IDR                                                               F. Qin
Internet-Draft                                              China Mobile
Intended status: Standards Track                                 H. Yuan
Expires: July 14, 2022                                          UnionPay
                                                                 T. Zhou
                                                             G. Fioccola
                                                                 Y. Wang
                                                                  Huawei
                                                        January 10, 2022


                BGP SR Policy Extensions to Enable IFIT
                    draft-ietf-idr-sr-policy-ifit-03

Abstract

   Segment Routing (SR) policy is a set of candidate SR paths consisting
   of one or more segment lists and necessary path attributes.  It
   enables instantiation of an ordered list of segments with a specific
   intent for traffic steering.  In-situ Flow Information Telemetry
   (IFIT) refers to network OAM data plane on-path telemetry techniques,
   in particular the most popular are In-situ OAM (IOAM) and Alternate
   Marking.  This document defines extensions to BGP to distribute SR
   policies carrying IFIT information.  So that IFIT methods can be
   enabled automatically when the SR policy is applied.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14 [RFC2119]
   [RFC8174] when, and only when, they appear in all capitals, as shown
   here.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



Qin, et al.               Expires July 14, 2022                 [Page 1]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   This Internet-Draft will expire on July 14, 2022.

Copyright Notice

   Copyright (c) 2022 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Motivation  . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  IFIT methods for SR Policy  . . . . . . . . . . . . . . . . .   4
   4.  IFIT Attributes in SR Policy  . . . . . . . . . . . . . . . .   5
   5.  IFIT Attributes Sub-TLV . . . . . . . . . . . . . . . . . . .   6
     5.1.  IOAM Pre-allocated Trace Option Sub-TLV . . . . . . . . .   8
     5.2.  IOAM Incremental Trace Option Sub-TLV . . . . . . . . . .   9
     5.3.  IOAM Directly Export Option Sub-TLV . . . . . . . . . . .   9
     5.4.  IOAM Edge-to-Edge Option Sub-TLV  . . . . . . . . . . . .  10
     5.5.  Enhanced Alternate Marking (EAM) sub-TLV  . . . . . . . .  11
   6.  SR Policy Operations with IFIT Attributes . . . . . . . . . .  12
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  14
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  14
     10.2.  Informative References . . . . . . . . . . . . . . . . .  16
   Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Introduction

   Segment Routing (SR) policy [I-D.ietf-spring-segment-routing-policy]
   is a set of candidate SR paths consisting of one or more segment
   lists and necessary path attributes.  It enables instantiation of an
   ordered list of segments with a specific intent for traffic steering.

   In-situ Flow Information Telemetry (IFIT) denotes a family of flow-
   oriented on-path telemetry techniques (e.g.  IOAM, Alternate



Qin, et al.               Expires July 14, 2022                 [Page 2]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   Marking), which can provide high-precision flow insight and real-time
   network issue notification (e.g., jitter, latency, packet loss).In
   particular, IFIT refers to network OAM (Operations, Administration,
   and Maintenance) data plane on-path telemetry techniques, including
   In-situ OAM (IOAM) [I-D.ietf-ippm-ioam-data] and Alternate Marking
   [RFC8321].  It can provide flow information on the entire forwarding
   path on a per-packet basis in real time.

   An automatic network requires the Service Level Agreement (SLA)
   monitoring on the deployed service.  So that the system can quickly
   detect the SLA violation or the performance degradation, hence to
   change the service deployment.  For this reason, the SR policy native
   IFIT can facilitate the closed loop control and enable the automation
   of SR service.

   This document defines extensions to Border Gateway Protocol (BGP) to
   distribute SR policies carrying IFIT information.  So that IFIT
   behavior can be enabled automatically when the SR policy is applied.

   This BGP extension allows to signal the IFIT capabilities together
   with the SR-policy.  In this way IFIT methods are automatically
   activated and running.  The flexibility and dynamicity of the IFIT
   applications are given by the use of additional functions on the
   controller and on the network nodes, but this is out of scope here.

