Network Working Group                                        Jerry Ash
Internet Draft                                               Bur Goode
<draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>                   AT&T
Expiration Date: June 2005                                    Jim Hand
                                                            Consultant
                                                        George Swallow
                                                    Cisco Systems, Inc.

                                                        December, 2004


                Protocol Extensions for ECRTP over MPLS


Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware will
be disclosed, in accordance with Section 6 of RFC 3668.

Internet-Drafts are Working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups.  Note that other groups
may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

VoIP typically uses the encapsulation voice/RTP/UDP/IP. When MPLS labels
are added, this becomes voice/RTP/UDP/IP/MPLS-labels. For an MPLS VPN,
the packet header is at least 48 bytes, while the voice payload is often
no more than 30 bytes, for example. Header compression can significantly
reduce the overhead through various compression mechanisms, such as
enhanced compressed RTP (ECRTP). We consider using MPLS to route ECRTP
compressed packets over an MPLS LSP without compression/decompression
cycles at each router. Such an ECRTP over MPLS capability can increase
the bandwidth efficiency as well as processing scalability of the
maximum number of simultaneous compressed flows that use header
compression at each router.  In this draft we propose to use RSVP-TE
extensions to signal the header compression context and other control
messages between the ingress and egress LSR.  We re-use the methods in
ECRTP to determine the context.


Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 1]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Protocol Extensions  . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 ECRTP over MPLS Header Compression & Call Flows . . . . . . . . . 4
2.2 Link Layer Packet Type Field  . . . . . . . . . . . . . . . . . . 5
2.3 Header Compression Object Formats . . . . . . . . . . . . . . . . 6
2.3.1 SCID_Request Object . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Header_Compression_Reply Object . . . . . . . . . . . . . . . . 6
3. ECRTP over MPLS Procedures . . . . . . . . . . . . . . . . . . . . 7
3.1 Control Plane Procedures  . . . . . . . . . . . . . . . . . . . . 7
3.2 Data Plane Procedures . . . . . . . . . . . . . . . . . . . . . . 8
4. Security Considerations  . . . . . . . . . . . . . . . . . . . . . 8
5. Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . 8
6. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . . . 8
7. Normative References . . . . . . . . . . . . . . . . . . . . . . . 8
8. Informative References . . . . . . . . . . . . . . . . . . . . . . 9
9. Intellectual Property Statement  . . . . . . . . . . . . . . . . . 9
10. Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . . 9

Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

1. Introduction

Voice over IP (VoIP) typically uses the encapsulation voice/RTP/UDP/IP.
When MPLS labels [MPLS-ARCH] are added, this becomes
voice/RTP/UDP/IP/MPLS-labels.  For an MPLS VPN (e.g., [MPLS-VPN], the
packet header is at least 48 bytes, while the voice payload is often no
more than 30 bytes, for example.  The interest in header compression is
to exploit the possibility of significantly reducing the overhead
through various compression mechanisms, such as with enhanced compressed
RTP [ECRTP], and also to increase scalability of header compression. We
consider using MPLS to route ECRTP compressed packets over an MPLS LSP
(label switched path) without compression/decompression cycles at each
router.  Such an ECRTP over MPLS capability can increase bandwidth
efficiency as well as the processing scalability of the maximum number
of simultaneous compressed flows that use header compression at each
router.

To implement ECRTP over MPLS, the ingress router/gateway would have to
apply the ECRTP algorithm to the IP packet, the compressed packet routed
on an MPLS LSP using MPLS labels, and the compressed header would be
decompressed at the egress router/gateway where the ECRTP session
terminates.  Figure 1 illustrates an ECRTP over MPLS session established
on an LSP that crosses several routers, from R1/HC --> R2 --> R3 -->
R4/HD, where R1/HC is the ingress router where header compression (HC)
is performed, and R4/HD is the egress router where header decompression
(HD) is done.  ECRTP compression of the RTP/UDP/IP header is performed
at R1/HC, and the compressed packets are routed using MPLS labels from
R1/HC to R2, to R3, and finally to R4/HD, without further
decompression/recompression cycles.  The RTP/UDP/IP header is
decompressed at R4/HD and can be forwarded to other routers, as needed.


Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 2]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04


                    _____
                   |     |
                   |R1/HC| ECRTP Header Compression (HC) Performed
                   |_____|
                      |
                      | voice/ECRTP/MPLS-labels
                      V
                    _____
                   |     |
                   | R2  |
                   |_____|
                      |
                      | voice/ECRTP/MPLS-labels
                      V
                    _____
                   |     |
                   | R3  |
                   |_____|
                      |
                      | voice/ECRTP/MPLS-labels
                      V
                    _____
                   |     |
                   |R4/HD| ECRTP Header Decompression (HD) Performed
                   |_____|

    Figure 1. Example of ECRTP over MPLS over Routers R1 --> R4

In the example scenario, ECRTP header compression therefore takes place
between R1 and R4, and the MPLS path transports voice/ECRTP/MPLS-labels
instead of voice/RTP/UDP/IP/MPLS-labels, saving 36 octets per packet.
The MPLS label stack and link-layer headers are not compressed.
Therefore ECRTP over MPLS can significantly reduce the header overhead
through compression mechanisms.

Goals and requirements for header compression over MPLS are discussed in
[MPLS-HC-REQ].  The solution put forth in this document meets these
Requirements.  In particular, the ECRTP over MPLS solution:

a. uses existing protocols [ECRTP] to compress RTP/UDP/IP headers,
b. allows HC over an MPLS LSP, and thereby avoids hop-by-hop
compression/decompression cycles,
c. minimizes incremental performance degradation due to increased delay,
packet loss, and jitter, by leveraging a compression scheme [ECRTP] that
is less sensitive to delay, packet loss, and jitter, as well as by
eliminating multiple compression/decompression cycles as a source of
performance degradation, over a range of network path characteristics,
d. uses standard protocols [RSVP-TE] to signal context identification
and control information,
e. packet reordering does not cause incorrectly decompressed packets
to be forwarded from the decompressor [ECRTP].

Section 2 presents the proposed protocol extensions, and Section 3
presents the procedures.



Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 3]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04

2. Protocol Extensions

Extensions to MPLS signaling are needed to signal the session context
IDs (SCIDs) between the ingress and egress routers on the MPLS LSP.  For
example, new objects need to be defined for [RSVP-TE] to signal the
SCIDs between the ingress and egress routers, and [ECRTP] used to
determine the FULL_HEADER packets for the context identification; these
FULL HEADER packets then contain the SCID identified by using the
RSVP-TE objects.  These protocol extensions need coordination with other
working groups (e.g., MPLS).

2.1 ECRTP over MPLS Header Compression & Call Flows

The goal of ECRTP header compression is to reduce the IP/UDP/RTP headers
to 4 bytes for most packets, since ECRTP requires that the UDP checksums
be sent. In ECRTP header compression, the first factor-of-two reduction
in header size comes from the observation that half of the bytes in the
IP/UDP/RTP headers remain constant over the life of the connection.
After sending the uncompressed header template once, these fields may be
removed from the compressed headers that follow. The remaining
compression comes from the observation that although several fields
change in every packet, the difference from packet to packet is often
constant and therefore the second-order difference is zero.

By maintaining both the uncompressed header and the first-order
differences in the session state shared between the compressor and
decompressor, all that must be communicated is an indication that the
second-order difference was zero. In that case, the decompressor can
reconstruct the original header without any loss of information simply
by adding the first-order differences to the saved uncompressed header
as each compressed packet is received. The compressed packet carries the
SCID, to indicate in which session context that packet should be
interpreted.  Since compressed packets are assumed to be routed on a
separate LSP, set up by RSVP-TE, the decompressor uses the incoming MPLS
label and the SCID to locate the proper decompression context.

