Network Working Group                                G. Bernstein (Ed.)
Internet Draft                                        Grotto Networking
Intended status: Informational                             Y. Lee (Ed.)
                                                                 Huawei
                                                        Moustafa Kattan
                                                                  Cisco
                                                           July 8, 2009
Expires: January 2010



         Information Encoding for Impaired Optical Path Validation
               draft-bernstein-wson-impairment-encode-01.txt


Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html

   This Internet-Draft will expire on January 8, 2010.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors. All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).





Bernstein              Expires January 8, 2010                 [Page 1]


Internet-Draft      Optical Impairment Info Model             July 2009


   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

Abstract

   This document provides an information encoding for the optical
   impairment characteristics of optical network elements for use in
   path computation and optical path impairment validation. This
   encoding is based on ITU-T defined optical network element
   characteristics as given in ITU-T recommendation G.680 and related
   specifications. This encoding is intentionally compatible with a
   previous impairment free optical information encoding used in optical
   path computations and wavelength assignment.

Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [RFC2119].

Table of Contents


   1. Introduction...................................................3
   2. General Aspects Optical Impairment Information Encoding........3
      2.1. Parameter Units and Grouping..............................4
      2.2. Frequency Dependence of Parameters........................4
   3. Network Element Wide Parameters................................6
      3.1. Channel frequency range (GHz, Max, Min)...................6
      3.2. Channel insertion loss deviation (dB, Max)................6
      3.3. Ripple (dB, Max)..........................................6
      3.4. Channel chromatic dispersion (ps/nm, Max, Min)............7
      3.5. Differential group delay (ps, Max)........................7
      3.6. Polarization dependent loss (dB, Max).....................7
      3.7. Reflectance (passive component) (dB, Max).................7
      3.8. Reconfigure time/Switching time (ms, Max, Min)............7
      3.9. Channel uniformity (dB, Max)..............................7
      3.10. Channel addition/removal (steady-state) gain response (dB,
      Max, Min)......................................................8
      3.11. Transient duration (ms, Max).............................8
      3.12. Transient gain increase (dB, Max)........................8
      3.13. Transient gain reduction (dB, Max).......................8
      3.14. Multichannel gain-change difference (inter-channel gain-
      change difference) (dB, Max)...................................8
      3.15. Multichannel gain tilt (inter-channel gain-change ratio)(dB,
      Max)...........................................................8
   4. Per Port Parameters............................................8
      4.1. Total input power range (dBm, Max, Min)...................9
      4.2. Channel input power range (dBm, Max, Min).................9
      4.3. Channel output power range (dBm, Max, Min)...............10

Bernstein              Expires January 8, 2010                 [Page 2]


Internet-Draft      Optical Impairment Info Model             July 2009


      4.4. Input reflectance (dB, Max) (with amplifiers)............10
      4.5. Output reflectance (dB, Max) (with amplifiers)...........10
      4.6. Maximum reflectance tolerable at input (dB, Min).........10
      4.7. Maximum reflectance tolerable at output (dB, Min)........10
      4.8. Maximum total output power (dBm, Max)....................10
   5. Port to Port Parameters.......................................10
      5.1. Insertion loss (dB, Max, Min)............................11
      5.2. Isolation, adjacent channel (dB, Min)....................11
      5.3. Isolation, non-adjacent channel (dB, Min)................11
      5.4. Channel extinction (dB, Min).............................11
      5.5. Channel signal-spontaneous noise figure (dB, Max)........11
      5.6. Channel gain (dB, Max, Min)..............................12
   6. Security Considerations.......................................12
   7. IANA Considerations...........................................12
   8. Conclusions...................................................12
   9. Acknowledgments...............................................12
   10. References...................................................13
      10.1. Normative References....................................13
      10.2. Informative References..................................14
   Author's Addresses...............................................14
   Intellectual Property Statement..................................14
   Disclaimer of Validity...........................................15

1. Introduction

   This document provides an encoding of information used for path
   validation in optical networks utilizing approximate computations
   based on the information model in [Imp-Info]. The definitions,
   characteristics and usage of the optical parameters that form the
   model [Imp-Info] and this encoding are based on ITU-T recommendation
   G.680 [G.680]. This encoding of the impairment model [Imp-Info] is
   intentionally made compatible with the impairment free encode of
   reference [RWA-Encode].

