Network Working Group                                       K. Kobayashi
Internet-Draft                                                      AIST
Obsoletes: 3189 (if approved)                                 K. Mishima
Intended status: Standards Track                         Keio University
Expires: September 24, 2009                                    S. Casner
                                                           Packet Design
                                                              C. Bormann
                                                 Universitaet Bremen TZI
                                                          March 23, 2009


              RTP Payload Format for DV (IEC 61834) Video
                      draft-ietf-avt-rfc3189bis-03

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.  This document may contain material
   from IETF Documents or IETF Contributions published or made publicly
   available before November 10, 2008.  The person(s) controlling the
   copyright in some of this material may not have granted the IETF
   Trust the right to allow modifications of such material outside the
   IETF Standards Process.  Without obtaining an adequate license from
   the person(s) controlling the copyright in such materials, this
   document may not be modified outside the IETF Standards Process, and
   derivative works of it may not be created outside the IETF Standards
   Process, except to format it for publication as an RFC or to
   translate it into languages other than English.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on September 24, 2009.

Copyright Notice



Kobayashi, et al.      Expires September 24, 2009               [Page 1]


Internet-Draft       RTP Payload Format for DV Video          March 2009


   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

Abstract

   This document specifies the packetization scheme for encapsulating
   the compressed digital video data streams commonly known as "DV" into
   a payload format for the Real-Time Transport Protocol (RTP).  This
   document Obsoletes RFC 3189.


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Termiology . . . . . . . . . . . . . . . . . . . . . . . .  4
   2.  DV format encoding . . . . . . . . . . . . . . . . . . . . . .  4
     2.1.  RTP header usage . . . . . . . . . . . . . . . . . . . . .  4
     2.2.  DV data encapsulation into RTP payload . . . . . . . . . .  5
   3.  Mapping to SDP Parameters  . . . . . . . . . . . . . . . . . .  7
     3.1.  Offer-Answer Model Considerations  . . . . . . . . . . . .  9
     3.2.  Example of SDP description . . . . . . . . . . . . . . . .  9
       3.2.1.  SDP description for unbundled streams  . . . . . . . .  9
       3.2.2.  SDP description for bundled streams  . . . . . . . . . 10
   4.  Security Considerations  . . . . . . . . . . . . . . . . . . . 11
   5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 11
     5.1.  DV video Media Type registration form  . . . . . . . . . . 11
     5.2.  DV audio Media Type registration form  . . . . . . . . . . 13
   6.  Major Changes from RFC 3189  . . . . . . . . . . . . . . . . . 14
   7.  Interoperability with previous implementations . . . . . . . . 15
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
     8.1.  Normative References . . . . . . . . . . . . . . . . . . . 15
     8.2.  Informative References . . . . . . . . . . . . . . . . . . 16
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 17












Kobayashi, et al.      Expires September 24, 2009               [Page 2]


Internet-Draft       RTP Payload Format for DV Video          March 2009


1.  Introduction

   This document specifies payload formats for encapsulating both
   consumer- and professional-use DV format data streams into the Real-
   time Transport Protocol (RTP), version 2 [RFC3550].  DV compression
   audio and video formats were designed for a recording format on
   helical- scan magnetic tape media.  The DV standards for consumer-
   market devices, the IEC 61883 and 61834 series, cover many aspects of
   consumer-use digital video, including mechanical specifications of a
   cassette, magnetic recording format, error correction on the magnetic
   tape, DCT video encoding format, and audio encoding format
   [IEC61834].  The digital interface part of IEC 61883 defines an
   interface on IEEE 1394 system [IEC61883][IEEE1394].  This
   specification set supports several video formats: SD-VCR (Standard
   Definition), HD-VCR (High Definition), SDL- VCR (Standard Definition
   - Long), PALPlus, DVB (Digital Video Broadcast) and ATV (Advanced
   Television).  North American formats are indicated with a number of
   lines and "/60", while European formats use "/50".  DV standards
   extended for professional-use were published by SMPTE as 314M and
   370M, for different sampling systems, higher color resolution, and
   higher bit rates [SMPTE314M][SMPTE370M].