   IFIT is a solution focusing on network domains according to [RFC8799]
   that introduces the concept of specific domain solutions.  A network
   domain consists of a set of network devices or entities within a
   single administration.  As mentioned in [RFC8799], for a number of
   reasons, such as policies, options supported, style of network
   management and security requirements, it is suggested to limit
   applications including the emerging IFIT techniques to a controlled
   domain.  Hence, the IFIT methods MUST be typically deployed in such
   controlled domains.

2.  Motivation

   IFIT Methods are being introduced in multiple protocols and below is
   a proper picture of the relevant documents for Segment Routing.
   Indeed the IFIT methods are becoming mature for Segment Routing over
   the MPLS data plane (SR-MPLS) and Segment Routing over IPv6 data
   plane (SRv6), that is the main focus of this draft:

      IOAM: the reference documents for the data plane are
      [I-D.ietf-ippm-ioam-ipv6-options] for SRv6 and
      [I-D.gandhi-mpls-ioam-sr] for SR-MPLS.





Qin, et al.               Expires July 14, 2022                 [Page 3]


Internet-Draft             bgp-sr-policy-ifit               January 2022


      Alternate Marking: the reference documents for the data plane are
      [I-D.ietf-6man-ipv6-alt-mark] for SRv6 and
      [I-D.ietf-mpls-rfc6374-sfl], [I-D.gandhi-mpls-rfc6374-sr] for SR-
      MPLS.

   The definition of these data plane IFIT methods for SR-MPLS and SRv6
   imply requirements for various routing protocols, such as BGP, and
   this document aims to define BGP extensions to distribute SR policies
   carrying IFIT information.  This allows to signal the IFIT
   capabilities so IFIT methods are automatically configured and ready
   to run when the SR Policy candidate paths are distributed through
   BGP.

   It is to be noted that, for PCEP (Path Computation Element
   Communication Protocol), [I-D.chen-pce-pcep-ifit] proposes the
   extensions to PCEP to distribute paths carrying IFIT information and
   therefore to enable IFIT methods for SR policy too.

3.  IFIT methods for SR Policy

   In-situ Operations, Administration, and Maintenance (IOAM)
   [I-D.ietf-ippm-ioam-data] records operational and telemetry
   information in the packet while the packet traverses a path between
   two points in the network.  In terms of the classification given in
   RFC 7799 [RFC7799] IOAM could be categorized as Hybrid Type 1.  IOAM
   mechanisms can be leveraged where active OAM do not apply or do not
   offer the desired results.  When SR policy enables the IOAM, the IOAM
   header will be inserted into every packet of the traffic that is
   steered into the SR paths.

   The Alternate Marking [RFC8321]technique is an hybrid performance
   measurement method, per RFC 7799 [RFC7799] classification of
   measurement methods.  Because this method is based on marking
   consecutive batches of packets.  It can be used to measure packet
   loss, latency, and jitter on live traffic.

   This document aims to define the control plane.  While the relevant
   documents for the data plane application of IOAM and Alternate
   Marking are respectively [I-D.ietf-ippm-ioam-ipv6-options] and
   [I-D.ietf-6man-ipv6-alt-mark] for Segment Routing over IPv6 data
   plane (SRv6), [I-D.ietf-mpls-rfc6374-sfl],
   [I-D.gandhi-mpls-rfc6374-sr] and [I-D.gandhi-mpls-ioam-sr] for
   Segment Routing over the MPLS data plane (SR-MPLS).








Qin, et al.               Expires July 14, 2022                 [Page 4]


Internet-Draft             bgp-sr-policy-ifit               January 2022


4.  IFIT Attributes in SR Policy

   As defined in [I-D.ietf-idr-segment-routing-te-policy], a new SAFI is
   defined (the SR Policy SAFI with codepoint 73) as well as a new NLRI.
   The NLRI contains the SR Policy candidate path and, according to
   [I-D.ietf-idr-segment-routing-te-policy], the content of the SR
   Policy Candidate Path is encoded in the Tunnel Encapsulation
   Attribute defined in [I-D.ietf-idr-tunnel-encaps] using a new Tunnel-
   Type called SR Policy Type with codepoint 15.  The SR Policy encoding
   structure is as follows:

      SR Policy SAFI NLRI: <Distinguisher, Policy-Color, Endpoint>
      Attributes:
         Tunnel Encaps Attribute (23)
            Tunnel Type: SR Policy
                Binding SID
                SRv6 Binding SID
                Preference
                Priority
                Policy Name
                Policy Candidate Path Name
                Explicit NULL Label Policy (ENLP)
                Segment List
                    Weight
                    Segment
                    Segment
                    ...
                ...

