Network Working Group H. Chen
Internet-Draft Futurewei
Intended status: Standards Track M. Toy
Expires: January 7, 2020 Verizon
A. Wang
China Telecom
Z. Li
China Mobile
L. Liu
Fujitsu
X. Liu
Volta Networks
July 6, 2019
SR Path Ingress Protection
draft-chen-pce-sr-ingress-protection-00
Abstract
This document describes protocol extensions and procedures for
protecting the ingress node of a Segment Routing (SR) path.
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 7, 2020.
Chen, et al. Expires January 7, 2020 [Page 1]
Internet-Draft SR Ingress Protection July 2019
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminologies . . . . . . . . . . . . . . . . . . . . . . . . 3
3. SR Path Ingress Protection Example . . . . . . . . . . . . . 3
4. Behavior after Ingress Failure . . . . . . . . . . . . . . . 4
5. Extensions to PCE . . . . . . . . . . . . . . . . . . . . . . 5
5.1. Capability for SR Path Ingress Protection . . . . . . . . 5
5.2. SR Path Ingress Protection . . . . . . . . . . . . . . . 6
5.2.1. Traffic-Description sub-TLV . . . . . . . . . . . . . 7
5.2.2. Primary-Ingress sub-TLV . . . . . . . . . . . . . . . 10
5.2.3. Service sub-TLV . . . . . . . . . . . . . . . . . . . 11
5.2.4. Downstream-Node sub-TLV . . . . . . . . . . . . . . . 12
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13
7. Security Considerations . . . . . . . . . . . . . . . . . . . 13
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 13
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 13
9.1. Normative References . . . . . . . . . . . . . . . . . . 13
9.2. Informative References . . . . . . . . . . . . . . . . . 14
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15
1. Introduction
Fast protection of a transit node of a Segment Routing (SR) path is
described in [I-D.bashandy-rtgwg-segment-routing-ti-lfa] and
[I-D.hu-spring-segment-routing-proxy-forwarding]. However, these
documents do not discuss the procedures for fast protection of the
ingress node of an SR path.
This document fills that void and specifies protocol extensions and
procedures for fast protection of the ingress node of an SR path.
Ingress node and ingress as well as fast protection and protection
will be used exchangeably.
Chen, et al. Expires January 7, 2020 [Page 2]
Internet-Draft SR Ingress Protection July 2019
2. Terminologies
The following terminologies are used in this document.
SR: Segment Routing
SRv6: SR for IPv6
SRH: Segment Routing Header
SID: Segment Identifier
CE: Customer Edge
PE: Provider Edge
LFA: Loop-Free Alternate
TI-LFA: Topology Independent LFA
TE: Traffic Engineering
BFD: Bidirectional Forwarding Detection
VPN: Virtual Private Network
L3VPN: Layer 3 VPN
FIB: Forwarding Information Base
PLR: Point of Local Repair
BGP: Border Gateway Protocol
IGP: Interior Gateway Protocol
OSPF: Open Shortest Path First
IS-IS: Intermediate System to Intermediate System
3. SR Path Ingress Protection Example
Figure 1 shows an example of protecting ingress PE1 of a SR path,
which is from ingress PE1 to egress PE3.
Chen, et al. Expires January 7, 2020 [Page 3]
Internet-Draft SR Ingress Protection July 2019
******* *******
[PE1]-----[P1]-----[PE3]
/ | |& | \ PE1 Ingress
/ | |& | \ CEx Customer Edge
[CE1] | |& | [CE2] Px Non-Ingress
\ | |& | / *** SR Path
\ | &&&&&& |& | / &&& Backup Path
[PE2]-----[P2]-----[PE4]
Figure 1: Protecting SR Path Ingress PE1
In normal operations, CE1 sends the traffic with destination PE3 to
ingress PE1, which imports the traffic into the SR path.
When CE1 detects the failure of ingress PE1, it switches the traffic
to backup ingress PE2, which imports the traffic from CE1 into a
backup SR path. In one option, this backup path is from the backup
ingress PE2 to ingress PE1's next hop (or endpoint) node P1, where
the traffic is "merged" into the SR path, and then sent to egress
PE3.
