Network Working Group Brooks Hickman
Internet-Draft Spirent Communications
Expiration Date: November 2002 David Newman
Network Test
Saldju Tadjudin
Spirent Communications
Terry Martin
M2networx INC
May 2002
Benchmarking Methodology for Firewall Performance
<draft-ietf-bmwg-firewall-04.txt>
Status of this Memo
This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Requirements . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4. Test setup . . . . . . . . . . . . . . . . . . . . . . . . . 2
4.1 Test Considerations . . . . . . . . . . . . . . . . . . 3
4.2 Virtual Client/Servers . . . . . . . . . . . . . . . . . 3
4.3 Test Traffic Requirements . . . . . . . . . . . . . . . . 4
4.4 DUT/SUT Traffic Flows . . . . . . . . . . . . . . . . . . 4
4.5 Multiple Client/Server Testing . . . . . . . . . . . . . 5
4.6 NAT(Network Address Translation) . . . . . . . . . . . . 5
4.7 Rule Sets . . . . . . . . . . . . . . . . . . . . . . . . 5
4.8 Web Caching . . . . . . . . . . . . . . . . . . . . . . . 5
4.9 Authentication . . . . . . . . . . . . . . . . . . . . . 6
5. Benchmarking Tests . . . . . . . . . . . . . . . . . . . . . 6
5.1 IP throughput . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Concurrent TCP Connection Capacity . . . . . . . . . . . 7
5.3 Maximum TCP Connection Establishment Rate . . . . . . . . 10
5.4 Maximum TCP Connection Tear Down Rate . . . . . . . . . . 12
[Page 1]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.5 Denial Of Service Handling . . . . . . . . . . . . . . . 13
5.6 HTTP Transfer Rate . . . . . . . . . . . . . . . . . . . 14
5.7 HTTP Concurrent Transaction Capacity . . . . . . . . . . 17
5.8 HTTP Transaction Rate . . . . . . . . . . . . . . . . . . 18
5.9 Illegal Traffic Handling . . . . . . . . . . . . . . . . 19
5.10 IP Fragmentation Handling . . . . . . . . . . . . . . . 20
5.11 Latency . . . . . . . . . . . . . . . . . . . . . . . . 22
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A. HyperText Transfer Protocol(HTTP) . . . . . . . . . . . . 25
B. Connection Establishment Time Measurements . . . . . . . . 25
C. Connection Tear Down Time Measurements . . . . . . . . . . 26
C. References . . . . . . . . . . . . . . . . . . . . . . . . 26
1. Introduction
This document provides methodologies for the performance
benchmarking of firewalls. It provides methodologies in four areas:
forwarding, connection, latency and filtering. In addition to
defining the tests, this document also describes specific formats
for reporting the results of the tests.
A previous document, "Benchmarking Terminology for Firewall
Performance" [1], defines many of the terms that are used in this
document. The terminology document SHOULD be consulted before
attempting to make use of this document.
2. Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119.
3. Scope
Firewalls can provide a single point of defense between networks.
Usually, a firewall protects private networks from the public or
shared networks to which it is connected. A firewall can be as
simple as a device that filters different packets or as complex
as a group of devices that combine packet filtering and
application-level proxy or network translation services. This RFC
will focus on developing benchmark testing of DUT/SUTs, wherever
possible, independent of their implementation.
4. Test Setup
Test configurations defined in this document will be confined to
dual-homed and tri-homed as shown in figure 1 and figure 2
respectively.
Firewalls employing dual-homed configurations connect two networks.
One interface of the firewall is attached to the unprotected
network, typically the public network(Internet). The other interface
is connected to the protected network, typically the internal LAN.
[Page 2]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
In the case of dual-homed configurations, servers which are made
accessible to the public(Unprotected) network are attached to the
private(Protected) network.
+----------+ +----------+
| | | +----------+ | | |
| Servers/ |----| | | |------| Servers/ |
| Clients | | | | | | Clients |
| | |-------| DUT/SUT |--------| | |
+----------+ | | | | +----------+
| +----------+ |
Protected | | Unprotected
Network Network
Figure 1(Dual-Homed)
Tri-homed[1] configurations employ a third segment called a
Demilitarized Zone(DMZ). With tri-homed configurations, servers
accessible to the public network are attached to the DMZ. Tri-Homed
configurations offer additional security by separating server(s)
accessible to the public network from internal hosts.
+----------+ +----------+
| | | +----------+ | | |
| Clients |----| | | |------| Servers/ |
| | | | | | | Clients |
+----------+ |-------| DUT/SUT |--------| | |
| | | | +----------+
| +----------+ |
Protected | | | Unprotected
Network | Network
|
|
-----------------
| DMZ
|
|
+-----------+
| |
| Servers |
| |
+-----------+
Figure 2(Tri-Homed)
4.1 Test Considerations
4.2 Virtual Clients/Servers
Since firewall testing may involve data sources which emulate
multiple users or hosts, the methodology uses the terms virtual
clients/servers. For these firewall tests, virtual clients/servers
specify application layer entities which may not be associated with
[Page 3]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
a unique physical interface. For example, four virtual clients may
originate from the same data source[1]. The test report SHOULD
indicate the number of virtual clients and virtual servers
participating in the test.
Testers MUST synchronize all data sources participating in a test.
4.3 Test Traffic Requirements
While the function of a firewall is to enforce access control
policies, the criteria by which those policies are defined vary
depending on the implementation. Firewalls may use network layer,
transport layer or, in many cases, application-layer criteria to
make access-control decisions.