In Figure 1 we assume an example VoIP flow set up from R1/HC --> R2 -->
R3 --> R4/HD, where R1/HC is the ingress router where header compression
(HC) is performed, and R4/HD is the egress router where header
decompression (HD) is done, and in the reverse direction.  Each router
functions as an LSR and supports RSVP-TE signaling of LSPs.  A summary
of the ECRTP flow setup is as follows:

1. R1/HC sends an RSVP-TE PATH message to R4/HD, which includes a
SCID_Request object with a 2-byte ECRTP-Flow-ID.
2. R4/HD assigns a unique 2-byte SCID to the call and sends an RSVP-TE
RESV message to R1/HC that includes a Header_Compression_Reply object
with the ECRTP-Flow-ID and the assigned SCID.
3. R1/HC sets the SCID in compressed packets and FULL_HEADER packets.
4. Compressed packets and header compression control packets
(FULL_HEADER and CONTEXT_STATE packets) are routed on a separate LSP,
set up by RSVP-TE, from non-compressed packets; FULL-HEADER packets are
routed on the same R1/HC --> R4/HD LSP as the R1/HC to R4/HD compressed
packets for the ECRTP flow; CONTEXT-STATE packets are routed on the same
R4/HD --> R1/HC LSP as the R4/HD to R1/HC compressed packets for the
ECRTP flow.


Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 4]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04

5. compressed packets, FULL_HEADER packets, and CONTEXT_STATE packets
are routed with MPLS labels.
6. R4/HD uses the incoming MPLS label and the SCID to locate the proper
decompression context.
7. if needed to resync, R4/HD sends a CONTEXT_STATE packet to R1/HC with
SCID set; R1/HC resends FULL_HEADER packet with SCID set to R4/HD, etc.
8. R4/HD frees up the SCID when the ECRTP flow disconnects (e.g., as
indicated by SIP BYE message and RSVP-TE/PATH-TEAR messages), or by
refreshing the PATH state.

2.2 Link Layer Packet Type Field

The encodings in ECRTP use a different link layer packet type field for
each of 9 ECRTP packet types.  Since it is necessary to identify packet
types for ECRTP packets over MPLS (e.g., FH packets and compressed
packets), it is proposed in this Section to add a 4-bit packet type
field in the ECRTP header to encode the 9 different packet types.

[cRTP-ENCAP] uses a separate link-layer packet type defined for header
compression.  Using a separate link-layer packet type for every packet
type used in header compression avoids the need to add extra bits to the
compression header to identify the packet type.  However, this practice
does not extend well to MPLS encapsulation conventions [MPLS-ENCAP], in
which a separate link-layer packet type translates into a separate LSP
for each packet type.  So for ECRTP over MPLS VPNs, each packet type
defined in ECRTP MUST have prepended to it a packet type field.  This
field adds 1 octet to the header, and is encoded as follows (most
significant bit is 0):


           0                   1
           0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |0 0 0 0 0 0 0 0|  Packet Type  |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           | Defined by PPP Data Link Layer|
           |         Protocol              |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


where:

        SCID_Packet_Type designation:
        00000000 (first byte)

        "Packet Type" encoding:
        0: Reserved
        1: FULL_HEADER
        2: COMPRESSED_TCP
        3: COMPRESSED_TCP_NODELTA
        4: COMPRESSED_NON_TCP
        5: COMPRESSED_RTP_8
        6: COMPRESSED_RTP_16
        7: COMPRESSED_UDP_8
        8: COMPRESSED_UDP_16
        9: CONTEXT_STATE
        10 - 255: RESERVED


Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 5]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04

As discussed in [ECMP-AVOID], since this MPLS payload type in not IP,
the first nibble is set to 0000 to avoid being mistaken for IP.  This
is also consistent with the proposed encoding of the PWE3 control word
[PWE3-CNTL-WORD].

2.3 Header Compression Object Formats

A new L3PID (ethertype), XXXX, is defined in [RSVP-TE] for ECRTP over
MPLS LSPs.  This is needed to define the type of traffic used in RSVP-TE
Label Request Objects.  An SCID_Request object and
Header_Compression_Reply object are defined in this section.  R1/HC
creates an LSP to R4/HD by creating an RSVP-TE PATH message that
contains:

a. Label_Request object with the L3PID for ECRTP over MPLS (XXXX - TBD),
b. an SCID_Request object.