2. General Aspects Optical Impairment Information Encoding

   The units for the various parameters include GHz, dB, dBm, ms, ps,
   and ps/nm. These are typically expressed as floating point numbers.
   Due to the measurement limitations inherent in these parameters
   single precision floating point, e.g., 32 bit IEEE floating point,
   numbers should be sufficient, but we are in the process of conferring
   with ITU-T SG15 Q6 on this.

   In [Imp-Info] optical impairments were characterized into three
   groups: (a) those that apply to the network element as a whole, (b)
   those that can vary on a per port basis for a network element, and
   (c) those that can vary based on ingress to egress port pairs. In
   addition some parameters may also exhibit frequency dependence.



Bernstein              Expires January 8, 2010                 [Page 3]


Internet-Draft      Optical Impairment Info Model             July 2009


   For realistic optical network elements per port and port-to-port
   parameters typically only assume a few different values. For example,
   the channel gain of a ROADM is usually specified in terms of input to
   drop, add to output, and input to output. This implies that many port
   and port-to-port parameters could be efficiently specified, stored
   and transported by making use of the Link Set Sub-TLV and
   Connectivity Matrix Sub-TLV of reference [RWA-Encode]. In the
   following we indicate how these structures could be used. However,
   whether such facilities are used is dependent upon the specific
   protocol context, e.g., OSPF, IS-IS, etc.

2.1. Parameter Units and Grouping

   The encoding discussed here is assumed to occur within a type-length-
   value (TLV) structure. In such a structure the type and length fields
   form a "header" of sorts. From the type field we would infer the
   following:

   o  Units of the parameter, i.e., dB, dBm, GHz, ps, etc...

   o  The grouping of the parameters. For some parameters such as
      chromatic dispersion, maximum and minimum values are always
      specified.

   o  Whether the parameter may exhibit frequency dependence. Encoding
      of frequency dependent parameters is discussed in the next
      section.

2.2. Frequency Dependence of Parameters

   Some parameters may exhibit a frequency dependence that needs to be
   accounted for over the frequency/wavelength of the system. We provide
   here an extensible encoding of this dependence that can take into
   account general purpose interpolation methods such as linear
   interpolation, cubic splines, etc... as well as application specific
   interpolation methods such as the 3-term and 5-term Sellmeier
   formulas of Appendix A of reference [G.650.1]. The following
   considerations are used in the encoding of frequency dependency:

   1. Each parameter in a group of parameters will have its own
      interpolation data. We know from the "type" of the parameter how
      many sub-parameters are in this group.

   2. Interpolation data may be broken into subranges of validity for a
      formula with particular interpolation coefficients.

   3. The type of interpolation to be used over the sub-ranges must be
      specified



Bernstein              Expires January 8, 2010                 [Page 4]


Internet-Draft      Optical Impairment Info Model             July 2009


   4. We assume that each sub-range will make use of the same type of
      interpolation formula (TBD if this is condition is too limiting).




      0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Interpolation| Num Ranges    |             Reserved          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Start Wavelength (first range)          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                 Range 1, sub-parameter 1                      :
   +            Interpolation type particular data                 +
   |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-:
   :                    Interpolation data for                     :
   +                     other sub-parameters                      +
   |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-:
   |                       Start Wavelength (next range)           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                 Range 2, sub-parameter 1                      :
   +            Interpolation type particular data                 +
   |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-:
   :                    More ranges if needed                      :
   :                                                               :
   |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |                         End Wavelength (for last range)       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Where
   "Interpolation" is the type of interpolation to be used across the
   range.
      0 Piecewise Constant. In this form of interpolation a single
        value of the parameter is used across each sub-range.
      1 Linear Interpolation. In this form of interpolation two values
        of the parameter are given corresponding to the value at each
        end of the frequency sub-range. Linear interpolation is used to
        obtain the parameter values for frequencies between the sub-
        range limits.