For the purposes of benchmarking firewall performance this document
references HTTP 1.1 or higher as the application layer entity,
although the methodologies may be used as a template for
benchmarking with other applications. Since testing may involve
proxy based DUT/SUTs, HTTP version considerations are discussed in
appendix A.
4.4 DUT/SUT Traffic Flows
Since the number of interfaces are not fixed, the traffic flows will
be dependent upon the configuration used in benchmarking the
DUT/SUT. Note that the term "traffic flows" is associated with
client-to-server requests.
For Dual-Homed configurations, there are two unique traffic flows:
Client Server
------ ------
Protected -> Unprotected
Unprotected -> Protected
For Tri-Homed configurations, there are three unique traffic flows:
Client Server
------ ------
Protected -> Unprotected
Protected -> DMZ
Unprotected -> DMZ
4.5 Multiple Client/Server Testing
One or more clients may target multiple servers for a given
application. Each virtual client MUST initiate connections in a
round-robin fashion. For example, if the test consisted of six
virtual clients targeting three servers, the pattern would be as
follows:
[Page 4]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
Client Target Server(In order of request)
#1 1 2 3 1...
#2 2 3 1 2...
#3 3 1 2 3...
#4 1 2 3 1...
#5 2 3 1 2...
#6 3 1 2 3...
4.6 Network Address Translation(NAT)
Many firewalls implement network address translation(NAT), a
function which translates internal host IP addresses attached to
the protected network to a virtual IP address for communicating
across the unprotected network(Internet). This involves additional
processing on the part of the DUT/SUT and may impact performance.
Therefore, tests SHOULD be ran with NAT disabled and NAT enabled
to determine the performance differentials. The test report MUST
indicate whether NAT was enabled or disabled.
4.7 Rule Sets
Rule sets[1] are a collection of access control policies that
determine which packets the DUT/SUT will forward and which it will
reject[1]. Since criteria by which these access control policies may
be defined will vary depending on the capabilities of the DUT/SUT,
the following is limited to providing guidelines for configuring
rule sets when benchmarking the performance of the DUT/SUT.
It is RECOMMENDED that a rule be entered for each host(Virtual
client). In addition, testing SHOULD be performed using different
size rule sets to determine its impact on the performance of the
DUT/SUT. Rule sets MUST be configured in a manner, such that, rules
associated with actual test traffic are configured at the end of the
rule set and not the beginning.
The DUT/SUT SHOULD be configured to deny access to all traffic
which was not previously defined in the rule set. The test report
SHOULD include the DUT/SUT configured rule set(s).
4.7 Web Caching
Some firewalls include caching agents to reduce network load. When
making a request through a caching agent, the caching agent attempts
to service the response from its internal memory. The cache itself
saves responses it receives, such as responses for HTTP GET
requests. Testing SHOULD be performed with any caching agents on the
DUT/SUT disabled.
4.8 Authentication
Access control may involve authentication processes such as user,
client or session authentication. Authentication is usually
performed by devices external to the firewall itself, such as an
[Page 5]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
authentication server(s) and may add to the latency of the system.
Any authentication processes MUST be included as part of connection
setup process.
5. Benchmarking Tests
5.1 IP Throughput
5.1.1 Objective
To determine the throughput of network-layer data transversing
the DUT/SUT, as defined in RFC1242[1]. Note that while RFC1242
uses the term frames, which is associated with the link layer, the
procedure uses the term packets, since it is referencing the
network layer. This test is intended to baseline the ability of
the DUT/SUT to forward packets at the network layer.
5.1.2 Setup Parameters
The following parameters MUST be defined:
Packet size - Number of bytes in the IP packet, exclusive of any
link layer header or checksums.
Test Duration - Duration of the test, expressed in seconds.
5.1.3 Procedure
The tester will offer client/server traffic to the DUT/SUT,
consisting of unicast IP packets. The tester MUST offer the packets
at a constant rate. The test MAY consist of either bi-directional or
unidirectional traffic, with the client offering a unicast stream of
packets to the server for the latter.
The test MAY employ an iterative search algorithm. Each iteration
will involve the tester varying the intended load until the maximum
rate, at which no packet loss occurs, is found. Since backpressure
mechanisms may be employed, resulting in the intended load and
offered load being different, the test SHOULD be performed in either
a packet based or time based manner as described in RFC2889[7]. As
with RFC1242, the term packet is used in place of frame. The
duration of the test portion of each trial MUST be at least 30
seconds.
When comparing DUT/SUTs with different MTUs, it is RECOMMENDED to
limit the maximum IP size tested to the maximum MTU supported by all
of the DUT/SUTs.
5.1.4 Measurement
5.1.4.1 Network Layer
Throughput - Maximum offered load, expressed in either bits per
[Page 6]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
second or packets per second, at which no packet loss is detected.
Forwarding Rate - Forwarding rate, expressed in either bits per
second or packets per second, the device is observed to
successfully forward to the correct destination interface in
response to a specified offered load.
5.1.4 Reporting Format
The test report MUST note the packet size(s), test duration,
throughput and forwarding rate. If the test involved offering
packets which target more than one segment(Protected, Unprotected
or DMZ), the report MUST identify the results as an aggregate
throughput measurement.