   There are two kinds of DV, one for consumer use and the other for
   professional.  The original "DV" specification designed for consumer-
   use digital VCRs is approved as the IEC 61834 standard set.  The
   specifications for professional DV are published as SMPTE 314M and
   370M. Both encoding formats are based on consumer DV and used in
   SMPTE D-7, D-9, and D-12 video systems.  The RTP payload format
   specified in this document supports IEC 61834 consumer DV and
   professional SMPTE 314M and 370M (DV-Based) formats.

   IEC 61834 also includes magnetic tape recording for digital TV
   broadcasting systems (such as DVB and ATV) that use MPEG2 encoding.
   The payload format for encapsulating MPEG2 into RTP has already been
   defined in RFC 2250 [RFC2250] and others.

   Consequently, the payload specified in this document will support six
   video formats of the IEC standard: SD-VCR (525/60, 625/50), HD-VCR
   (1125/60, 1250/50) and SDL-VCR (525/60, 625/50), and seven of the
   SMPTE standards: 314M 25Mbps (525/60, 625/50), 314M 50Mbps (525/60,
   625/50), and 370M 100Mbps (1080/60i, 1080/50i, 720/60p, and 720/50p).
   In the future it can be extended into other video formats managed by
   80 byte DV DIF block.

   Throughout this specification, we make extensive use of the
   terminology of IEC and SMPTE standards.  The reader should consult
   the original references for definitions of these terms.




Kobayashi, et al.      Expires September 24, 2009               [Page 3]


Internet-Draft       RTP Payload Format for DV Video          March 2009


1.1.  Termiology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].


2.  DV format encoding

   The DV format only uses the DCT compression technique within each
   frame, contrasted with the interframe compression of the MPEG video
   standards [ISO/IEC11172][ISO/IEC13818].  All video data, including
   audio and other system data, are managed within the picture frame
   unit of video.

   The DV video encoding is composed of a three-level hierarchical
   structure, i.e., DCT super block, DCT macro block, and DCT block.  A
   picture frame is divided into rectangle- or clipped- rectangle-shaped
   DCT super blocks.  DCT super blocks are divided into 27 rectangle- or
   square-shaped DCT macro blocks, and each DCT macro block consists of
   a number of DCT blocks.  Each DCT block represents rectangle region
   for each color, Y, Cb, and Cr, and DCT block consists of 8x8 pixels.

   Audio data is encoded with PCM format.  The sampling frequency is 32
   kHz, 44.1 kHz or 48 kHz and the quantization is 12-bit non-linear,
   16-bit linear or 20-bit linear.  The number of channels may be up to
   8.  Only certain combinations of these parameters are allowed
   depending upon the video format; the restrictions are specified in
   each document.

   A frame of data in the DV format stream is divided into several "DIF
   sequences".  A DIF sequence is composed of an integral number of 80-
   byte DIF blocks.  A DIF block is the primitive unit for all treatment
   of DV streams.  Each DIF block contains a 3-byte ID header that
   specifies the type of the DIF block and its position in the DIF
   sequence.  Five types of DIF blocks are defined: DIF sequence header,
   Subcode, Video Auxiliary information (VAUX), Audio, and Video.  Audio
   DIF blocks are composed of 5 bytes of Audio Auxiliary data (AAUX) and
   72 bytes of audio data.

   Each RTP packet starts with the RTP header as defined in RFC 3550
   [RFC3550].  No additional payload-format-specific header is required
   for this payload format.

2.1.  RTP header usage

   The RTP header fields that have a meaning specific to the DV format
   are described as follows:



Kobayashi, et al.      Expires September 24, 2009               [Page 4]


Internet-Draft       RTP Payload Format for DV Video          March 2009


   Payload type (PT): The payload type is dynamically assigned by means
   outside the scope of this document.  If multiple DV encoding formats
   are to be used within one RTP session, then multiple dynamic payload
   types MUST be assigned, one for each DV encoding format.  The sender
   MUST change to the corresponding payload type whenever the encoding
   format is changed.

