Independent Submission                                           J. Elie
Internet-Draft                                           January 4, 2017
Intended status: Standards Track
Expires: July 8, 2017


                       Modernization of RFC 4642
           draft-elie-nntp-tls-recommendations-rfc4642bis-00

Abstract

   This document shows the sections that changed between RFC 4642 and
   draft-elie-nntp-tls-recommendations.  The -00 version contains the
   wording in RFC 4642.  The -01 version contains the wording in draft-
   elie-nntp-tls-recommendations-04.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on July 8, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Elie                      Expires July 8, 2017                  [Page 1]


Internet-Draft          Modernization of RFC 4642           January 2017


1.  Wording in RFC 4642

Abstract

   This memo defines an extension to the Network News Transfer Protocol
   (NNTP) that allows an NNTP client and server to use Transport Layer
   Security (TLS).  The primary goal is to provide encryption for
   single-link confidentiality purposes, but data integrity, (optional)
   certificate-based peer entity authentication, and (optional) data
   compression are also possible.

1. Introduction

   Historically, unencrypted NNTP [NNTP] connections were satisfactory
   for most purposes.  However, sending passwords unencrypted over the
   network is no longer appropriate, and sometimes integrity and/or
   confidentiality protection are desired for the entire connection.

   The TLS protocol (formerly known as SSL) provides a way to secure an
   application protocol from tampering and eavesdropping.  Although
   advanced SASL authentication mechanisms [NNTP-AUTH] can provide a
   lightweight version of this service, TLS is complimentary to both
   simple authentication-only SASL mechanisms and deployed clear-text
   password login commands.

   In some existing implementations, TCP port 563 has been dedicated to
   NNTP over TLS.  These implementations begin the TLS negotiation
   immediately upon connection and then continue with the initial steps
   of an NNTP session.  This use of TLS on a separate port is
   discouraged for the reasons documented in Section 7 of "Using TLS
   with IMAP, POP3 and ACAP" [TLS-IMAPPOP].

   This specification formalizes the STARTTLS command already in
   occasional use by the installed base.  The STARTTLS command rectifies
   a number of the problems with using a separate port for a "secure"
   protocol variant; it is the preferred way of using TLS with NNTP.

2.2.2. Description

   A client issues the STARTTLS command to request negotiation of TLS.
   The STARTTLS command is usually used to initiate session security,
   although it can also be used for client and/or server certificate
   authentication and/or data compression.

   An NNTP server returns the 483 response to indicate that a secure or
   encrypted connection is required for the command sent by the client.
   Use of the STARTTLS command as described below is one way to
   establish a connection with these properties.  The client MAY



Elie                      Expires July 8, 2017                  [Page 2]


Internet-Draft          Modernization of RFC 4642           January 2017


   therefore use the STARTTLS command after receiving a 483 response.

   If a server advertises the STARTTLS capability, a client MAY attempt
   to use the STARTTLS command at any time during a session to negotiate
   TLS without having received a 483 response.  Servers SHOULD accept
   such unsolicited TLS negotiation requests.

   If the server is unable to initiate the TLS negotiation for any
   reason (e.g., a server configuration or resource problem), the server
   MUST reject the STARTTLS command with a 580 response.  Then, it
   SHOULD either reject subsequent restricted NNTP commands from the
   client with a 483 response code (possibly with a text string such as
   "Command refused due to lack of security") or reject a subsequent
   restricted command with a 400 response code (possibly with a text
   string such as "Connection closing due to lack of security") and
   close the connection.  Otherwise, the server issues a 382 response,
   and TLS negotiation begins.  A server MUST NOT under any
   circumstances reply to a STARTTLS command with either a 480 or 483
   response.

   If the client receives a failure response to STARTTLS, the client
   must decide whether or not to continue the NNTP session.  Such a
   decision is based on local policy.  For instance, if TLS was being
   used for client authentication, the client might try to continue the
   session in case the server allows it to do so even with no
   authentication.  However, if TLS was being negotiated for encryption,
   a client that gets a failure response needs to decide whether to
   continue without TLS encryption, to wait and try again later, or to
   give up and notify the user of the error.

   Upon receiving a 382 response to a STARTTLS command, the client MUST
   start the TLS negotiation before giving any other NNTP commands.  The
   TLS negotiation begins for both the client and server with the first
   octet following the CRLF of the 382 response.  If, after having
   issued the STARTTLS command, the client finds out that some failure
   prevents it from actually starting a TLS handshake, then it SHOULD
   immediately close the connection.

