Naming and Binding of Network
              Destinations", RFC 1498, August 1993.

   [RFC1992]  Castineyra, I., Chiappa, N., and M. Steenstrup, "The
              Nimrod Routing Architecture", RFC 1992, August 1996.



Henderson & Gurtov       Expires April 29, 2010                [Page 30]


Internet-Draft            HIP Experiment Report             October 2009


   [RFC2367]  McDonald, D., Metz, C., and B. Phan, "PF_KEY Key
              Management API, Version 2", RFC 2367, July 1998.

   [RFC3522]  Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
              for TCP", RFC 3522, April 2003.

   [RFC4653]  Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
              "Improving the Robustness of TCP to Non-Congestion
              Events", RFC 4653, August 2006.

   [RFC5338]  Henderson, T., Nikander, P., and M. Komu, "Using the Host
              Identity Protocol with Legacy Applications", RFC 5338,
              September 2008.

   [paper.i3]
              Stoica, I., Adkins, D., Zhuang, S., Shenker, S., and S.
              Surana, "Internet Indirection Infrastructure (i3)",
               Proceedings of ACM SIGCOMM, August 2002.

   [paper.layered]
              Balakrishnan, H., Lakshminarayanan, K., Ratnasamy, S.,
              Shenker, S., Stoica, I., and M. Walfish, "A Layered Naming
              Architecture for the Internet",  Proceedings of ACM
              SIGCOMM, August 2004.

   [paper.datarouter]
              Touch, J. and V. Pingali, "DataRouter:  A Network-Layer
              Service for Application-Layer Forwarding",  Proceedings of
              International Workshop on Active Networks (IWAN),
              December 2003.

   [paper.netpointers]
              Tschudin, C. and R. Gold, "Network Pointers",  ACM
              Computer Communications Review, January 2003.

   [paper.fara]
              Clark, D., Braden, R., Falk, A., and V. Pingali, "FARA:
              Reorganizing the Addressing Architecture",  Proceedings of
              ACM SIGCOMM FDNA Workshop, August 2003.

   [paper.triad]
              Cheriton, D. and M. Gritter, "TRIAD:  A New Next-
              Generation Internet Architecture",  Unpublished, available
              at Citeseer, July 2000.

   [paper.blind]
              "BLIND: A Complete Identity Protection Framework for End-
              points",  Proc. of the Twelfth International Workshop on



Henderson & Gurtov       Expires April 29, 2010                [Page 31]


Internet-Draft            HIP Experiment Report             October 2009


              Security Protocols, April 2004.

   [paper.hipanalysis]
              Aura, T., Nagarajan, A., and A. Gurtov, "Analysis of the
              HIP Base Exchange Protocol",  Proc. of the 10th
              Australasian Conference on Information Security and
              Privacy (ACISP), July 2005.

   [paper.namespace]
              Komu, M., Tarkoma, S., Kangasharju, J., and A. Gurtov,
              "Applying a Cryptographic Namespace to Applications",
               Proc. of First International ACM Workshop on Dynamic
              Interconnection of Networks, September 2005.

   [paper.mobiarch]
              Khurri, A., Vorobyeva, E., and A. Gurtov, "Performance of
              Host Identity Protocol on Lightweight Hardware",
               Proceedings of ACM MobiArch, August 2007.

   [thesis.takkinen]
              Takkinen, L., "Host Identity Protocol Privacy Management",
               Master thesis, TKK, March 2006.

   [thesis.vehmersalo]
              Vehmersalo, E., "Host Identity Protocol Enabled Firewall:
              A Prototype Implementation and Analysis",  Master thesis,
              TKK, September 2005.

   [I-D.nikander-esp-beet-mode]
              Melen, J. and P. Nikander, "A Bound End-to-End Tunnel
              (BEET) mode for ESP", draft-nikander-esp-beet-mode-09
              (work in progress), August 2008.

   [I-D.ietf-shim6-proto]
              Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming
              Shim Protocol for IPv6", draft-ietf-shim6-proto-12 (work
              in progress), February 2009.

   [I-D.vogt-rrg-six-one]
              Vogt, C., "Six/One: A Solution for Routing and Addressing
              in IPv6", draft-vogt-rrg-six-one-01 (work in progress),
              November 2007.

   [I-D.irtf-eme-francis-nutss-design]
              Francis, P., "An EME Signaling Protocol Design",
              draft-irtf-eme-francis-nutss-design-00 (work in progress),
              April 2007.




Henderson & Gurtov       Expires April 29, 2010                [Page 32]


Internet-Draft            HIP Experiment Report             October 2009


   [I-D.ponomarev-hip-hit2ip]
              Ponomarev, O. and A. Gurtov, "Embedding Host Identity Tags
              Data in DNS", draft-ponomarev-hip-hit2ip-04 (work in
              progress), July 2009.

   [I-D.xu-rangi]
              Xu, X., "Routing Architecture for the Next Generation
              Internet (RANGI)", draft-xu-rangi-01 (work in progress),
              July 2009.

   [I-D.rja-ilnp-intro]
              Atkinson, R., "ILNP Concept of Operations",
              draft-rja-ilnp-intro-02 (work in progress), December 2008.

   [I-D.ietf-lisp]
              Farinacci, D., Fuller, V., Meyer, D., and D. Lewis,
              "Locator/ID Separation Protocol (LISP)",
              draft-ietf-lisp-05 (work in progress), September 2009.

   [I-D.dietz-hip-operator-issues]
              Dietz, T., "Issues of HIP in an Operators Networks",
              draft-dietz-hip-operator-issues-00 (work in progress),
              October 2005.

   [I-D.ahrenholz-hiprg-dht]
              Ahrenholz, J., "HIP DHT Interface",
              draft-ahrenholz-hiprg-dht-05 (work in progress),
              September 2009.

   [I-D.thaler-mobility-comparison]
              Thaler, D., "A Comparison of IP Mobility-Related
              Protocols", draft-thaler-mobility-comparison-02 (work in
              progress), October 2006.


















Henderson & Gurtov       Expires April 29, 2010                [Page 33]


Internet-Draft            HIP Experiment Report             October 2009


Authors' Addresses

   Tom Henderson
   The Boeing Company
   P.O. Box 3707
   Seattle, WA
   USA

   Email: thomas.r.henderson@boeing.com


   Andrei Gurtov
   HIIT
   Helsinki Institute for Information Technology
   Advanced Research Unit (ARU)
   P.O. Box 9800
   Helsinki  FIN-02015-HUT
   FINLAND

   Phone: +358 9 451 1
   Email: gurtov@cs.helsinki.fi






























Henderson & Gurtov       Expires April 29, 2010                [Page 34]