   A candidate path includes multiple SR paths, each of which is
   specified by a segment list.  IFIT can be applied to the candidate
   path, so that all the SR paths can be monitored in the same way.  The
   new SR Policy encoding structure is expressed as below:


















Qin, et al.               Expires July 14, 2022                 [Page 5]


Internet-Draft             bgp-sr-policy-ifit               January 2022


      SR Policy SAFI NLRI: <Distinguisher, Policy-Color, Endpoint>
      Attributes:
         Tunnel Encaps Attribute (23)
            Tunnel Type: SR Policy
                Binding SID
                SRv6 Binding SID
                Preference
                Priority
                Policy Name
                Policy Candidate Path Name
                Explicit NULL Label Policy (ENLP)
                IFIT Attributes
                Segment List
                    Weight
                    Segment
                    Segment
                    ...
                ...

   IFIT attributes can be attached at the candidate path level as sub-
   TLVs.  There may be different IFIT tools.  The following sections
   will describe the requirement and usage of different IFIT tools, and
   define the corresponding sub-TLV encoding in BGP.

   Once the IFIT attributes are signalled, if a packet arrives at the
   headend and, based on the types of steering described in
   [I-D.ietf-spring-segment-routing-policy], it may get steered into an
   SR Policy where IFIT methods are applied.  Therefore it will be
   managed consequently with the corresponding IOAM or Alternate Marking
   information according to the enabled IFIT methods.

   Note that the IFIT attributes here described can also be generalized
   and included as sub-TLVs for other SAFIs and NLRIs.

5.  IFIT Attributes Sub-TLV

   The format of the IFIT Attributes Sub-TLV is defined as follows:














Qin, et al.               Expires July 14, 2022                 [Page 6]


Internet-Draft             bgp-sr-policy-ifit               January 2022


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                   +---------------+---------------+
                                   |      Type     |    Length     |
   +-------------------------------+---------------+---------------+
   |                                                               |
   //                           sub-TLVs                          //
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Fig. 1 IFIT Attributes Sub-TLV

   Where:

   Type: to be assigned by IANA.

   Length: the total length of the value field not including Type and
   Length fields.

   sub-TLVs currently defined:

      * IOAM Pre-allocated Trace Option Sub-TLV,

      * IOAM Incremental Trace Option Sub-TLV,

      * IOAM Directly Export Option Sub-TLV,

      * IOAM Edge-to-Edge Option Sub-TLV,

      * Enhanced Alternate Marking (EAM) sub-TLV.

   The presence of the IFIT Attributes Sub-TLV implies support of IFIT
   methods (IOAM and/or Alternate Marking).  It is worth mentioning that
   IOAM and Alternate Marking can be activated one at a time or can
   coexist; so it is possible to have only IOAM or only Alternate
   Marking enabled as Sub-TLVs.  The sub-TLVs currently defined for IOAM
   and Alternate Marking are detailed in the next sections.

   In case of empty IFIT Attributes Sub-TLV, i.e. no further IFIT sub-
   TLV and Length=0, IFIT methods will not be activated.  If two
   conflicting IOAM sub-TLVs are present (e.g.  Pre-allocated Trace
   Option and Incremental Trace Option) it means that they are not
   usable and none of the two methods will be activated.  The same
   applies if there is more than one instance of the sub-TLV of the same
   type.  Anyway the validation of the individual fields of the IFIT
   Attributes sub-TLVs are handled by the SRPM (SR Policy Module).





Qin, et al.               Expires July 14, 2022                 [Page 7]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   The process of stopping IFIT methods can be done by setting empty
   IFIT Attributes Sub-TLV, while, for modifying IFIT methods
   parameters, the IFIT Attributes Sub-TLVs can be updated accordingly.
   Additionally the backward compatibility is guaranteed, since an
   implementation that does not understand IFIT Attributes Sub-TLV can
   simply ignore it.