In another option, the backup path is from the backup ingress PE2 to
the egress PE3. When the traffic is imported into the backup path,
it is sent to the egress PE3 along the path.
4. Behavior after Ingress Failure
After failure of the ingress of an SR path happens, there are a
couple of different ways to detect the failure. In each way, there
may be some specific behavior for the traffic source (e.g., CE1) and
the backup ingress (e.g., PE2).
In one way, the traffic source (e.g., CE1) is responsible for fast
detecting the failure of the ingress (e.g., PE1) of an SR path. Fast
detecting the failure means detecting the failure in a few or tens of
milliseconds. The backup ingress (e.g., PE2) is ready to import the
traffic from the traffic source into the backup SR path installed.
In normal operations, the source sends the traffic to the ingress of
the SR path. When the source detects the failure of the ingress, it
switches the traffic to the backup ingress, which delivers the
traffic to the egress of the SR path via the backup SR path.
In another way, both the backup ingress and the traffic source are
concurrently responsible for fast detecting the failure of the
ingress of an SR path.
Chen, et al. Expires January 7, 2020 [Page 4]
Internet-Draft SR Ingress Protection July 2019
In normal operations, the source (e.g., CE1) sends the traffic to the
ingress (e.g., PE1). It switches the traffic to the backup ingress
(e.g., PE2) when it detects the failure of the ingress.
The backup ingress does not import any traffic from the source into
the backup SR path in normal operations. When it detects the failure
of the ingress, it imports the traffic from the source into the
backup SR path.
5. Extensions to PCE
PCC runs on each of the edge nodes of a network normally. PCE runs
on a server as a controller to communicate with PCCs. PCE and PCCs
work together to support protection for the ingress of a SR path.
5.1. Capability for SR Path Ingress Protection
When a PCE and a PCC establish a PCEP session between them, they
exchange their capabilities of supporting protection for the ingress
node of an SR path/tunnel.
A new sub-TLV called SR_INGRESS_PROTECTION_CAPABILITY is defined. It
is included in the PATH_SETUP_TYPE_CAPABILITY TLV with PST = TBD1
(suggested value 2 for backup SR path/tunnel) in the OPEN object,
which is exchanged in Open messages when a PCC and a PCE establish a
PCEP session between them. Its format is illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD2 | Length=4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Flags |D|A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: SR_INGRESS_PROTECTION_CAPABILITY sub-TLV
Type: TBD2 is to be assigned by IANA.
Length: 4.
Reserved: 2 octets. Must be set to zero in transmission and ignored
on reception.
Flags: 2 octets. Two flags are defined.
o D flag: A PCC sets this flag to 1 to indicate that it is able
to detect its adjacent node's failure quickly.
Chen, et al. Expires January 7, 2020 [Page 5]
Internet-Draft SR Ingress Protection July 2019
o A flag: A PCE sets this flag to 1 to request a PCC to let the
forwarding entry for the backup SR path/tunnel be Active.
A PCC, which supports ingress protection for a SR tunnel/path, sends
a PCE an Open message containing SR_INGRESS_PROTECTION_CAPABILITY
sub-TLV. This sub-TLV indicates that the PCC is capable of
supporting the ingress protection for a SR tunnel/path.
A PCE, which supports ingress protection for a SR tunnel/path, sends
a PCC an Open message containing SR_INGRESS_PROTECTION_CAPABILITY
sub-TLV. This sub-TLV indicates that the PCE is capable of
supporting the ingress protection for a SR tunnel/path.
Assume that both a PCC and a PCE support SR_PCE_CAPABILITY, that is
that each of the Open messages sent by the PCC and PCE contains PATH-
SETUP-TYPE-CAPABILITY TLV with a PST list containing PST=1 and a SR-
PCE-CAPABILITY sub-TLV.
If a PCE receives an Open message without a
SR_INGRESS_PROTECTION_CAPABILITY sub-TLV from a PCC, then the PCE
MUST not send the PCC any request for ingress protection of a SR
path/tunnel.