   Timestamp: 32-bit 90 kHz timestamp representing the time at which the
   first data in the frame was sampled.  All RTP packets within the same
   video frame MUST have the same timestamp.  The timestamp SHOULD
   increment by a multiple of the nominal interval for one DV frame
   time, as given in the following table:

   +----------+----------------+---------------------------------------+
   |   Mode   |   Frame rate   |   Increase of one DV frame in 90kHz   |
   |          |      (Hz)      |               timestamp               |
   +----------+----------------+---------------------------------------+
   |  525-60  |      29.97     |                  3003                 |
   |  625-50  |       25       |                  3600                 |
   |  1125-60 |       30       |                  3000                 |
   |  1250-50 |       25       |                  3600                 |
   | 1080-60i |      29.97     |                  3003                 |
   | 1080-50i |       25       |                  3600                 |
   |  720-60p |      59.94     |                3003(*)                |
   |  720-50p |       50       |                3600(*)                |
   +----------+----------------+---------------------------------------+

   Note that even in 720-line DV system, the data in two video frame
   shall be processed within one DV frame duration of 1080-line system.
   Audio data and subcode data in 720-line system are processed in the
   same way as the 1080-line system.  Therefore in 720-line system, the
   increase of one DV frame corresponds two video frames time.

   Marker bit (M): The marker bit of the RTP fixed header is set to one
   on the last packet of a video frame, and otherwise, must be zero.
   The M bit allows the receiver to know that it has received the last
   packet of a frame so it can display the image without waiting for the
   first packet of the next frame to arrive to detect the frame change.
   However, detection of a frame change MUST NOT rely on the marker bit
   since the last packet of the frame might be lost.  Detection of a
   frame change MUST be based on a difference in the RTP timestamp.

2.2.  DV data encapsulation into RTP payload

   Integral DIF blocks are placed into the RTP payload beginning
   immediately after the RTP header.  Any number of DIF blocks may be
   packed into one RTP packet, except that all DIF blocks in one RTP
   packet MUST be from the same video frame.  DIF blocks from the next



Kobayashi, et al.      Expires September 24, 2009               [Page 5]


Internet-Draft       RTP Payload Format for DV Video          March 2009


   video frame MUST NOT be packed into the same RTP packet even if more
   payload space remains.  This requirement stems from the fact that the
   transition from one video frame to the next is indicated by a change
   in the RTP timestamp.  It also reduces the processing complexity on
   the receiver.  Since the RTP payload contains an integral number of
   DIF blocks, the length of the RTP payload will be a multiple of 80
   bytes.

   Audio and video data may be transmitted as one bundled RTP stream or
   in separate RTP streams (unbundled).  The choice MUST be indicated as
   part of the assignment of the dynamic payload type and MUST remain
   unchanged for the duration of the RTP session to avoid complicated
   procedures of sequence number synchronization.  The RTP sender could
   omit DIF-sequence header and subcode DIF blocks from a stream, in the
   case of the information either is known out-of-band or is not be
   required for the application.  Note that time code in DIF blocks is
   mandatory for professional video applications.  When sending DIF-
   sequence header and subcode DIF blocks with unbundled audio and video
   streams, both types of blocks MUST be included in the video stream.

   DV streams include "source" and "source control" packs that carry
   information indispensable for proper decoding, such as video signal
   type, frame rate, aspect ratio, picture position, quantization of
   audio sampling, number of audio samples in a frame, number of audio
   channels, audio channel assignment, and language of the audio.
   However, describing all of these attributes with a signaling protocol
   would require large descriptions to enumerate all the combinations.
   Therefore, no Session Description Protocol (SDP) [RFC4566] parameters
   for these attributes are defined in this document.  Instead, the RTP
   sender MUST transmit at least those VAUX DIF blocks and/or audio DIF
   blocks with AAUX information bytes that include "source" and "source
   control" packs containing the indispensable information for decoding.

   In the case of one bundled stream, DIF blocks for both audio and
   video are packed into RTP packets in the same order as they were
   encoded.

   In the case of an unbundled stream, only the header, subcode, video
   and VAUX DIF blocks are sent within the video stream.  Audio is sent
   in a different stream if desired, using a different RTP payload type.
   It is also possible to send audio duplicated in a separate stream, in
   addition to bundling it in with the video stream.

   When using unbundled mode, it is RECOMMENDED that the audio stream
   data be extracted from the DIF blocks and repackaged into the
   corresponding RTP payload format for the audio encoding (DAT12, L16,
   L20) [RFC3551][RFC3190] in order to maximize interoperability with
   non-DV- capable receivers while maintaining the original source



Kobayashi, et al.      Expires September 24, 2009               [Page 6]


Internet-Draft       RTP Payload Format for DV Video          March 2009


   quality.