5.1.  IOAM Pre-allocated Trace Option Sub-TLV

   The IOAM tracing data is expected to be collected at every node that
   a packet traverses to ensure visibility into the entire path a packet
   takes within an IOAM domain.  The preallocated tracing option will
   create pre-allocated space for each node to populate its information.

   The format of IOAM pre-allocated trace option sub-TLV is defined as
   follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+-------------------------------+
   |    Type=1     |   Length=6    |    Namespace ID               |
   +---------------+---------------+--------------+--------+-------+
   |         IOAM Trace Type                      | Flags  | Rsvd  |
   +----------------------------------------------+--------+-------+

              Fig. 2 IOAM Pre-allocated Trace Option Sub-TLV

   Where:

   Type: 1 (to be assigned by IANA).

   Length: 6, it is the total length of the value field (not including
   Type and Length fields).

   Namespace ID: A 16-bit identifier of an IOAM-Namespace.  The
   definition is the same as described in section 4.4 of
   [I-D.ietf-ippm-ioam-data].

   IOAM Trace Type: A 24-bit identifier which specifies which data types
   are used in the node data list.  The definition is the same as
   described in section 4.4 of [I-D.ietf-ippm-ioam-data].

   Flags: A 4-bit field.  The definition is the same as described in
   [I-D.ietf-ippm-ioam-flags] and section 4.4 of
   [I-D.ietf-ippm-ioam-data].

   Rsvd: A 4-bit field reserved for further usage.  It MUST be zero and
   ignored on receipt.



Qin, et al.               Expires July 14, 2022                 [Page 8]


Internet-Draft             bgp-sr-policy-ifit               January 2022


5.2.  IOAM Incremental Trace Option Sub-TLV

   The incremental tracing option contains a variable node data fields
   where each node allocates and pushes its node data immediately
   following the option header.

   The format of IOAM incremental trace option sub-TLV is defined as
   follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+-------------------------------+
   |    Type=2     |   Length=6    |    Namespace ID               |
   +---------------+---------------+--------------+--------+-------+
   |         IOAM Trace Type                      | Flags  | Rsvd  |
   +----------------------------------------------+--------+-------+

               Fig. 3 IOAM Incremental Trace Option Sub-TLV

   Where:

   Type: 2 (to be assigned by IANA).

   Length: 6, it is the total length of the value field (not including
   Type and Length fields).

   All the other fields definition is the same as the pre-allocated
   trace option sub-TLV in section 4.1.

5.3.  IOAM Directly Export Option Sub-TLV

   IOAM directly export option is used as a trigger for IOAM data to be
   directly exported to a collector without being pushed into in-flight
   data packets.

   The format of IOAM directly export option sub-TLV is defined as
   follows:














Qin, et al.               Expires July 14, 2022                 [Page 9]


Internet-Draft             bgp-sr-policy-ifit               January 2022


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                   +---------------+---------------+
                                   |    Type=3     |   Length=12   |
   +-----------------------------------------------+---------------+
   |        Namespace ID           |            Flags              |
   +-------------------------------+---------------+---------------+
   |               IOAM Trace Type                 |      Rsvd     |
   +-----------------------------------------------+---------------+
   |                         Flow ID                               |
   +---------------------------------------------------------------+

                Fig. 4 IOAM Directly Export Option Sub-TLV

   Where:

   Type: 3 (to be assigned by IANA).

   Length: 12, it is the total length of the value field (not including
   Type and Length fields).

   Namespace ID: A 16-bit identifier of an IOAM-Namespace.  The
   definition is the same as described in section 4.4 of
   [I-D.ietf-ippm-ioam-data].

   Flags: A 16-bit field.  The definition is the same as described in
   section 3.2 of [I-D.ietf-ippm-ioam-direct-export].

   IOAM Trace Type: A 24-bit identifier which specifies which data types
   are used in the node data list.  The definition is the same as
   described in section 4.4 of [I-D.ietf-ippm-ioam-data].

   Rsvd: A 4-bit field reserved for further usage.  It MUST be zero and
   ignored on receipt.

   Flow ID: A 32-bit flow identifier.  The definition is the same as
   described in section 3.2 of [I-D.ietf-ippm-ioam-direct-export].