      Others Interpolation type are FFS.

   "Num Ranges" is an integer that gives the number of sub-ranges for
   the interpolation.

   Each interpolation specific parameter block is preceded by a "start
   wavelength" which is used to indicate the beginning of that range.
   The following ranges "start wavelength" will be used as the ending

Bernstein              Expires January 8, 2010                 [Page 5]


Internet-Draft      Optical Impairment Info Model             July 2009


   wavelength for that range, except for the last range which requires
   an explicit "end wavelength".



   In the case of "no interpolation" the sub-parameter value is assumed
   to be valid over the entire sub-range and no additional interpolation
   related parameters or coefficients are needed.

   [To be completed: examples of piecewise constant interpolation with a
   particular frequency dependent impairment parameter.]



3. Network Element Wide Parameters

   IEEE 754-2008 format 32 bit floating point numbers are used for the
   following parameter values. Units are specified with each parameter.

   Each of the following individual parameters would need to be
   explicitly identified via some kind of code point mechanism.

3.1. Channel frequency range (GHz, Max, Min)

   The channel frequency range is expressed in GHz.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Min frequency in GHz IEEE float              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max frequency in GHz IEEE float              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   From the perspective of a control plane making use of standard grid
   spacing and given the encoding of lambda of [Otani] it is not clear
   whether this parameter is needed. Use is FFS/Liaison.


3.2. Channel insertion loss deviation (dB, Max)

   A 32 bit IEEE floating point number. This parameter may be frequency
   dependent.

3.3. Ripple (dB, Max)

   A 32 bit IEEE floating point number.



Bernstein              Expires January 8, 2010                 [Page 6]


Internet-Draft      Optical Impairment Info Model             July 2009


3.4. Channel chromatic dispersion (ps/nm, Max, Min)

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Min dispersion in ps/nm IEEE float              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Max dispersion in ps/nm IEEE float              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   These parameters generally exhibit frequency dependence.

3.5. Differential group delay (ps, Max)

   A 32 bit IEEE floating point number.

3.6. Polarization dependent loss (dB, Max)

   A 32 bit IEEE floating point number.



3.7. Reflectance (passive component) (dB, Max)

   A 32 bit IEEE floating point number.

3.8. Reconfigure time/Switching time (ms, Max, Min)

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Min Reconfigure time in ms IEEE float              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Max Reconfigure time in ms IEEE float              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.9. Channel uniformity (dB, Max)

   A 32 bit IEEE floating point number.











Bernstein              Expires January 8, 2010                 [Page 7]


Internet-Draft      Optical Impairment Info Model             July 2009


3.10. Channel addition/removal (steady-state) gain response (dB, Max,
   Min)

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Min gain response in dB IEEE float                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Max gain response in dB IEEE float                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.11. Transient duration (ms, Max)

   A 32 bit IEEE floating point number.

3.12. Transient gain increase (dB, Max)

   A 32 bit IEEE floating point number.

3.13. Transient gain reduction (dB, Max)

   A 32 bit IEEE floating point number.

3.14. Multichannel gain-change difference (inter-channel gain-change
   difference) (dB, Max)

   A 32 bit IEEE floating point number.

3.15. Multichannel gain tilt (inter-channel gain-change ratio)(dB, Max)

   A 32 bit IEEE floating point number.

4. Per Port Parameters

   Per port parameters fit well within the category of link parameters
   that are typically disseminated by a link state protocol. However,
   since many optical ports on a device tend to have the same parameters
   grouping these parameters together for conveyance makes sense and can
   aid in interpretation. For example, in a high channel count ROADM
   with many add and drop ports the characteristics of all the add ports
   would tend to be similar to each other, and likewise for the drop
   ports, but these would tend to be different from each other and the
   trunk (or through) ports. Hence we propose an optional simple
   grouping mechanism based on grouping common per port parameters along
   with a Link Set sub-TLV [RWA-Encode] that specifies the set of links
   that share the same port parameters.