   Servers MUST be able to understand backwards-compatible TLS Client
   Hello messages (provided that client_version is TLS 1.0 or later),
   and clients MAY use backwards-compatible Client Hello messages.
   Neither clients nor servers are required to actually support Client
   Hello messages for anything other than TLS 1.0.  However, the TLS
   extension for Server Name Indication ("server_name") [TLS-EXT] SHOULD
   be implemented by all clients; it also SHOULD be implemented by any
   server implementing STARTTLS that is known by multiple names.
   (Otherwise, it is not possible for a server with several hostnames to
   present the correct certificate to the client.)



Elie                      Expires July 8, 2017                  [Page 3]


Internet-Draft          Modernization of RFC 4642           January 2017


   If the TLS negotiation fails, both client and server SHOULD
   immediately close the connection.  Note that while continuing the
   NNTP session is theoretically possible, in practice a TLS negotiation
   failure often leaves the session in an indeterminate state;
   therefore, interoperability can not be guaranteed.

   Upon successful completion of the TLS handshake, the NNTP protocol is
   reset to the state immediately after the initial greeting response
   (see 5.1 of [NNTP]) has been sent, with the exception that if a MODE
   READER command has been issued, its effects (if any) are not
   reversed.  At this point, as no greeting is sent, the next step is
   for the client to send a command.  The server MUST discard any
   knowledge obtained from the client, such as the current newsgroup and
   article number, that was not obtained from the TLS negotiation
   itself.  Likewise, the client SHOULD discard and MUST NOT rely on any
   knowledge obtained from the server, such as the capability list,
   which was not obtained from the TLS negotiation itself.

   The server remains in the non-authenticated state, even if client
   credentials are supplied during the TLS negotiation.  The AUTHINFO
   SASL command [NNTP-AUTH] with the EXTERNAL mechanism [SASL] MAY be
   used to authenticate once TLS client credentials are successfully
   exchanged, but servers supporting the STARTTLS command are not
   required to support AUTHINFO in general or the EXTERNAL mechanism in
   particular.  The server MAY use information from the client
   certificate for identification of connections or posted articles
   (either in its logs or directly in posted articles).

   Both the client and the server MUST know if there is a TLS session
   active.  A client MUST NOT attempt to start a TLS session if a TLS
   session is already active.  A server MUST NOT return the STARTTLS
   capability label in response to a CAPABILITIES command received after
   a TLS handshake has completed, and a server MUST respond with a 502
   response code if a STARTTLS command is received while a TLS session
   is already active.  Additionally, the client MUST NOT issue a MODE
   READER command while a TLS session is active, and a server MUST NOT
   advertise the MODE-READER capability.

   The capability list returned in response to a CAPABILITIES command
   received after a successful TLS handshake MAY be different from the
   list returned before the TLS handshake.  For example, an NNTP server
   supporting SASL [NNTP-AUTH] might not want to advertise support for a
   particular mechanism unless a client has sent an appropriate client
   certificate during a TLS handshake.

5. Security Considerations

   Security issues are discussed throughout this memo.



Elie                      Expires July 8, 2017                  [Page 4]


Internet-Draft          Modernization of RFC 4642           January 2017


   In general, the security considerations of the TLS protocol [TLS] and
   any implemented extensions [TLS-EXT] are applicable here; only the
   most important are highlighted specifically below.  Also, this
   extension is not intended to cure the security considerations
   described in Section 12 of [NNTP]; those considerations remain
   relevant to any NNTP implementation.

   NNTP client and server implementations MUST implement the
   TLS_RSA_WITH_RC4_128_MD5 [TLS] cipher suite and SHOULD implement the
   TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA [TLS] cipher suite.  This is
   important, as it assures that any two compliant implementations can
   be configured to interoperate.  All other cipher suites are OPTIONAL.

   Before the TLS handshake has begun, any protocol interactions are
   performed in the clear and may be modified by an active attacker.
   For this reason, clients and servers MUST discard any sensitive
   knowledge obtained prior to the start of the TLS handshake upon the
   establishment of a security layer.  Furthermore, the CAPABILITIES
   command SHOULD be re-issued upon the establishment of a security
   layer, and other protocol state SHOULD be re-negotiated as well.

   Note that NNTP is not an end-to-end mechanism.  Thus, if an NNTP
   client/server pair decide to add TLS confidentiality, they are
   securing the transport only for that link.  Similarly, because
   delivery of a single Netnews article may go between more than two
   NNTP servers, adding TLS confidentiality to one pair of servers does
   not mean that the entire NNTP chain has been made private.
   Furthermore, just because an NNTP server can authenticate an NNTP
   client, it does not mean that the articles from the NNTP client were
   authenticated by the NNTP client when the client itself received them
   (prior to forwarding them to the server).