The throughput results SHOULD be reported in the format of a table
with a row for each of the tested packet sizes. There SHOULD be
columns for the packet size, the intended load, the offered load,
resultant throughput and forwarding rate for each test.
A log file MAY be generated which includes the packet size, test
duration and for each iteration:
- Step Iteration
- Pass/Fail Status
- Total packets offered
- Total packets forwarded
- Intended load
- Offered load(If applicable)
- Forwarding rate
5.2 Concurrent TCP Connection Capacity
5.2.1 Objective
To determine the maximum number of concurrent TCP connections
supported through or with the DUT/SUT, as defined in RFC2647[1].
5.2.2 Setup Parameters
The following parameters MUST be defined for all tests:
5.2.2.1 Transport-Layer Setup Parameters
Connection Attempt Rate - The aggregate rate, expressed in
connections per second, at which new TCP connection requests are
attempted. The rate SHOULD be set at or lower than the maximum
rate at which the DUT/SUT can accept connection requests.
Age Time - The time, expressed in seconds, the DUT/SUT will keep a
connection in its connection table after receiving a TCP FIN or RST
packet.
[Page 7]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.2.2.2 Transport-Layer Setup Parameters
Validation Method - HTTP 1.1 or higher MUST be used for this test.
Object Size - Defines the number of bytes, excluding any bytes
associated with the HTTP header, to be transferred in response to an
HTTP 1.1 or higher GET request.
5.2.3 Procedure
An iterative search algorithm MAY be used to determine the maximum
number of concurrent TCP connections supported through or with the
DUT/SUT.
For each iteration, the aggregate number of concurrent TCP
connections attempted by the virtual client(s) will be varied. The
destination address will be that of the server or that of the NAT
proxy. The aggregate rate will be defined by connection attempt
rate, and will be attempted in a round-robin fashion(See 4.5).
To validate all connections, the virtual client(s) MUST request an
object using an HTTP 1.1 or higher GET request. The requests MUST be
initiated on each connection after all of the TCP connections have
been established.
When testing proxy-based DUT/SUTs, the virtual client(s) MUST
request two objects using HTTP 1.1 or higher GET requests. The first
GET request is required for connection time establishment
measurements as specified in appendix B. The second request is used
for validation as previously mentioned. When comparing proxy and
non-proxy based DUT/SUTs, the test MUST be performed in the same
manner.
Between each iteration, it is RECOMMENDED that the tester issue a
TCP RST referencing all connections attempted for the previous
iteration, regardless of whether or not the connection attempt was
successful. The tester will wait for age time before continuing to
the next iteration.
5.2.4 Measurements
5.2.4.1 Application-Layer measurements
Number of objects requested
Number of objects returned
5.2.4.2 Transport-Layer measurements
Maximum concurrent connections - Total number of TCP connections
open for the last successful iteration performed in the search
algorithm.
[Page 8]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
The following measurements SHOULD be performed on a per iteration
basis:
Minimum connection establishment time - Lowest TCP connection
establishment time measured as defined in appendix B.
Maximum connection establishment time - Highest TCP connection
establishment time measured as defined in appendix B.
Average connection establishment time - The mean of all measurements
of connection establishment times.
Aggregate connection establishment time - The total of all
measurements of connection establishment times.
5.2.5 Reporting Format
5.2.5.1 Application-Layer Reporting:
The test report MUST note the object size, number of completed
requests and number of completed responses.
The intermediate results of the search algorithm MAY be reported
in a table format with a column for each iteration. There SHOULD be
rows for the number of requests attempted, number of requests
completed, number of responses attempted and number of responses
completed. The table MAY be combined with the transport-layer
reporting, provided that the table identify this as an application
layer measurement.
Version information:
The test report MUST note the version of HTTP client(s) and
server(s).
5.2.5.2 Transport-Layer Reporting:
The test report MUST note the connection attempt rate, age time and
maximum concurrent connections measured.
The intermediate results of the search algorithm MAY be reported
in the format of a table with a column for each iteration. There
SHOULD be rows for the total number of TCP connections attempted,
total number of TCP connections completed, minimum TCP connection
establishment time, maximum TCP connection establishment time,
average connection establishment time and the aggregate connection
establishment time.
[Page 9]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.3 Maximum TCP Connection Establishment Rate
5.3.1 Objective
To determine the maximum TCP connection establishment rate through
or with the DUT/SUT, as defined by RFC2647[1].
5.3.2 Setup Parameters
The following parameters MUST be defined for all tests:
5.3.2.1 Transport-Layer Setup Parameters
Number of Connections - Defines the aggregate number of TCP
connections that must be established.
Age Time - The time, expressed in seconds, the DUT/SUT will keep a
connection in it's state table after receiving a TCP FIN or RST
packet.
5.3.2.2 Transport-Layer Setup Parameters
Validation Method - HTTP 1.1 or higher MUST be used for this test.
Object Size - Defines the number of bytes, excluding any bytes
associated with the HTTP header, to be transferred in response to an
HTTP 1.1 or higher GET request.
5.3.3 Procedure Test
An iterative search algorithm MAY be used to determine the maximum
rate at which the DUT/SUT can accept TCP connection requests.
For each iteration, the aggregate rate at which TCP connection
requests are attempted by the virtual client(s) will be varied. The
destination address will be that of the server or that of the NAT
proxy. The aggregate number of connections, defined by number of
connections, will be attempted in a round-robin fashion(See 4.5).
The same application-layer object transfers required for validation
and establishment time measurements as described in the concurrent
TCP connection capacity test MUST be performed.