   In the case of unbundled transmission where both audio and video are
   sent in the DV format, the same timestamp SHOULD be used for both
   audio and video data within the same frame to simplify the lip
   synchronization effort on the receiver.  Lip synchronization may also
   be achieved using reference timestamps passed in RTCP as described in
   RFC 3550.

   The sender MAY reduce the video frame rate by discarding the video
   data and VAUX DIF blocks for some of the video frames.  The RTP
   timestamp MUST still be incremented to account for the discarded
   frames.  The sender MAY alternatively reduce bandwidth by discarding
   video data DIF blocks for portions of the image which are unchanged
   from the previous image.  To enable this bandwidth reduction,
   receivers SHOULD implement an error concealment strategy to
   accommodate lost or missing DIF blocks, e.g., repeating the
   corresponding DIF block from the previous image.


3.  Mapping to SDP Parameters

   The information carried in the media type specification has a
   specific mapping to fields in the Session Description Protocol (SDP),
   which is commonly used to describe RTP sessions.  When SDP is used to
   specify sessions employing the G.729.1 codec, the mapping is as
   follows:

   o  The media type ("video") goes in SDP "m=" as the media name.

   o  The media subtype ("DV") goes in SDP "a=rtpmap" as the encoding
      name.  The RTP clock rate in "a=rtpmap" MUST be 90000 which for
      the payload format defined in this document is a 90kHz clock.

   o  Any remaining parameters go in the SDP "a=fmtp" attribute by
      copying them directly from the media type string as a semicolon
      separated list of parameter=value pairs.

   Note that the examples in RFC3189 (older version of this document)
   are incorrect on the SDP "a=fmtp" attribute describing.

   In the DV video payload format, the a=fmtp line will be used to show
   the encoding type within the DV video and will be used as below:

      a=fmtp:<payload type> encode=<DV-video encoding>

   The required parameter <DV-video encoding> specifies which type of DV
   format is used.  The DV format name will be one of the following:



Kobayashi, et al.      Expires September 24, 2009               [Page 7]


Internet-Draft       RTP Payload Format for DV Video          March 2009


      SD-VCR/525-60

      SD-VCR/625-50

      HD-VCR/1125-60

      HD-VCR/1250-50

      SDL-VCR/525-60

      SDL-VCR/625-50

      314M-25/525-60

      314M-25/625-50

      314M-50/525-60

      314M-50/625-50

      370M/1080-60i

      370M/1080-50i

      370M/720-60p

      370M/720-50p

      306M/525-60 (for backward compatibility)

      306M/625-50 (for backward compatibility)

   In order to show whether the audio data is bundled into the DV stream
   or not, a format specific parameter is defined as below:

      a=fmtp:<payload type> audio=<audio bundled>

   The optional parameter <audio bundled> will be one of the following:

      bundled

      none (default)

   If the fmtp audio parameter is not present, then audio data MUST NOT
   be bundled into the DV video stream.






Kobayashi, et al.      Expires September 24, 2009               [Page 8]


Internet-Draft       RTP Payload Format for DV Video          March 2009


3.1.  Offer-Answer Model Considerations

   The following considerations apply when using SDP offer-answer
   procedures [RFC4566] to negotiate the use of DV payload in RTP:

   o  The "encode" parameter can be used for bi-directional, mono-
      directional and multicast streams.  If the offerer sets a encode
      type on a=fmtp field, the answerer MUST select one encode type,
      and reply with selected encode type value.

   o  Any unknown parameter in an offer MUST be ignored by the receiver
      and MUST NOT be included in the answer.

   Some special rules apply for mono-directional traffic:

   o  The optional "audio" parameter is only used for the bundled
      stream.  On the offerer sets a audio bundled type on a=fmtp field,
      then the answerer MUST select whether the DV stream should be
      included audio data or not, and reply with selected value.

   Some special rules apply for multicast:

   o  The "encode" and "audio" parameter becomes declarative and MUST
      NOT be negotiated.  This parameter is fixed, and a participant
      MUST use the configuration that is provided for the session.

3.2.  Example of SDP description

   Some example SDP session descriptions utilizing DV encoding formats
   follow.

3.2.1.  SDP description for unbundled streams

   When using unbundled mode, the RTP streams for video and audio will
   be sent separately to different ports or different multicast groups.
   When this is done, SDP carries several m=?? lines, one for each media
   type of the session (see RFC 4566).