R1/HC will receive a RESV message containing a Label object and a
Header_Compression_Reply object.  R1/HC uses the label and SCID to send
compressed traffic to R2/HD.

2.3.1 SCID_Request Object

The Class for Header Compression Objects is of the form 10bbbbbb (need
an official number from IANA).  The form 10bbbbbb allows intermediate
nodes which do not understand header compression to silently drop the
compression object.  This ensures that an LSP either exists between the
source and the destination or that header compression is disabled.

      Class = Header Compression Object, Type = 1

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Num ECRTP-Flows |              ECRTP-Flow-IDs                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          ECRTP-Flow-IDs Continued             |       PAD     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


2.3.2 Header_Compression_Reply Object

The presence of this object in a RESV message indicates that the
receiver will act as a decompressor for packets sent on this LSP which
contain one of the listed SCIDs.  Over the life of an RSVP-TE session
SCIDs may be added and deleted simply by refreshing the PATH state with
the updated set of objects  This object provides synchronization between
the sender and receiver as to which SCIDs may be used.



Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 6]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04

   Class = Header Compression Object, Type = 2

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Num SCIDs   |                   SCIDs                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              SCIDs Continued                  |       PAD     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        ECRTP-Flow-IDs                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          ECRTP-Flow-IDs Continued             |       PAD     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3. ECRTP over MPLS Procedures

3.1 Control Plane Procedures

The MPLS control-plane uses RSVP-TE to a) establish LSPs and label
bindings between each GW-GW pair, b) to establish and control ECRTP over
MPLS, and c) to provide resource reservation and bandwidth allocation
for the varying number of calls on a GW-GW pair. The following
procedures apply only to unicast sessions (extension to multicast is for
further study) and discuss processing at the source, intermediate and
destination nodes.

ECRTP over MPLS is always initiated by the originator of the PATH
message, which we refer to as the source.  Note that the initiator of
the RSVP-TE session may or may not be the ultimate source of the
compressed flow.  For instance a Cable Modem Termination System (CMTS)
in a packet cable environment might serve as the compressor for a ECRTP
flow across an MPLS backbone. An ingress router can determine which
flows to do header compression by applying procedures discussed in RFC
3006.

The source requests SCID assignments from the decompressor and the
decompressor assigns the SCIDs.

For ECRTP header compression, the compressor and decompressor follow the
procedures in [ECRTP], including the sending of FULL-HEADER packets,
compressed packets, CONTEXT_STATE packets, etc.

Compressed packets and header compression control packets (FULL_HEADER
and CONTEXT_STATE packets) are routed on a separate LSP, set up by
RSVP-TE, from non-compressed packets.  FULL-HEADER packets are routed on
the same R1/HC --> R4/HD LSP as the R1/HC to R4/HD compressed packets
for the ECRTP flow.  CONTEXT-STATE packets are routed on the same R4/HD
--> R1/HC LSP as the R4/HD to R1/HC compressed packets for the ECRTP
flow.

The SCID-Request Object is included in an RSVP-TE PATH message.  This
object MUST not be included if a LABEL_REQUEST object is not also
included in the PATH message.

Intermediate nodes must act to ensure that an LSP exists from source to
destination.  Thus if an intermediate node forwards a PATH message


Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 7]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04

without a label request, the node MUST drop the HC Object from the PATH
message.  The HC object class is set to a value which indicates to nodes
in the PATH which do not understand the object that they are to silently
drop the object.  This has the effect of allowing the RSVP-TE session
while disabling header compression.  This ensures that a HC unaware node
will not inadvertently allow a discontinuity in the LSP.

If the destination node receives a PATH message with HC objects and is
willing to act as a decompressor for this session and these
ECRTP-Flow-IDs, it includes the SCIDs in a HC_REPLY object in the
corresponding RESV message.