Between each iteration, it is RECOMMENDED that the tester issue a
TCP RST referencing all connections attempted for the previous
iteration, regardless of whether or not the connection attempt was
successful. The tester will wait for age time before continuing to
the next iteration.
[Page 10]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.3.4 Measurements
5.3.4.1 Application-Layer measurements
Number of objects requested
Number of objects returned
5.3.4.2 Transport-Layer measurements
Highest connection rate - Highest rate, in connections per second,
for which for the search algorithm passed.
The following measurements SHOULD performed on a per iteration
basis:
Minimum connection establishment time - Lowest TCP connection
establishment time measured as defined in appendix B.
Maximum connection establishment time - Highest TCP connection
establishment time measured as defined in appendix B.
Average connection establishment time - The mean of all measurements
of connection establishment times.
Aggregate connection establishment time - The total of all
measurements of connection establishment times.
5.3.5 Reporting Format
5.3.5.1 Application-Layer Reporting:
The test report MUST note object size(s), number of completed
requests and number of completed responses.
The intermediate results of the search algorithm MAY be reported
in a table format with a column for each iteration. There SHOULD be
rows for the number of requests and responses completed. The table
MAY be combined with the transport-layer reporting, provided that
the table identify this as an application layer measurement.
Version information:
The test report MUST note the version of HTTP client(s) and server(s).
5.3.5.2 Transport-Layer Reporting:
The test report MUST note the number of connections, age time and
highest connection rate measured.
The intermediate results of the search algorithm MAY be reported
in the format of a table with a column for each iteration. There
SHOULD be rows for the connection attempt rate, total number of
[Page 11]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
TCP connections attempted, total number of TCP connections
completed, minimum TCP connection establishment time, maximum TCP
connection establishment time, average connection establishment time
and the aggregate connection establishment time.
5.4 Maximum TCP Connection Tear Down Rate
5.4.1 Objective
To determine the maximum TCP connection tear down rate through or
with the DUT/SUT, as defined by RFC2647[1].
5.4.2 Setup Parameters
Number of Connections - Defines the number of TCP connections that
the tester will attempt to tear down.
Age Time - The time, expressed in seconds, the DUT/SUT will keep a
connection in it's state table after receiving a TCP FIN or RST
packet.
5.4.3 Procedure
An iterative search algorithm MAY be used to determine the maximum
TCP connection tear down rate. The test iterates through different
TCP connection tear down rates with a fixed number of TCP
connections.
The virtual client(s) will initialize the test by establishing TCP
connections defined by number of connections. The virtual client(s)
will then attempt to tear down all of TCP connections, at a rate
defined by tear down attempt rate. For benchmarking purposes, the
tester MUST use a TCP FIN when initiating the connection tear down.
In the case of proxy based DUT/SUTs, the DUT/SUT will itself receive
the final ACK in the three-way handshake when a connection is being
torn down. For validation purposes, the virtual client(s) MAY
verify that the DUT/SUT received the final ACK in the connection tear
down exchange for all connections by transmitting a TCP datagram
referencing the previously town down connection. A TCP RST should be
received in response to the TCP datagram.
5.4.4 Measurements
Highest connection tear down rate - Highest rate, in connections per
second, for which all TCP connections were successfully torn down.
Minimum connection tear down time - Lowest TCP connection tear down
time measured as defined in appendix C.
Maximum connection tear down time - Highest TCP connection tear down
time measured as defined in appendix C.
[Page 12]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
Average connection tear down time - The mean of all measurements of
connection tear down times.
Aggregate connection tear down time - The total of all measurements
of connection tear down times.
5.4.5 Reporting Format
The test report MUST note the number of connections, age time and
highest connection tear down rate measured.
The intermediate results of the search algorithm SHOULD be reported
in the format of a table with a column for each iteration. There
SHOULD be rows for the number of TCP tear downs attempted, number
of TCP connection tear downs completed, minimum TCP connection tear
down time, maximum TCP connection tear down time, average TCP
connection tear down time and the aggregate TCP connection tear down
time.
5.5 Denial Of Service Handling
5.5.1 Objective
To determine the effect of a denial of service attack on a DUT/SUT
TCP connection establishment and/or HTTP transfer rates. The denial
of service handling test MUST be run after obtaining baseline
measurements from sections 5.3 and/or 5.6.
The TCP SYN flood attack exploits TCP's three-way handshake
mechanism by having an attacking source host generate TCP SYN
packets with random source addresses towards a victim host, thereby
consuming that host's resources.
5.5.2 Setup Parameters
Use the same setup parameters as defined in section 5.2.2 or 5.6.2,
depending on whether testing against the baseline TCP connection
setup rate test or HTTP transfer rate test, respectfully.
In addition, the following setup parameters MUST be defined.
SYN attack rate - Rate, expressed in packets per second, at which
the server(s) or NAT proxy address is targeted with TCP SYN packets.
5.5.3 Procedure
Use the same procedure as defined in section 5.3.3 or 5.6.3,
depending on whether testing against the baseline TCP connection
establishment rate or HTTP transfer rate test, respectfully. In
addition, the tester will generate TCP SYN packets targeting the
server(s) IP address or NAT proxy address at a rate defined by SYN
attack rate.
[Page 13]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
The tester originating the TCP SYN attack MUST be attached to the
unprotected network. In addition, the tester MUST not respond to the
SYN/ACK packets sent by target server or NAT proxy in response to
the SYN packet.