Kobayashi, et al.      Expires September 24, 2009               [Page 9]


Internet-Draft       RTP Payload Format for DV Video          March 2009


   An example SDP description using these attributes is:

     v=0
     o=ikob 2890844526 2890842807 IN IP4 192.0.2.1
     s=POI Seminar
     i=A Seminar on how to make Presentations on the Internet
     u=http://www.example.net/~ikob/POI/index.html
     e=ikob@example.net (Katsushi Kobayashi)
     c=IN IP4 233.252.0.1/127
     t=2873397496 2873404696
     m=audio 49170 RTP/AVP 112
     a=rtpmap:112 L16/32000/2
     m=video 50000 RTP/AVP 113
     a=rtpmap:113 DV/90000
     a=fmtp:113 encode=SD-VCR/525-60; audio=none

   This describes a session where audio and video streams are sent
   separately.  The session is sent to a multicast group 233.252.0.1.
   The audio is sent using L16 format, and the video is sent using SD-
   VCR 525/60 format which corresponds to NTSC format in consumer DV.

3.2.2.  SDP description for bundled streams

   When sending a bundled stream, all the DIF blocks including system
   data will be sent through a single RTP stream.

   An example SDP description for a bundled DV stream is:

     v=0
     o=ikob 2890844526 2890842807 IN IP4 192.0.2.1
     s=POI Seminar
     i=A Seminar on how to make Presentations on the Internet
     u=http://www.example.net/~ikob/POI/index.html
     e=ikob@example.net (Katsushi Kobayashi)
     c=IN IP4 233.252.0.1/127
     t=2873397496 2873404696
     m=video 49170 RTP/AVP 112 113
     a=rtpmap:112 DV/90000
     a=fmtp: 112 encode=SD-VCR/525-60; audio=bundled
     a=fmtp: 113 encode=314M-50/525-60; audio=bundled

   This SDP record describes a session where audio and video streams are
   sent bundled.  The session is sent to a multicast group 233.252.0.1.
   The video is sent using both 525/60 consumer DV and SMPTE standard
   314M 50Mbps formats, when the payload type is 112 and 113,
   respectively.





Kobayashi, et al.      Expires September 24, 2009              [Page 10]


Internet-Draft       RTP Payload Format for DV Video          March 2009


4.  Security Considerations

   RTP packets using the payload format defined in this specification
   are subject to the security considerations discussed in the RTP
   specification [RFC3550], and any appropriate RTP profile.  This
   implies that confidentiality of the media streams is achieved by
   encryption.  Because the data compression used with this payload
   format is applied to end-to-end, encryption may be performed after
   compression so there is no conflict between the two operations.

   A potential denial-of-service threat exists for data encodings using
   compression techniques that have non-uniform receiver-end
   computational load.  The attacker can inject pathological datagrams
   into the stream which are complex to decode and cause the receiver to
   be overloaded.  However, this encoding does not exhibit any
   significant non-uniformity.

   As with any IP-based protocol, in some circumstances a receiver may
   be overloaded simply by the receipt of too many packets, either
   desired or undesired.  Network-layer authentication may be used to
   discard packets from undesired sources, but the processing cost of
   the authentication itself may be too high.  In a multicast
   environment, joining and pruning mechanism of specific sources is
   specified in IGMPv3 and MLDv2 [RFC3376][RFC3810] and in multicast
   routing protocols to allow a receiver to select which sources are
   allowed to reach it [RFC4607].


5.  IANA Considerations

   This document defines a new RTP payload name and associated Media
   Type, DV.  The registration forms (based on the RFC 4855 [RFC4855]
   definition) for the Media Types for both video and audio are shown in
   the next sections.

5.1.  DV video Media Type registration form

   Type name:  video

   Subtype name:  DV

   Required parameters:

      encode:  type of DV format.  Permissible values for encode are SD-
         VCR/525-60, SD-VCR/625-50, HD-VCR/1125-60 HD-VCR/1250-50, SDL-
         VCR/525-60, SDL-VCR/625-50, 314M-25/525-60, 314M-25/625-50,
         314M-50/525-60, 314M-50/625-50, 370M/1080-60i, 370M/1080-50i,
         370M/720-60p, 370M/720-50p, 306M/525-60 (for backward



Kobayashi, et al.      Expires September 24, 2009              [Page 11]


Internet-Draft       RTP Payload Format for DV Video          March 2009


         compatibility), and 306M/625-50 (for backward compatibility).