If a PCC receives an Open message without a
SR_INGRESS_PROTECTION_CAPABILITY sub-TLV from a PCE, then the PCC
MUST ignore any request for ingress protection of a SR path/tunnel
from the PCE.
If a PCC sets D flag to zero, then the PCE SHOULD send the PCC an
Open message with A flag set to one. When the PCE sends the PCC a
message for initiating a backup SR path/tunnel, the PCC SHOULD let
the forwarding entry for the backup SR path/tunnel be Active.
5.2. SR Path Ingress Protection
A new sub-TLV called SR_INGRESS_PROTECTION is defined. When a PCE
sends a PCC a PCInitiate message for initiating a backup SR path/
tunnel to protect the primary ingress node of a primary SR path/
tunnel, the message contains this TLV in the RP/SRP object. Its
format is illustrated below.
Chen, et al. Expires January 7, 2020 [Page 6]
Internet-Draft SR Ingress Protection July 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD3 | Length (variable) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Flags |A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
~ sub-TLVs (optional) ~
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: SR_INGRESS_PROTECTION sub-TLV
Type: TBD3 is to be assigned by IANA.
Length: Variable.
Reserved: 2 octets. Must be set to zero in transmission and ignored
on reception.
Flags: 2 octets. One flag is defined.
o A flag: A PCE sets this flag to 1 to request a PCC to let the
forwarding entry for the backup SR path/tunnel be Active.
Four optional sub-TLVs are defined.
5.2.1. Traffic-Description sub-TLV
A Traffic-Description sub-TLV describes the traffic to be imported
into a backup SR path/tunnel. Its format is illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD4 | Length (variable) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
~ sub-TLVs (optional) ~
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Traffic-Description sub-TLV
Type: TBD4 is to be assigned by IANA.
Length: Variable.
Chen, et al. Expires January 7, 2020 [Page 7]
Internet-Draft SR Ingress Protection July 2019
Two optional sub-TLVs are defined. One is FEC sub-TLV and the other
interface sub-TLV.
A FEC sub-TLV describes the traffic to be imported into the backup SR
path/tunnel. It is an IP prefix with an optional virtual network ID.
It has two formats: one for IPv4 and the other for IPv6, which are
illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD5 | Length (variable) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|IPv4 Prefix Len| IPv4 Prefix ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ (Optional) Virtual Network ID (2 octets) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: IPv4 FEC sub-TLV
Type: TBD5 is to be assigned by IANA.
Length: Variable.
IPv4 Prefix Len: Indicates the length of the IPv4 Prefix.
IPv4 Prefix: IPv4 Prefix rounded to octets.
Virtual Network ID: 2 octets. This is optional. It indicates the
ID of a virtual network.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD6 | Length (variable) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|IPv6 Prefix Len| IPv6 Prefix ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Optional Virtual Network ID (2 octets) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: IPv6 FEC sub-TLV
Type: TBD6 is to be assigned by IANA.
Length: Variable.
IPv6 Prefix Len: Indicates the length of the IPv6 Prefix.
Chen, et al. Expires January 7, 2020 [Page 8]
Internet-Draft SR Ingress Protection July 2019
IPv6 Prefix: IPv6 Prefix rounded to octets.
Virtual Network ID: 2 octets. This is optional. It indicates the
ID of a virtual network.
An Interface sub-TLV indicates the interface from which the traffic
is received and imported into the backup SR path/tunnel. It has
three formats: one for interface index, the other two for IPv4 and
IPv6 address, which are illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD7 | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface Index (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Interface Index sub-TLV
Type: TBD7 is to be assigned by IANA.
Length: 4.
Interface Index: 4 octets. It indicates the index of an interface.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD8 | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface IPv4 Address (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Interface IPv4 Address sub-TLV
Type: TBD8 is to be assigned by IANA.
Length: 4.
Interface IPv4 Address: 4 octets. It represents the IPv4 address of
an interface.