Some firewalls employ mechanisms to guard against SYN attacks. If
such mechanisms exist on the DUT/SUT, tests SHOULD be run with these
mechanisms enabled to determine how well the DUT/SUT can maintain,
under such attacks, the baseline connection establishment rates and
HTTP transfer rates determined in section 5.3 and section 5.6,
respectively.
5.5.4 Measurements
Perform the same measurements as defined in section 5.3.4 or 5.6.4,
depending on whether testing against the baseline TCP connection
establishment rate test or HTTP transfer rate, respectfully.
In addition, the tester SHOULD track TCP SYN packets associated with
the SYN attack which the DUT/SUT forwards on the protected or DMZ
interface(s).
5.5.5 Reporting Format
The test SHOULD use the same reporting format as described in
section 5.3.5 or 5.6.5, depending on whether testing against the
baseline TCP connection establishment rate test or HTTP transfer rate,
respectfully.
In addition, the report MUST indicate a denial of service handling
test, SYN attack rate, number TCP SYN attack packets transmitted
and the number of TCP SYN attack packets forwarded by the DUT/SUT.
The report MUST indicate whether or not the DUT has any SYN attack
mechanisms enabled.
5.6 HTTP Transfer Rate
5.6.1 Objective
To determine the transfer rate of HTTP requested object transversing
the DUT/SUT.
5.6.2 Setup Parameters
The following parameters MUST be defined for all tests:
5.6.2.1 Transport-Layer Setup Parameters
Number of connections - Defines the aggregate number of connections
attempted. The number SHOULD be a multiple of the number of virtual
clients participating in the test
[Page 14]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.6.2.2 Application-Layer Setup Parameters
Session type - The virtual clients/servers MUST use HTTP 1.1 or
higher.
GET requests per connection - Defines the number of HTTP 1.1 or
higher GET requests attempted per connection.
Object Size - Defines the number of bytes, excluding any bytes
associated with the HTTP header, to be transferred in response to an
HTTP 1.1 or higher GET request.
5.6.3 Procedure
Each HTTP 1.1 or higher client will request one or more objects from
an HTTP 1.1 or higher server using one or more HTTP GET requests.
The aggregate number of connections attempted, defined by number of
connections, MUST be evenly divided among all of the participating
virtual clients.
If the virtual client(s) make multiple HTTP GET requests per
connection, it MUST request the same object size for each GET
request. Multiple iterations of this test SHOULD be ran using
different object sizes.
5.6.4 Measurements
5.6.4.1 Application-Layer measurements
Average Transfer Rate - The average transfer rate of the DUT/SUT
MUST be measured and shall be referenced to the requested object(s).
The measurement will start on transmission of the first bit of the
first requested object and end on transmission of the last bit of
the last requested object. The average transfer rate, in bits per
second, will be calculated using the following formula:
OBJECTS * OBJECTSIZE * 8
TRANSFER RATE(bit/s) = --------------------------
DURATION
OBJECTS - Objects successfully transferred
OBJECTSIZE - Object size in bytes
DURATION - Aggregate transfer time based on aforementioned time
references.
5.6.4.2 Measurements at or below the Transport-Layer
The tester SHOULD make goodput[1] measurements for connection-
oriented protocols at or below the transport layer. Goodput
measurements MUST only reference the protocols payload, excluding
any of the protocols header. In addition, the tester MUST exclude
[Page 15]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
any bits associated with the connection establishment, connection
tear down, security associations or connection maintenance.
Since connection-oriented protocols require that data be
acknowledged, the offered load[6] will vary over the duration of the
test. When performing forwarding rate measurements, the tester
should measure the average forwarding rate over the duration of the
test.
5.6.5 Reporting Format
5.6.5.1 Application-Layer reporting
The test report MUST note number of GET requests per connection,
and object size.
The transfer rate results SHOULD be reported in tabular form with
a row for each of the object sizes. There SHOULD be a column for the
object size, the number of completed requests, the number of
completed responses, and the transfer rate results for each test.
Failure analysis:
The test report SHOULD indicate the number and percentage of HTTP
GET request or responses that failed to complete.
Version information:
The test report MUST note the version of HTTP client(s) and
server(s).
5.6.5.2 Transport-Layer and below reporting
The test report MUST note the aggregate number of connections. In
addition, the report MUST identify the layer/protocol for which the
measurement was made.
The results SHOULD be in tabular form with a column for each
iteration of the test. There should be columns for transmitted bits,
retransmitted bits and the measured goodput.
Failure analysis:
The test report SHOULD indicate the number and percentage of
connections that failed to complete.
[Page 16]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.7 HTTP Concurrent Transaction Capacity
5.7.1 Objective
Determine the maximum number of concurrent or simultaneous HTTP
transactions the DUT/SUT can support. This test is intended to
find the maximum number of users that can simultaneously access
web objects.
5.7.2 Setup Parameters
GET request rate - The aggregate rate, expressed in request per
second, at which HTTP 1.1 or higher GET requests are offered by the
virtual client(s).
Session type - The virtual clients/servers MUST use HTTP 1.1 or
higher.
5.7.3 Procedure
An iterative search algorithm MAY be used to determine the maximum
HTTP concurrent transaction capacity.