   Optional parameters:

      audio:  whether the DV stream includes audio data or not.
         Permissible values for audio are bundled and none.  Defaults to
         none.

   Encoding considerations:

         DV video can be transmitted with RTP as specified in RFCXXXX
         (This document).  Other transport methods are not specified.

   Security considerations:

         See Security consideration Section of RFCXXXX (This document).

   Interoperability considerations:  NONE

   Published specification:

         IEC 61834 Standard

         SMPTE 314M

         SMPTE 370M

         RFCXXXX (This document)

         SMPTE 314M (for backward compatibility).

   Applications that use this media type:  Audio and video streaming and
      conferencing tools.

   Additional information:  NONE

   Person & email address to contact for further information:

         Katsushi Kobayashi

         e-mail: ikob@ni.aist.go.jp

   Intended usage:  COMMON

   Restrictions on usage:  This media type depends on RTP framing, and
      hence is only defined for transfer via RTP (RFC 3550).  Transfer
      within other framing protocols is not defined at this time.




Kobayashi, et al.      Expires September 24, 2009              [Page 12]


Internet-Draft       RTP Payload Format for DV Video          March 2009


   Author:

         Katsushi Kobayashi

   Change controller:

         Katsushi Kobayashi

         e-mail: ikob@ni.aist.go.jp

5.2.  DV audio Media Type registration form

   Type name:  audio

   Subtype name:  DV

   Required parameters:

      encode:  type of DV format.  Permissible values for encode are SD-
         VCR/525-60, SD-VCR/625-50, HD-VCR/1125-60 HD-VCR/1250-50, SDL-
         VCR/525-60, SDL-VCR/625-50, 314M-25/525-60, 314M-25/625-50,
         314M-50/525-60, 314M-50/625-50, 370M/1080-60i, 370M/1080-50i,
         370M/720-60p, 370M/720-50p, 306M/525-60 (for backward
         compatibility), and 306M/625-50 (for backward compatibility).

   Optional parameters:

      audio:  whether the DV stream includes audio data or not.
         Permissible values for audio are bundled and none.  Defaults to
         none.

   Encoding considerations:

         DV video can be transmitted with RTP as specified in RFCXXXX
         (This document).  Other transport methods are not specified.

   Security considerations:

         See Security consideration Section of RFCXXXX (This document).

   Interoperability considerations:  NONE

   Published specification:

         IEC 61834 Standard

         SMPTE 314M




Kobayashi, et al.      Expires September 24, 2009              [Page 13]


Internet-Draft       RTP Payload Format for DV Video          March 2009


         SMPTE 370M

         RFCXXXX (This document)

         SMPTE 314M (for backward compatibility).

   Applications that use this media type:  Audio and video streaming and
      conferencing tools.

   Additional information:  NONE

   Person & email address to contact for further information:

         Katsushi Kobayashi

         e-mail: ikob@ni.aist.go.jp

   Intended usage:  COMMON

   Restrictions on usage:  This media type depends on RTP framing, and
      hence is only defined for transfer via RTP (RFC 3550).  Transfer
      within other framing protocols is not defined at this time.

   Author:

         Katsushi Kobayashi

   Change controller:

         Katsushi Kobayashi

         e-mail: ikob@ni.aist.go.jp


6.  Major Changes from RFC 3189

   The changes from RFC 3189 are:

   1.  Removed SMPTE 306M, since it can covered SMPTE 314M format.

   2.  Added SMPTE 370M 100Mbps HDTV (1080/60i, 1080/50i, 720/60p, and
       720/50p) format.

   3.  Incorporated Source Specific Multicast (SSM) spec. for avoiding
       overloaded traffic source in multicast usage.






Kobayashi, et al.      Expires September 24, 2009              [Page 14]


Internet-Draft       RTP Payload Format for DV Video          March 2009


   4.  Clarified the case that the sender omit subcode DIF block data
       from the stream.

   5.  Added the Offer-Answer Model Consideration.

   6.  Revised Media Types registation form based on new registration
       rule (RFC 4855).


7.  Interoperability with previous implementations

   In this section, we will specify the interoperability issue with the
   implementations based on RFC obsoleted by this document.

