datatracker.ietf.org
Sign in
Version 5.6.4.p1, 2014-10-20
Report a bug

Routing Requirements for Urban Low-Power and Lossy Networks
RFC 5548

Network Working Group                                     M. Dohler, Ed.
Request for Comments: 5548                                          CTTC
Category: Informational                                 T. Watteyne, Ed.
                                                       BSAC, UC Berkeley
                                                          T. Winter, Ed.
                                                             Eka Systems
                                                         D. Barthel, Ed.
                                                      France Telecom R&D
                                                                May 2009

      Routing Requirements for Urban Low-Power and Lossy Networks

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

Abstract

   The application-specific routing requirements for Urban Low-Power and
   Lossy Networks (U-LLNs) are presented in this document.  In the near
   future, sensing and actuating nodes will be placed outdoors in urban
   environments so as to improve people's living conditions as well as
   to monitor compliance with increasingly strict environmental laws.
   These field nodes are expected to measure and report a wide gamut of
   data (for example, the data required by applications that perform
   smart-metering or that monitor meteorological, pollution, and allergy
   conditions).  The majority of these nodes are expected to communicate
   wirelessly over a variety of links such as IEEE 802.15.4, low-power
   IEEE 802.11, or IEEE 802.15.1 (Bluetooth), which given the limited
   radio range and the large number of nodes requires the use of
   suitable routing protocols.  The design of such protocols will be
   mainly impacted by the limited resources of the nodes (memory,
   processing power, battery, etc.) and the particularities of the
   outdoor urban application scenarios.  As such, for a wireless

Dohler, et al.               Informational                      [Page 1]
RFC 5548            Routing Requirements for U-LLNs             May 2009

   solution for Routing Over Low-Power and Lossy (ROLL) networks to be
   useful, the protocol(s) ought to be energy-efficient, scalable, and
   autonomous.  This documents aims to specify a set of IPv6 routing
   requirements reflecting these and further U-LLNs' tailored
   characteristics.

Table of Contents

   1. Introduction ....................................................3
   2. Terminology .....................................................3
      2.1. Requirements Language ......................................4
   3. Overview of Urban Low-Power and Lossy Networks ..................4
      3.1. Canonical Network Elements .................................4
           3.1.1. Sensors .............................................4
           3.1.2. Actuators ...........................................5
           3.1.3. Routers .............................................6
      3.2. Topology ...................................................6
      3.3. Resource Constraints .......................................7
      3.4. Link Reliability ...........................................7
   4. Urban LLN Application Scenarios .................................8
      4.1. Deployment of Nodes ........................................8
      4.2. Association and Disassociation/Disappearance of Nodes ......9
      4.3. Regular Measurement Reporting ..............................9
      4.4. Queried Measurement Reporting .............................10
      4.5. Alert Reporting ...........................................11
   5. Traffic Pattern ................................................11
   6. Requirements of Urban-LLN Applications .........................13
      6.1. Scalability ...............................................13
      6.2. Parameter-Constrained Routing .............................13
      6.3. Support of Autonomous and Alien Configuration .............14
      6.4. Support of Highly Directed Information Flows ..............15
      6.5. Support of Multicast and Anycast ..........................15
      6.6. Network Dynamicity ........................................16
      6.7. Latency ...................................................16

[include full document text]