For each iteration, the virtual client(s) will vary the number of
concurrent or simultaneous HTTP transactions - that is, on-going
GET requests. The HTTP 1.1 or higher virtual client(s) will request
one object, across each connection, from an HTTP 1.1 or higher
server using one HTTP GET request. The aggregate rate at which the
virtual client(s) will offer the requests will be defined by GET
request rate.
The object size requested MUST be large enough, such that, the
transaction - that is, the request/response cycle -- will exist for
the duration of the test. At the end of each iteration, the tester
MUST validate that all transactions are still active. After all of
the transactions are checked, the transactions MAY be aborted.
5.7.4 Measurements
Maximum concurrent transactions - Total number of concurrent HTTP
transactions active for the last successful iteration performed in
the search algorithm.
5.7.5 Reporting Format
5.7.5.1 Application-Layer reporting
The test report MUST note the GET request rate and the maximum
concurrent transactions measured.
The intermediate results of the search algorithm MAY be reported
in a table format with a column for each iteration. There SHOULD be
rows for the number of concurrent transactions attempted, GET
[Page 17]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
request rate, number of aborted transactions and number of
transactions active at the end of the test iteration.
Version information:
The test report MUST note the version of HTTP client(s) and
server(s).
5.8 HTTP Transaction Rate
5.8.1 Objective
Determine the maximum HTTP transaction rate that a DUT/SUT can
sustain.
5.8.2 Setup Parameters
Session Type - HTTP 1.1 or higher MUST be used for this test.
Test Duration - Time, expressed in seconds, for which the
virtual client(s) will sustain the attempted GET request rate.
It is RECOMMENDED that the duration be at least 30 seconds.
Requests per connection - Number of object requests per connection.
Object Size - Defines the number of bytes, excluding any bytes
associated with the HTTP header, to be transferred in response to an
HTTP 1.1 or higher GET request.
5.8.3 Procedure
An iterative search algorithm MAY be used to determine the maximum
transaction rate that the DUT/SUT can sustain.
For each iteration, HTTP 1.1 or higher virtual client(s) will
vary the aggregate GET request rate offered to HTTP 1.1 or higher
server(s). The virtual client(s) will maintain the offered request
rate for the defined test duration.
If the tester makes multiple HTTP GET requests per connection, it
MUST request the same object size for each GET request rate.
Multiple iterations of this test MAY be performed with objects of
different sizes.
5.8.4 Measurements
Maximum Transaction Rate - The maximum rate at which all
transactions -- that is all requests/responses cycles -- are
completed.
Transaction Time - The tester SHOULD measure minimum, maximum and
average transaction times. The transaction time will start when the
virtual client issues the GET request and end when the requesting
[Page 18]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
virtual client receives the last bit of the requested object.
5.8.5 Reporting Format
The test report MUST note the test duration, object size, requests
per connection and the measured maximum transaction rate.
The intermediate results of the search algorithm MAY be reported
in a table format with a column for each iteration. There SHOULD be
rows for the GET request attempt rate, number of requests attempted,
number and percentage of requests completed, number of responses
attempted, number and percentage of responses completed, minimum
transaction time, average transaction time and maximum transaction
time.
Version information:
The test report MUST note the version of HTTP client(s) and
server(s).
5.9 Illegal Traffic Handling
5.9.1 Objective
To determine the behavior of the DUT/SUT when presented with a
combination of both legal and Illegal traffic flows. Note that
Illegal traffic does not refer to an attack, but traffic which
has been explicitly defined by a rule(s) to drop.
5.9.2 Setup Parameters
Setup parameters will use the same parameters as specified in the
HTTP transfer rate test. In addition, the following setup
parameters MUST be defined:
Illegal traffic percentage - Percentage of HTTP 1.1 or higher
connections which have been explicitly defined in a rule(s) to drop.
5.9.3 Procedure
Each HTTP 1.1 or higher client will request one or more objects from
an HTTP 1.1 or higher server using one or more HTTP GET requests.
The aggregate number of connections attempted, defined by number of
connections, MUST be evenly divided among all of the participating
virtual clients.
The virtual client(s) MUST offer the connection requests, both legal
and illegal, in an evenly distributed manner. Many firewalls have
the capability to filter on different traffic criteria( IP
addresses, Port numbers, etc). Testers may run multiple
iterations of this test with the DUT/SUT configured to filter
on different traffic criteria.
[Page 19]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.9.4 Measurements
Tester SHOULD perform the same measurements as defined in HTTP
test(Section 5.6.4). Unlike the HTTP transfer rate test, the
tester MUST not include any bits which are associated with illegal
traffic in its forwarding rate measurements.
5.9.5 Reporting Format
Test report SHOULD be the same as specified in the HTTP
test(Section 5.6.5).
In addition, the report MUST note the percentage of illegal HTTP
connections.
Failure analysis:
Test report MUST note the number and percentage of illegal
connections that were allowed by the DUT/SUT.
5.10 IP Fragmentation Handling
5.10.1 Objective
To determine the performance impact when the DUT/SUT is presented
with IP fragmented[5] traffic. IP packets which have been
fragmented, due to crossing a network that supports a smaller
MTU(Maximum Transmission Unit) than the actual IP packet, may
require the firewall to perform re-assembly prior to the rule set
being applied.
While IP fragmentation is a common form of attack, either on the
firewall itself or on internal hosts, this test will focus on
determining how the additional processing associated with the
re-assembly of the packets have on the forwarding rate of the
DUT/SUT. RFC 1858 addresses some fragmentation attacks that
get around IP filtering processes used in routers and hosts.