3.2 Data Plane Procedures

The source node compresses the header by removing the header and forming
the compressed header, which is prepended to the remainder of the
packet.  The SCID and the MPLS header are then prepended and the packet
is sent.  Note that the compressor MUST not use a SCID until it has
received a RESV message which contains a HC_REPLY with the SCID listed.

The destination node removes the MPLS header and the compressed header.
The node prepends the header template to the packet and then uses the
operands to populate the variable fields of the header with the values
sent in the compressed header.

For ECRTP header compression, the compressor and decompressor follow the
procedures in [ECRTP], including the sending of FULL-HEADER packets,
compressed packets, CONTEXT_STATE packets, etc.

4. Security Considerations

These procedures do not change the trust model of [RSVP] and [RSVP-TE].
As such no additional security risks are posed.

5. Acknowledgements

Thanks to Curtis Villamizar and Stewart Bryant for helpful suggestions.

6. IANA Considerations

As discussed in Section 3.2, a new L3PID (ethertype), XXXX, needs to be
assigned for ECRTP over MPLS LSPs.

7. Normative References

[ECRTP] Koren, T., et. al., "Compressing IP/UDP/RTP Headers on Links
with High Delay, Packet Loss, and Reordering," RFC 3545, July 2003.

[MPLS-HC-REQ] Ash, G., Goode, B., Hand, J., "Requirements for Header
Compression over MPLS", work in progress.

[KEY] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", RFC 2119, March 1997.

[RSVP] Braden, R. et al., "Resource ReSerVation Protocol (RSVP) --
Version 1, Functional Specification", RFC 2205, September 1997.


Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 8]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04


[RSVP-TE] Awduche, D., et. al., "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, December 2001.

8. Informative References

[cRTP] Casner, S., Jacobsen, V., "Compressing IP/UDP/RTP Headers for
Low-Speed Serial Links", RFC 2508, February 1999.

[cRTP-ENCAP] Engan, M., Casner, S., Bormann, C., "IP Header Compression
over PPP", RFC 2509, February 1999.

[ECMP-AVOID] Swallow, G., et. al., "Avoiding Equal Cost Multipath
Treatment in MPLS Networks," work in progress.

[MPLS-ARCH] Rosen, E., et. al., "Multiprotocol Label Switching
Architecture," RFC 3031, January 2001.

[MPLS-ENCAP] Rosen, E., et. al., "MPLS Label Stack Encoding", RFC 3032,
January 2001.

[MPLS-VPN] Rosen, E., Rekhter, Y., "BGP/MPLS VPNs", RFC 2547, March
1999.

[PWE3-CNTL-WORD] Bryant, S., et. al., "PSE3 Control Word for use over an
MPLS PSN," work in progress.

9. Intellectual Property Considerations

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or
might not be available; nor does it represent that it has made any
independent effort to identify any such rights.  Information on the
procedures with respect to rights in RFC documents can be found in BCP
78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at
ietf-ipr@ietf.org.



Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 9]


Internet Draft   Protocol Extensions for ECRTP over MPLS    December 04

10. Authors' Addresses

Jerry Ash
AT&T
Room MT D5-2A01
200 Laurel Avenue
Middletown, NJ 07748, USA
Phone: +1 732-420-4578
Email: gash@att.com

Bur Goode
AT&T
Phone: +1 203-341-8705
E-mail: bgoode@att.com

Jim Hand
Consultant
Phone : +1 732-532-3020
E-mail: James.Hand@mail1.monmouth.army.mil

George Swallow
Cisco Systems, Inc.
250 Apollo Drive Chelmsford, MA 01824
Phone: +1 978-497-8143
Email: swallow@cisco.com

Full Copyright Statement

Copyright (C) The Internet Society (2004). This document is subject to
the rights, licenses and restrictions contained in BCP 78 and except as
set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR
IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR
IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


Ash, et. al.  <draft-ash-avt-ecrtp-over-mpls-protocol-02.txt>  [Page 10]