5.4.  IOAM Edge-to-Edge Option Sub-TLV

   The IOAM edge to edge option is to carry data that is added by the
   IOAM encapsulating node and interpreted by IOAM decapsulating node.

   The format of IOAM edge-to-edge option sub-TLV is defined as follows:







Qin, et al.               Expires July 14, 2022                [Page 10]


Internet-Draft             bgp-sr-policy-ifit               January 2022


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                   +---------------+---------------+
                                   |    Type=4     |    Length=4   |
   +-----------------------------------------------+---------------+
   |        Namespace ID           |         IOAM E2E Type         |
   +-------------------------------+-------------------------------+

                  Fig. 5 IOAM Edge-to-Edge Option Sub-TLV

   Where:

   Type: 4 (to be assigned by IANA).

   Length: 4, it is the total length of the value field (not including
   Type and Length fields).

   Namespace ID: A 16-bit identifier of an IOAM-Namespace.  The
   definition is the same as described in section 4.6 of
   [I-D.ietf-ippm-ioam-data].

   IOAM E2E Type: A 16-bit identifier which specifies which data types
   are used in the E2E option data.  The definition is the same as
   described in section 4.6 of [I-D.ietf-ippm-ioam-data].

5.5.  Enhanced Alternate Marking (EAM) sub-TLV

   The format of Enhanced Alternate Marking (EAM) sub-TLV is defined as
   follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                   +---------------+---------------+
                                   |    Type=5     |   Length=4    |
   +-------------------------------+-------+-------+-------+-------+
   |           FlowMonID                   |     Period    |H|E| R |
   +---------------------------------------+---------------+-------+

                 Fig. 6 Enhanced Alternate Marking Sub-TLV

   Where:

   Type: 5 (to be assigned by IANA).

   Length: 4, it is the total length of the value field (not including
   Type and Length fields).





Qin, et al.               Expires July 14, 2022                [Page 11]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   FlowMonID: A 20-bit identifier to uniquely identify a monitored flow
   within the measurement domain.  The definition is the same as
   described in section 5.3 of [I-D.ietf-6man-ipv6-alt-mark].

   Period: Time interval between two alternate marking period.  The unit
   is second.

   H: A flag indicating that the measurement is Hop-By-Hop.

   E: A flag indicating that the measurement is end to end.

   R: A 2-bit field reserved for further usage.  It MUST be zero and
   ignored on receipt.

6.  SR Policy Operations with IFIT Attributes

   The details of SR Policy installation and use are specified in
   [I-D.ietf-spring-segment-routing-policy].  This document complements
   SR Policy Operations described in
   [I-D.ietf-idr-segment-routing-te-policy] by adding the IFIT
   Attributes.

   The operations described in [I-D.ietf-idr-segment-routing-te-policy]
   are always valid.  The only difference is the addition of IFIT
   Attributes Sub-TLVs for the SR Policy NLRI, that can affect its
   acceptance by a BGP speaker, but the implementation MAY provide an
   option for ignoring the unrecognized or unsupported IFIT sub-TLVs.
   SR Policy NLRIs that have been determined acceptable, usable and
   valid can be evaluated for propagation, including the IFIT
   information.

   The error handling actions are also described in
   [I-D.ietf-idr-segment-routing-te-policy],indeed A BGP Speaker MUST
   perform the syntactic validation of the SR Policy NLRI to determine
   if it is malformed, including the TLVs/sub-TLVs.  In case of any
   error detected, either at the attribute or its TLV/sub-TLV level, the
   "treat-as-withdraw" strategy MUST be applied.

   The validation of the IFIT Attributes sub-TLVs introduced in this
   document MUST be performed to determine if they are malformed or
   invalid.  The validation of the individual fields of the IFIT
   Attributes sub-TLVs are handled by the SRPM (SR Policy Module).

7.  IANA Considerations

   This document defines a new sub-TLV in the registry "BGP Tunnel
   Encapsulation Attribute sub-TLVs" to be assigned by IANA:




Qin, et al.               Expires July 14, 2022                [Page 12]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   Codepoint    Description                      Reference
   -------------------------------------------------------------
   TBD1         IFIT Attributes Sub-TLV          This document


   This document requests creation of a new registry called "IFIT
   Attributes Sub-TLVs".  The allocation policy of this registry is
   "Specification Required" according to RFC 8126 [RFC8126].