5.10.2 Setup Parameters
The following parameters MUST be defined.
5.10.2.1 Non-Fragmented Traffic Parameters
Setup parameters will be the same as defined in the HTTP transfer
rate test(Sections 5.6.2.1 and 5.6.2.2).
5.10.2.2 Fragmented Traffic Parameters
Packet size - Number of bytes in the IP/UDP packet, exclusive of
link-layer headers and checksums, prior to fragmentation.
[Page 20]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
MTU - Maximum transmission unit, expressed in bytes. For testing
purposes, this MAY be configured to values smaller than the MTU
supported by the link layer.
Intended Load - Intended load, expressed as percentage of media
utilization.
5.10.3 Procedure
Each HTTP 1.1 or higher client will request one or more objects from
an HTTP 1.1 or higher server using one or more HTTP GET requests.
The aggregate number of connections attempted, defined by number of
connections, MUST be evenly divided among all of the participating
virtual clients. If the virtual client(s) make multiple HTTP GET
requests per connection, it MUST request the same object size for
each GET request.
A tester attached to the unprotected side of the network, will offer
a unidirectional stream of unicast IP/UDP targeting a server
attached to either the protected or DMZ. The tester MUST offer the
unidirectional stream over the duration of the test.
Baseline measurements SHOULD be performed with IP filtering deny
rule(s) to filter fragmented traffic. If the DUT/SUT has logging
capability, the log SHOULD be checked to determine if it contains
the correct information regarding the fragmented traffic.
The test SHOULD be repeated with the DUT/SUT rule set changed to
allow the fragmented traffic through. When running multiple
iterations of the test, it is RECOMMENDED to vary the MTU while
keeping all other parameters constant.
Then setup the DUT/SUT to the policy or rule set the manufacturer
required to be defined to protect against fragmentation attacks and
repeat the measurements outlined in the baseline procedures.
5.10.4 Measurements
Tester SHOULD perform the same measurements as defined in HTTP
test(Section 5.6.4).
Transmitted UDP/IP Packets - Number of UDP packets transmitted by
client.
Received UDP/IP Packets - Number of UDP/IP Packets received by
server.
5.10.5 Reporting Format
5.10.1 Non-Fragmented Traffic
The test report SHOULD be the same as described in section 5.6.5.
Note that any forwarding rate measurements for the HTTP traffic
[Page 21]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
excludes any bits associated with the fragmented traffic which
may be forward by the DUT/SUT.
5.10.2 Fragmented Traffic
The test report MUST note the packet size, MTU size, intended load,
number of UDP/IP packets transmitted and number of UDP/IP packets
forwarded. The test report SHOULD also note whether or not the
DUT/SUT forwarded the offered UDP/IP traffic fragmented.
5.11 Latency
5.11.1 Objective
To determine the latency of network-layer or application-layer data
traversing the DUT/SUT. RFC 1242 [3] defines latency.
5.11.2 Setup Parameters
The following parameters MUST be defined:
5.11.2.1 Network-layer Measurements
Packet size, expressed as the number of bytes in the IP packet,
exclusive of link-layer headers and checksums.
Intended load, expressed as percentage of media utilization.
Test duration, expressed in seconds.
Test instruments MUST generate packets with unique timestamp
signatures.
5.11.2.2 Application-layer Measurements
Object Size - Defines the number of bytes, excluding any bytes
associated with the HTTP header, to be transferred in response to
an HTTP 1.1 or higher GET request. Testers SHOULD use the minimum
object size supported by the media, but MAY use other object
sizes as well.
Connection type. The tester MUST use one HTTP 1.1 or higher
connection for latency measurements.
Number of objects requested.
Number of objects transferred.
Test duration, expressed in seconds.
Test instruments MUST generate packets with unique timestamp
signatures.
[Page 22]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.11.3 Network-layer procedure
A client will offer a unidirectional stream of unicast packets to a
server. The packets MUST use a connectionless protocol like IP or
UDP/IP.
The tester MUST offer packets in a steady state. As noted in the
latency discussion in RFC 2544 [4], latency measurements MUST be
taken at the throughput level -- that is, at the highest offered
load with zero packet loss. Measurements taken at the throughput
level are the only ones that can legitimately be termed latency.
It is RECOMMENDED that implementers use offered loads not only at
the throughput level, but also at load levels that are less than
or greater than the throughput level. To avoid confusion with
existing terminology, measurements from such tests MUST be labeled
as delay rather than latency.
If desired, the tester MAY use a step test in which offered loads
increment or decrement through a range of load levels.
The duration of the test portion of each trial MUST be at least 30
seconds.
5.11.4 Application layer procedure
An HTTP 1.1 or higher client will request one or more objects from
an HTTP or higher 1.1 server using one or more HTTP GET requests. If
the tester makes multiple HTTP GET requests, it MUST request the
same-sized object each time. Testers may run multiple iterations of
this test with objects of different sizes.
Implementers MAY configure the tester to run for a fixed duration.
In this case, the tester MUST report the number of objects requested
and returned for the duration of the test. For fixed-duration tests
it is RECOMMENDED that the duration be at least 30 seconds.
5.11.5 Measurements
Minimum delay - The smallest delay incurred by data traversing the
DUT/SUT at the network layer or application layer, as appropriate.
Maximum delay - The largest delay incurred by data traversing the
DUT/SUT at the network layer or application layer, as appropriate.