   For example:



Bernstein              Expires January 8, 2010                 [Page 8]


Internet-Draft      Optical Impairment Info Model             July 2009


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Set TLV                          |
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Port Parameter TLV #1                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Port Parameter TLV #2                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Port Parameter TLV #N                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Each of the following individual parameters would need to be
   explicitly identified via some kind of code point mechanism.

4.1. Total input power range (dBm, Max, Min)



       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Min power in dBm IEEE float                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max power in dBm IEEE float                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


4.2. Channel input power range (dBm, Max, Min)

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Min power in dBm IEEE float                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max power in dBm IEEE float                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+










Bernstein              Expires January 8, 2010                 [Page 9]


Internet-Draft      Optical Impairment Info Model             July 2009


4.3. Channel output power range (dBm, Max, Min)

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Min power in dBm IEEE float                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max power in dBm IEEE float                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


4.4. Input reflectance (dB, Max) (with amplifiers)

   A 32 bit IEEE floating point number.

4.5. Output reflectance (dB, Max) (with amplifiers)

   A 32 bit IEEE floating point number.

4.6. Maximum reflectance tolerable at input (dB, Min)

   A 32 bit IEEE floating point number.

4.7. Maximum reflectance tolerable at output (dB, Min)

   A 32 bit IEEE floating point number.

4.8. Maximum total output power (dBm, Max)

   A 32 bit IEEE floating point number.

5. Port to Port Parameters

   To specify port-to-port parameters we need to indicate the port pair
   that they apply to. Since many port pairs have the same parameter
   values and there maybe a great number of possible port pairs, it can
   be worth while to group port pairs with the same parameter values in
   our encoding. In addition, this is typically how these parameters are
   specified. For example, the specification data for a simple ROADM may
   give the insertion loss for the "through to drop ports" as a single
   parameter, along with a separate insertion loss parameter for the
   "add to through ports".

   In [RWA-Encode] the Connectivity Matrix sub-TLV is essentially a
   compact listing of ingress-egress port pairs. Hence we can use this
   structure to communicate common port-to-port parameters for a set of
   ingress-egress pairs.

   For example:


Bernstein              Expires January 8, 2010                [Page 10]


Internet-Draft      Optical Impairment Info Model             July 2009


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Connectivity Matrix Sub-TLV                   |
      |  (list of ingress-egress port pairs with common parameters)   |
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Port-Port Parameter TLV #1                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Port-Port Parameter TLV #2                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Port-Port Parameter TLV #N                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Each of the following individual parameters would need to be
   explicitly identified via some kind of code point mechanism.

5.1. Insertion loss (dB, Max, Min)

   TBD if this parameter changes with frequency.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Min Insertion loss in dB IEEE float              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Max Insertion loss in dB IEEE float              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


5.2. Isolation, adjacent channel (dB, Min)

   A 32 bit IEEE floating point number.

5.3. Isolation, non-adjacent channel (dB, Min)

   A 32 bit IEEE floating point number.

5.4. Channel extinction (dB, Min)

   A 32 bit IEEE floating point number. This parameter may change with
   frequency.

5.5. Channel signal-spontaneous noise figure (dB, Max)

   A 32 bit IEEE floating point number. This parameter may change with
   frequency.

Bernstein              Expires January 8, 2010                [Page 11]


Internet-Draft      Optical Impairment Info Model             July 2009




5.6. Channel gain (dB, Max, Min)

   This parameter may exhibit frequency dependence.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Min Channel gain in dB IEEE float                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Max Channel gain in dB IEEE float                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


6. Security Considerations

   This document defines an encoding for an information model describing
   impairments in optical networks. If such a encoding is put into use
   within a network it will by its nature contain details of the
   physical characteristics of an optical network. Such information
   would need to be protected from intentional or unintentional
   disclosure.

7. IANA Considerations

   This draft does not currently require any consideration from IANA.

8. Conclusions

   The state of standardization of optical device characteristics has
   matured from when initial IETF work concerning optical impairments
   was investigated in [RFC4054]. Relatively recent ITU-T
   recommendations provide a standardized based of optical
   characteristic definitions and parameters that control plane
   technologies such as GMPLS and PCE can make use of in performing
   optical path validation. The enclosed information model shows how
   readily such ITU-T optical work can be utilized within the control
   plane.