   During the TLS negotiation, the client MUST check its understanding
   of the server hostname against the server's identity as presented in
   the server Certificate message, in order to prevent man-in-the-middle
   attacks.  Matching is performed according to these rules:

   -  The client MUST use the server hostname it used to open the
      connection (or the hostname specified in TLS "server_name"
      extension [TLS-EXT]) as the value to compare against the server
      name as expressed in the server certificate.  The client MUST NOT
      use any form of the server hostname derived from an insecure
      remote source (e.g., insecure DNS lookup).  CNAME canonicalization
      is not done.

   -  If a subjectAltName extension of type dNSName is present in the
      certificate, it SHOULD be used as the source of the server's
      identity.



Elie                      Expires July 8, 2017                  [Page 5]


Internet-Draft          Modernization of RFC 4642           January 2017


   -  Matching is case-insensitive.

   -  A "*" wildcard character MAY be used as the left-most name
      component in the certificate.  For example, *.example.com would
      match a.example.com, foo.example.com, etc., but would not match
      example.com.

   -  If the certificate contains multiple names (e.g., more than one
      dNSName field), then a match with any one of the fields is
      considered acceptable.

   If the match fails, the client SHOULD either ask for explicit user
   confirmation or terminate the connection with a QUIT command and
   indicate the server's identity is suspect.

   Additionally, clients MUST verify the binding between the identity of
   the servers to which they connect and the public keys presented by
   those servers.  Clients SHOULD implement the algorithm in Section 6
   of [PKI-CERT] for general certificate validation, but MAY supplement
   that algorithm with other validation methods that achieve equivalent
   levels of verification (such as comparing the server certificate
   against a local store of already-verified certificates and identity
   bindings).

   A man-in-the-middle attack can be launched by deleting the STARTTLS
   capability label in the CAPABILITIES response from the server.  This
   would cause the client not to try to start a TLS session.  Another
   man-in-the-middle attack would allow the server to announce its
   STARTTLS capability, but alter the client's request to start TLS and
   the server's response.  An NNTP client can partially protect against
   these attacks by recording the fact that a particular NNTP server
   offers TLS during one session and generating an alarm if it does not
   appear in the CAPABILITIES response for a later session.  (Of course,
   the STARTTLS capability would not be listed after a security layer is
   in place.)

   If the client receives a 483 or 580 response, the client has to
   decide what to do next.  The client has to choose among three main
   options: to go ahead with the rest of the NNTP session, to (re)try
   TLS later in the session, or to give up and postpone
   newsreading/transport activity.  If an error occurs, the client can
   assume that the server may be able to negotiate TLS in the future and
   should try to negotiate TLS in a later session.  However, if the
   client and server were only using TLS for authentication and no
   previous 480 response was received, the client may want to proceed
   with the NNTP session, in case some of the operations the client
   wanted to perform are accepted by the server even if the client is
   unauthenticated.



Elie                      Expires July 8, 2017                  [Page 6]


Internet-Draft          Modernization of RFC 4642           January 2017


7.1. Normative References

   [ABNF]        Crocker, D., Ed. and P. Overell, "Augmented BNF for
                 Syntax Specifications: ABNF", RFC 4234, October 2005.

   [KEYWORDS]    Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

   [NNTP]        Feather, C., "Network News Transfer Protocol (NNTP)",
                 RFC 3977, October 2006.

   [PKI-CERT]    Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
                 X.509 Public Key Infrastructure Certificate and
                 Certificate Revocation List (CRL) Profile", RFC 3280,
                 April 2002.

   [TLS]         Dierks, T. and E. Rescorla, "The Transport Layer
                 Security (TLS) Protocol Version 1.1", RFC 4346, April
                 2006.

   [TLS-EXT]     Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
                 J., and T. Wright, "Transport Layer Security (TLS)
                 Extensions", RFC 4366, April 2006.

7.2. Informative References

   [NNTP-AUTH]   Vinocur, J., Murchison, K.,  and C. Newman, "Network
                 News Transfer Protocol (NNTP) Extension for
                 Authentication", RFC 4643, October 2006.

   [SASL]        Melninov, A., Ed. and K. Zeilenga, Ed, "Simple
                 Authentication and Security Layer (SASL)", RFC 4422,
                 June 2006.

   [TLS-IMAPPOP] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC
                 2595, June 1999.

Author's Address

   Julien Elie
   10 allee Clovis
   Noisy-le-Grand  93160
   France

   EMail: julien@trigofacile.com
   URI:   http://www.trigofacile.com/





Elie                      Expires July 8, 2017                  [Page 7]