Average delay - The mean of all measurements of delay incurred by
data traversing the DUT/SUT at the network layer or application
layer, as appropriate.
Delay distribution - A set of histograms of all delay measurements
observed for data traversing the DUT/SUT at the network layer or
application layer, as appropriate.
[Page 23]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
5.11.6 Network-layer reporting format
The test report MUST note the packet size(s), offered load(s) and
test duration used.
The latency results SHOULD be reported in the format of a table with
a row for each of the tested packet sizes. There SHOULD be columns
for the packet size, the intended rate, the offered rate, and the
resultant latency or delay values for each test.
5.11.7 Application-layer reporting format
The test report MUST note the object size(s) and number of requests
and responses completed. If applicable, the report MUST note the
test duration if a fixed duration was used.
The latency results SHOULD be reported in the format of a table with
a row for each of the object sizes. There SHOULD be columns for the
object size, the number of completed requests, the number of
completed responses, and the resultant latency or delay values for
each test.
Failure analysis:
The test report SHOULD indicate the number and percentage of HTTP
GET request or responses that failed to complete within the test
duration.
Version information:
The test report MUST note the version of HTTP client and server.
[Page 24]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
APPENDIX A: HTTP(HyperText Transfer Protocol)
The most common versions of HTTP in use today are HTTP/1.0 and
HTTP/1.1 with the main difference being in regard to persistent
connections. HTTP 1.0, by default, does not support persistent
connections. A separate TCP connection is opened up for each
GET request the client wants to initiate and closed after the
requested object transfer is completed. While some implementations
HTTP/1.0 supports persistence through the use of a keep-alive,
there is no official specification for how the keep-alive operates.
In addition, HTTP 1.0 proxies do support persistent connection as
they do not recognize the connection header.
HTTP/1.1, by default, does support persistent connection and
is therefore the version that is referenced in this methodology.
Proxy based DUT/SUTs may monitor the TCP connection and after a
timeout, close the connection if no activity is detected. The
duration of this timeout is not defined in the HTTP/1.1
specification and will vary between DUT/SUTs. If the DUT/SUT
closes inactive connections, the aging timer on the DUT SHOULD
be configured for a duration that exceeds the test time.
While this document cannot foresee future changes to HTTP
and it impact on the methodologies defined herein, such
changes should be accommodated for so that newer versions of
HTTP may be used in benchmarking firewall performance.
APPENDIX B: Connection Establishment Time Measurements
For purposes of benchmarking firewall performance, the connection
establishment time will be considered the interval between the
transmission of the first bit of the first octet of the packet
carrying the connection request to the DUT/SUT interface to
receipt of the last bit of the last octet of the last packet of
the connection setup traffic received on the client or server,
depending on whether a given connection requires an even or odd
number of messages, respectfully.
Some connection oriented protocols, such as TCP, involve an odd
number of messages when establishing a connection. In the case of
proxy based DUT/SUTs, the DUT/SUT will terminate the connection,
setting up a separate connection to the server. Since, in such
cases, the tester does not own both sides of the connection,
measurements will be made two different ways. While the following
describes the measurements with reference to TCP, the methodology
may be used with other connection oriented protocols which involve
an odd number of messages.
For non-proxy based DUT/SUTs , the establishment time shall be
directly measured and is considered to be from the time the first
bit of the first SYN packet is transmitted by the client to the
time the last bit of the final ACK in the three-way handshake is
received by the target server.
[Page 25]
INTERNET-DRAFT Methodology for Firewall Performance November 2002
If the DUT/SUT is proxy based, the connection establishment time is
considered to be from the time the first bit of the first SYN packet
is transmitted by the client to the time the client transmits the first
bit of the first acknowledged TCP datagram(t4-t0 in the following
timeline).
t0: Client sends a SYN.
t1: Proxy sends a SYN/ACK.
t2: Client sends the final ACK.
t3: Proxy establishes separate connection with server.
t4: Client sends TCP datagram to server.
*t5: Proxy sends ACK of the datagram to client.
* While t5 is not considered part of the TCP connection establishment,
acknowledgement of t4 must be received for the connection to be
considered successful.
APPENDIX C: Connection Tear Time Measurements
The TCP connection tear down time will be considered the interval
between the transmission of the first TCP FIN packet transmitted
by the tester requesting a connection tear down to receipt of the
ACK packet on the same tester interface.
Appendix D. References
[1] D. Newman, "Benchmarking Terminology for Firewall Devices", RFC 2647,
August 1999.
[2] R. Fielding, J. Gettys, J. Mogul, H Frystyk, L.Masinter, P. Leach,
T. Berners-Lee , "Hypertext Transfer Protocol -- HTTP/1.1",
RFC 2616 June 1999
[3] S. Bradner, editor. "Benchmarking Terminology for Network
Interconnection Devices," RFC 1242, July 1991.
[4] S. Bradner, J. McQuaid, "Benchmarking Methodology for Network
Interconnect Devices," RFC 2544, March 1999.
[5] David C. Clark, "IP Datagram Reassembly Algorithm", RFC 815 ,
July 1982.
[6] Mandeville, R., "Benchmarking Terminology for LAN Switching
Devices", RFC 2285, February 1998.
[7] Mandeville, R., Perser,J., "Benchmarking Methodology for LAN
Switching Devices", RFC 2889, August 2000.
[Page 26]
INTERNET-DRAFT Methodology for Firewall Performance November 2002