Chen, et al. Expires January 7, 2020 [Page 9]
Internet-Draft SR Ingress Protection July 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD9 | Length (16) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface IPv6 Address (16 octets) |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Interface IPv6 Address sub-TLV
Type: TBD9 is to be assigned by IANA.
Length: 16.
Interface IPv6 Address: 16 octets. It represents the IPv6 address
of an interface.
5.2.2. Primary-Ingress sub-TLV
A Primary-Ingress sub-TLV indicates the IP address of the primary
ingress node of a primary SR path/tunnel. It has two formats: one
for primary ingress node IPv4 address and the other for primary
ingress node IPv6 address, which are illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBDa | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Primary Ingress IPv4 Address (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Primary Ingress IPv4 Address sub-TLV
Type: TBDa is to be assigned by IANA.
Length: 4.
Primary Ingress IPv4 Address: 4 octets. It represents an IPv4 host
address of the primary ingress node of a SR path/tunnel.
Chen, et al. Expires January 7, 2020 [Page 10]
Internet-Draft SR Ingress Protection July 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBDb | Length (16) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Primary Ingress IPv6 Address (16 octets) |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: Primary Ingress IPv6 Address sub-TLV
Type: TBDb is to be assigned by IANA.
Length: 16.
Primary Ingress IPv6 Address: 16 octets. It represents an IPv6 host
address of the primary ingress node of a SR path/tunnel.
5.2.3. Service sub-TLV
A Service sub-TLV contains a service ID or label to be added into a
packet to be carried by a SR path/tunnel. It has two formats: one
for the service identified by a label and the other for the service
identified by a service identifier (ID) of 32 or 128 bits, which are
illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBDc | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| zero | Service Label (20 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: Service Label sub-TLV
Type: TBDc is to be assigned by IANA.
Length: 4.
Service Label: the least significant 20 bits. It represents a label
of 20 bits.
Chen, et al. Expires January 7, 2020 [Page 11]
Internet-Draft SR Ingress Protection July 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBDd | Length (4/16) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Service ID (4 or 16 octets) |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: Service ID sub-TLV
Type: TBDd is to be assigned by IANA.
Length: 4 or 16.
Service ID: 4 or 16 octets. It represents Identifier (ID) of a
service in 4 or 16 octets.
5.2.4. Downstream-Node sub-TLV
A Downstream-Node sub-TLV gives the IP address of the downstream
endpoint node of the primary ingress along the primary SR path/
tunnel. It has two formats: one for downstream node IPv4 address and
the other for downstream node IPv6 address, which are illustrated
below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBDe | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Node IPv4 Address (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: Downstream-Node IPv4 Address sub-TLV
Type: TBDe is to be assigned by IANA.
Length: 4.
Downstream Node IPv4 Address: 4 octets. It represents an IPv4 host
address of the downstream endpoint node of the primary ingress
node of a SR path/tunnel.
Chen, et al. Expires January 7, 2020 [Page 12]
Internet-Draft SR Ingress Protection July 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBDf | Length (16) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Node IPv6 Address (16 octets) |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 15: Downstream-Node IPv6 Address sub-TLV
Type: TBDf is to be assigned by IANA.
Length: 16.
Downstream Node IPv6 Address: 4 octets. It represents an IPv6 host
address of the downstream endpoint node of the primary ingress
node of a SR path/tunnel.
6. IANA Considerations
TBD
7. Security Considerations
TBD
8. Acknowledgements
TBD
9. References
9.1. Normative References
[I-D.bashandy-isis-srv6-extensions]
Psenak, P., Filsfils, C., Bashandy, A., Decraene, B., and
Z. Hu, "IS-IS Extensions to Support Routing over IPv6
Dataplane", draft-bashandy-isis-srv6-extensions-05 (work
in progress), March 2019.
[I-D.hu-spring-segment-routing-proxy-forwarding]
Hu, Z., Chen, H., Yao, J., Bowers, C., and Y. Zhu, "SR-TE
Path Midpoint Protection", draft-hu-spring-segment-
routing-proxy-forwarding-03 (work in progress), April
2019.