   RFC 3189 regards SMPTE306M [SMPTE306M] and SMPTE314M as different
   encoding format, although the format of SMPTE 306M is already covered
   SMPTE 314M. Therefore, this document recommends that the definition
   depending on SMPTE306M SHOULD NOT be used, and SHOULD use SMPTE314M
   instead.  An RTP application could handle a stream identified as
   SMPTE306M encoding as SMTE314M one.


8.  References

8.1.  Normative References

   [IEC61834]
              IEC, "IEC 61834, Helical-scan digital video cassette
              recording system using 6,35 mm magnetic tape for consumer
              use (525-60, 625-50, 1125-60 and 1250-50 systems)".

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3190]  Kobayashi, K., Ogawa, A., Casner, S., and C. Bormann, "RTP
              Payload Format for 12-bit DAT Audio and 20- and 24-bit
              Linear Sampled Audio", RFC 3190, January 2002.

   [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
              Jacobson, "RTP: A Transport Protocol for Real-Time
              Applications", STD 64, RFC 3550, July 2003.

   [RFC3551]  Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
              Video Conferences with Minimal Control", STD 65, RFC 3551,
              July 2003.

   [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
              Description Protocol", RFC 4566, July 2006.



Kobayashi, et al.      Expires September 24, 2009              [Page 15]


Internet-Draft       RTP Payload Format for DV Video          March 2009


   [RFC4855]  Casner, S., "Media Type Registration of RTP Payload
              Formats", RFC 4855, February 2007.

   [SMPTE306M]
              SMPTE, "SMPTE 306M, 6.35-mm type D-7 component format -
              video compression at 25Mb/s -525/60 and 625/50.".

   [SMPTE314M]
              SMPTE, "SMPTE 314M, Data structure for DV-based audio and
              compressed video 25 and 50Mb/s.".

   [SMPTE370M]
              SMPTE, "SMPTE 370M,  Data Structure for DV-Based Audio,
              Data and Compressed Video at 100 Mb/s 1080/60i, 1080/50i,
              720/60p, and 720/50p.".

8.2.  Informative References

   [IEC61883]
              IEC, "IEC 61883, Consumer audio/video equipment - Digital
              interface.".

   [IEEE1394]
              IEEE, "IEEE Std 1394-1995, Standard for a High Performance
              Serial Bus".

   [ISO/IEC11172]
              ISO/IEC, "ISO/IEC 11172, Coding of moving pictures and
              associated audio for digital storage media up to about 1,5
              Mbits/s.".

   [ISO/IEC13818]
              ISO/IEC, "ISO/IEC 13818, Generic coding of moving pictures
              and associated audio information.".

   [RFC2250]  Hoffman, D., Fernando, G., Goyal, V., and M. Civanlar,
              "RTP Payload Format for MPEG1/MPEG2 Video", RFC 2250,
              January 1998.

   [RFC3376]  Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
              Thyagarajan, "Internet Group Management Protocol, Version
              3", RFC 3376, October 2002.

   [RFC3810]  Vida, R. and L. Costa, "Multicast Listener Discovery
              Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.

   [RFC4607]  Holbrook, H. and B. Cain, "Source-Specific Multicast for
              IP", RFC 4607, August 2006.



Kobayashi, et al.      Expires September 24, 2009              [Page 16]


Internet-Draft       RTP Payload Format for DV Video          March 2009


Authors' Addresses

   Katsushi Kobayashi
   National Institute of Advanced Industrial Science and Technology
   1-18-13 Soto-Kanda
   Chiyoda-ku, Tokyo  184-8795
   Japan

   Email: ikob@ni.aist.go.jp


   Kazuhiro Mishima
   Keio University
   5322 Endo
   Fujisawa-city, Kanagawa  252-8520
   Japan

   Email: three@sfc.wide.ad.jp


   Stephen L. Casner
   Packet Design
   2465 Latham Street
   Mountain View, CA  94040
   United States

   Email: casner@acm.org


   Carsten Bormann
   Universitaet Bremen TZI
   Postfach 330440
   D-28334, Bremen
   German

   Phone: +49 421 218 7024
   Fax:   +49 421 218 7000
   Email: cabo@tzi.org













Kobayashi, et al.      Expires September 24, 2009              [Page 17]