9. Acknowledgments

   This document was prepared using 2-Word-v2.0.template.dot.








Bernstein              Expires January 8, 2010                [Page 12]


Internet-Draft      Optical Impairment Info Model             July 2009


10. References

10.1. Normative References

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [G.650.1] ITU-T Recommendation G.650.1, Definitions and test methods
             for linear, deterministic attributes of single-mode fibre
             and cable, June 2004.

   [G.661]   ITU-T Recommendation G.661, Definition and test methods for
             the relevant generic parameters of optical amplifier
             devices and subsystems, March 2006.

   [G.671]   ITU-T Recommendation G.671, Transmission characteristics of
             optical components and subsystems, January 2005.

   [G.680]  ITU-T Recommendation G.680, Physical transfer functions of
             optical network elements, July 2007.

   [Imp-Frame] G. Bernstein, Y. Lee, D. Li, G. Martinelli, "A Framework
             for the Control and Measurement of Wavelength Switched
             Optical Networks (WSON) with Impairments", Work in
             Progress, draft-bernstein-ccamp-wson-impairments-05.txt

   [Imp-Info]Y. Lee, G. Bernstein, M. Kattan, "Information Model for
             Impaired Optical Path Validation", Work in Progress, draft-
             bernstein-wson-impairment-info-02.txt.

   [Otani]   T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized
             Labels for G.694 Lambda-Switching Capable Label Switching
             Routers", work in progress, draft-ietf-ccamp-gmpls-g-694-
             lambda-labels.

   [RFC4054] Strand, J., Ed., and A. Chiu, Ed., "Impairments and Other
             Constraints on Optical Layer Routing", RFC 4054, May 2005.

   [RWA-Info] Y. Lee, G. Bernstein, D. Li, W. Imajuku, "Routing and
             Wavelength Assignment Information Model for Wavelength
             Switched Optical Networks", Work in Progress, draft-ietf-
             ccamp-rwa-info.

   [RWA-Encode]G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
             Wavelength Assignment Information Encoding for Wavelength
             Switched Optical Networks" Work in progress, draft-ietf-
             ccamp-rwa-wson-encode.



Bernstein              Expires January 8, 2010                [Page 13]


Internet-Draft      Optical Impairment Info Model             July 2009




10.2. Informative References

Author's Addresses

   Greg Bernstein
   Grotto Networking
   Fremont CA, USA

   Phone: (510) 573-2237
   Email: gregb@grotto-networking.com


   Young Lee (ed.)
   Huawei Technologies
   1700 Alma Drive, Suite 100
   Plano, TX 75075, USA

   Phone: (972) 509-5599 (x2240)
   Email: ylee@huawei.com


   Moustafa Kattan
   Cisco Systems,
   Dubai Internet City # 10,
   Dubai, UAE

   Phone (408)527-5101
   Email:mkattan@cisco.com



Intellectual Property Statement

   The IETF Trust takes no position regarding the validity or scope of
   any Intellectual Property Rights or other rights that might be
   claimed to pertain to the implementation or use of the technology
   described in any IETF Document or the extent to which any license
   under such rights might or might not be available; nor does it
   represent that it has made any independent effort to identify any
   such rights.

   Copies of Intellectual Property disclosures made to the IETF
   Secretariat and any assurances of licenses to be made available, or
   the result of an attempt made to obtain a general license or
   permission for the use of such proprietary rights by implementers or
   users of this specification can be obtained from the IETF on-line IPR
   repository at http://www.ietf.org/ipr


Bernstein              Expires January 8, 2010                [Page 14]


Internet-Draft      Optical Impairment Info Model             July 2009


   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   any standard or specification contained in an IETF Document. Please
   address the information to the IETF at ietf-ipr@ietf.org.



Disclaimer of Validity

   All IETF Documents and the information contained therein are provided
   on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
   REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
   IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
   WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
   WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
   ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
   FOR A PARTICULAR PURPOSE.

Acknowledgment

   Funding for the RFC Editor function is currently provided by the
   Internet Society.




























Bernstein              Expires January 8, 2010                [Page 15]