Chen, et al. Expires January 7, 2020 [Page 13]
Internet-Draft SR Ingress Protection July 2019
[I-D.ietf-isis-segment-routing-extensions]
Previdi, S., Ginsberg, L., Filsfils, C., Bashandy, A.,
Gredler, H., and B. Decraene, "IS-IS Extensions for
Segment Routing", draft-ietf-isis-segment-routing-
extensions-25 (work in progress), May 2019.
[I-D.ietf-ospf-segment-routing-extensions]
Psenak, P., Previdi, S., Filsfils, C., Gredler, H.,
Shakir, R., Henderickx, W., and J. Tantsura, "OSPF
Extensions for Segment Routing", draft-ietf-ospf-segment-
routing-extensions-27 (work in progress), December 2018.
[I-D.li-ospf-ospfv3-srv6-extensions]
Li, Z., Hu, Z., Cheng, D., Talaulikar, K., and P. Psenak,
"OSPFv3 Extensions for SRv6", draft-li-ospf-
ospfv3-srv6-extensions-03 (work in progress), March 2019.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC7356] Ginsberg, L., Previdi, S., and Y. Yang, "IS-IS Flooding
Scope Link State PDUs (LSPs)", RFC 7356,
DOI 10.17487/RFC7356, September 2014,
<https://www.rfc-editor.org/info/rfc7356>.
9.2. Informative References
[I-D.bashandy-rtgwg-segment-routing-ti-lfa]
Bashandy, A., Filsfils, C., Decraene, B., Litkowski, S.,
Francois, P., daniel.voyer@bell.ca, d., Clad, F., and P.
Camarillo, "Topology Independent Fast Reroute using
Segment Routing", draft-bashandy-rtgwg-segment-routing-ti-
lfa-05 (work in progress), October 2018.
[I-D.hegde-spring-node-protection-for-sr-te-paths]
Hegde, S., Bowers, C., Litkowski, S., Xu, X., and F. Xu,
"Node Protection for SR-TE Paths", draft-hegde-spring-
node-protection-for-sr-te-paths-05 (work in progress),
July 2019.
[I-D.ietf-spring-segment-routing-policy]
Filsfils, C., Sivabalan, S., daniel.voyer@bell.ca, d.,
bogdanov@google.com, b., and P. Mattes, "Segment Routing
Policy Architecture", draft-ietf-spring-segment-routing-
policy-03 (work in progress), May 2019.
Chen, et al. Expires January 7, 2020 [Page 14]
Internet-Draft SR Ingress Protection July 2019
[I-D.sivabalan-pce-binding-label-sid]
Sivabalan, S., Filsfils, C., Tantsura, J., Hardwick, J.,
Previdi, S., and C. Li, "Carrying Binding Label/Segment-ID
in PCE-based Networks.", draft-sivabalan-pce-binding-
label-sid-06 (work in progress), February 2019.
[RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching
(MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
Class" Field", RFC 5462, DOI 10.17487/RFC5462, February
2009, <https://www.rfc-editor.org/info/rfc5462>.
Authors' Addresses
Huaimo Chen
Futurewei
Boston, MA
USA
Email: Huaimo.chen@futurewei.com
Mehmet Toy
Verizon
USA
Email: mehmet.toy@verizon.com
Aijun Wang
China Telecom
Beiqijia Town, Changping District
Beijing 102209
China
Email: wangaj.bri@chinatelecom.cn
Zhenqiang Li
China Mobile
32 Xuanwumen West Ave, Xicheng District
Beijing 100053
China
Email: lizhengqiang@chinamobile.com
Chen, et al. Expires January 7, 2020 [Page 15]
Internet-Draft SR Ingress Protection July 2019
Lei Liu
Fujitsu
USA
Email: liulei.kddi@gmail.com
Xufeng Liu
Volta Networks
McLean, VA
USA
Email: xufeng.liu.ietf@gmail.com
Chen, et al. Expires January 7, 2020 [Page 16]