   The following initial Sub-TLV codepoints are assigned by this
   document:

   Value   Description                                Reference
   -------------------------------------------------------------
   1       IOAM Pre-allocated Trace Option Sub-TLV    This document

   2       IOAM Incremental Trace Option Sub-TLV      This document

   3       IOAM Directly Export Option Sub-TLV        This document

   4       IOAM Edge-to-Edge Option Sub-TLV           This document

   5       Enhanced Alternate Marking Sub-TLV         This document


8.  Security Considerations

   The security mechanisms of the base BGP security model apply to the
   extensions described in this document as well.  See the Security
   Considerations section of [I-D.ietf-idr-segment-routing-te-policy].

   SR operates within a trusted SR domain RFC 8402 [RFC8402] and its
   security considerations also apply to BGP sessions when carrying SR
   Policy information.  The isolation of BGP SR Policy SAFI peering
   sessions may be used to ensure that the SR Policy information is not
   advertised outside the SR domain.  Additionally, only trusted nodes
   (that include both routers and controller applications) within the SR
   domain must be configured to receive such information.

   Implementation of IFIT methods (IOAM and Alternate Marking) are
   mindful of security and privacy concerns, as explained in
   [I-D.ietf-ippm-ioam-data] and RFC 8321 [RFC8321].  Anyway incorrect
   IFIT parameters in the BGP extension SHOULD NOT have an adverse
   effect on the SR Policy as well as on the network, since it affects
   only the operation of the telemetry methodology.

   IFIT data MUST be propagated in a limited domain in order to avoid
   malicious attacks and solutions to ensure this requirement are



Qin, et al.               Expires July 14, 2022                [Page 13]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   respectively discussed in [I-D.ietf-ippm-ioam-data] and
   [I-D.ietf-6man-ipv6-alt-mark].

   IFIT methods (IOAM and Alternate Marking) are applied within a
   controlled domain where the network nodes are locally administered.
   A limited administrative domain provides the network administrator
   with the means to select, monitor and control the access to the
   network, making it a trusted domain also for the BGP extensions
   defined in this document.

9.  Acknowledgements

   The authors of this document would like to thank Ketan Talaulikar,
   Joel Halpern, Jie Dong for their comments and review of this
   document.

10.  References

10.1.  Normative References

   [I-D.ietf-6man-ipv6-alt-mark]
              Fioccola, G., Zhou, T., Cociglio, M., Qin, F., and R.
              Pang, "IPv6 Application of the Alternate Marking Method",
              draft-ietf-6man-ipv6-alt-mark-12 (work in progress),
              October 2021.

   [I-D.ietf-idr-segment-routing-te-policy]
              Previdi, S., Filsfils, C., Talaulikar, K., Mattes, P.,
              Jain, D., and S. Lin, "Advertising Segment Routing
              Policies in BGP", draft-ietf-idr-segment-routing-te-
              policy-14 (work in progress), November 2021.

   [I-D.ietf-idr-tunnel-encaps]
              Patel, K., Velde, G. V. D., Sangli, S. R., and J. Scudder,
              "The BGP Tunnel Encapsulation Attribute", draft-ietf-idr-
              tunnel-encaps-22 (work in progress), January 2021.

   [I-D.ietf-ippm-ioam-data]
              Brockners, F., Bhandari, S., and T. Mizrahi, "Data Fields
              for In-situ OAM", draft-ietf-ippm-ioam-data-17 (work in
              progress), December 2021.

   [I-D.ietf-ippm-ioam-direct-export]
              Song, H., Gafni, B., Zhou, T., Li, Z., Brockners, F.,
              Bhandari, S., Sivakolundu, R., and T. Mizrahi, "In-situ
              OAM Direct Exporting", draft-ietf-ippm-ioam-direct-
              export-07 (work in progress), October 2021.




Qin, et al.               Expires July 14, 2022                [Page 14]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   [I-D.ietf-ippm-ioam-flags]
              Mizrahi, T., Brockners, F., Bhandari, S., Sivakolundu, R.,
              Pignataro, C., Kfir, A., Gafni, B., Spiegel, M., and J.
              Lemon, "In-situ OAM Loopback and Active Flags", draft-
              ietf-ippm-ioam-flags-07 (work in progress), October 2021.

   [I-D.ietf-ippm-ioam-ipv6-options]
              Bhandari, S. and F. Brockners, "In-situ OAM IPv6 Options",
              draft-ietf-ippm-ioam-ipv6-options-06 (work in progress),
              July 2021.

   [I-D.ietf-spring-segment-routing-policy]
              Filsfils, C., Talaulikar, K., Voyer, D., Bogdanov, A., and
              P. Mattes, "Segment Routing Policy Architecture", draft-
              ietf-spring-segment-routing-policy-14 (work in progress),
              October 2021.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC7799]  Morton, A., "Active and Passive Metrics and Methods (with
              Hybrid Types In-Between)", RFC 7799, DOI 10.17487/RFC7799,
              May 2016, <https://www.rfc-editor.org/info/rfc7799>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8321]  Fioccola, G., Ed., Capello, A., Cociglio, M., Castaldelli,
              L., Chen, M., Zheng, L., Mirsky, G., and T. Mizrahi,
              "Alternate-Marking Method for Passive and Hybrid
              Performance Monitoring", RFC 8321, DOI 10.17487/RFC8321,
              January 2018, <https://www.rfc-editor.org/info/rfc8321>.

   [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
              Decraene, B., Litkowski, S., and R. Shakir, "Segment
              Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
              July 2018, <https://www.rfc-editor.org/info/rfc8402>.






Qin, et al.               Expires July 14, 2022                [Page 15]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   [RFC8799]  Carpenter, B. and B. Liu, "Limited Domains and Internet
              Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020,
              <https://www.rfc-editor.org/info/rfc8799>.

10.2.  Informative References

   [I-D.chen-pce-pcep-ifit]
              Yuan, H., Zhou, T., Li, W., Fioccola, G., and Y. Wang,
              "Path Computation Element Communication Protocol (PCEP)
              Extensions to Enable IFIT", draft-chen-pce-pcep-ifit-04
              (work in progress), July 2021.

   [I-D.gandhi-mpls-ioam-sr]
              Gandhi, R., Ali, Z., Filsfils, C., Brockners, F., Wen, B.,
              and V. Kozak, "MPLS Data Plane Encapsulation for In-situ
              OAM Data", draft-gandhi-mpls-ioam-sr-06 (work in
              progress), February 2021.

   [I-D.gandhi-mpls-rfc6374-sr]
              Gandhi, R., Filsfils, C., Voyer, D., Salsano, S., and M.
              Chen, "Performance Measurement Using RFC 6374 for Segment
              Routing Networks with MPLS Data Plane", draft-gandhi-mpls-
              rfc6374-sr-05 (work in progress), June 2020.

   [I-D.ietf-mpls-rfc6374-sfl]
              Bryant, S., Swallow, G., Chen, M., Fioccola, G., and G.
              Mirsky, "RFC6374 Synonymous Flow Labels", draft-ietf-mpls-
              rfc6374-sfl-10 (work in progress), March 2021.

Appendix A.

Authors' Addresses

   Fengwei Qin
   China Mobile
   No. 32 Xuanwumenxi Ave., Xicheng District
   Beijing
   China

   Email: qinfengwei@chinamobile.com











Qin, et al.               Expires July 14, 2022                [Page 16]


Internet-Draft             bgp-sr-policy-ifit               January 2022


   Hang Yuan
   UnionPay
   1899 Gu-Tang Rd., Pudong
   Shanghai
   China

   Email: yuanhang@unionpay.com


   Tianran Zhou
   Huawei
   156 Beiqing Rd., Haidian District
   Beijing
   China

   Email: zhoutianran@huawei.com


   Giuseppe Fioccola
   Huawei
   Riesstrasse, 25
   Munich
   Germany

   Email: giuseppe.fioccola@huawei.com


   Yali Wang
   Huawei
   156 Beiqing Rd., Haidian District
   Beijing
   China

   Email: wangyali11@huawei.com

















Qin, et al.               Expires July 14, 2022                [Page 17]