keyprov                                                         P. Hoyer
Internet-Draft                                             ActivIdentity
Intended status: Standards Track                                  M. Pei
Expires: August 25, 2008                                        VeriSign
                                                              S. Machani
                                                              Diversinet
                                                       February 22, 2008


                    Portable Symmetric Key Container
       draft-ietf-keyprov-portable-symmetric-key-container-03.txt

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on August 25, 2008.

Copyright Notice

   Copyright (C) The IETF Trust (2008).











Hoyer, et al.            Expires August 25, 2008                [Page 1]


Internet-Draft      Portable Symmetric Key Container       February 2008


Abstract

   This document specifies a symmetric key format for transport and
   provisioning of symmetric keys (One Time Password (OTP) shared
   secrets or symmetric cryptographic keys) to different types of strong
   authentication devices.  The standard token format enables
   enterprises to deploy best-of-breed solutions combining components
   from different vendors into the same infrastructure.

   This work is a joint effort by the members of OATH (Initiative for
   Open AuTHentication) to specify a format that can be freely
   distributed to the technical community.  The authors believe that a
   common and shared specification will facilitate adoption of two-
   factor authentication on the Internet by enabling interoperability
   between commercial and open-source implementations.


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
   2.  Conventions used in this document  . . . . . . . . . . . . . .  5
   3.  Use Cases  . . . . . . . . . . . . . . . . . . . . . . . . . .  6
     3.1.  Offline Use Cases  . . . . . . . . . . . . . . . . . . . .  6
       3.1.1.  Key migration by end-user  . . . . . . . . . . . . . .  6
       3.1.2.  Bulk import of new keys  . . . . . . . . . . . . . . .  6
       3.1.3.  Bulk migration of existing keys  . . . . . . . . . . .  7
       3.1.4.  Key upload case  . . . . . . . . . . . . . . . . . . .  7
     3.2.  Online Use Cases . . . . . . . . . . . . . . . . . . . . .  7
       3.2.1.  Online provisioning a key to end-user's
               authentication token . . . . . . . . . . . . . . . . .  7
       3.2.2.  Server to server provisioning of keys  . . . . . . . .  8
       3.2.3.  Online update of an existing authentication token
               key  . . . . . . . . . . . . . . . . . . . . . . . . .  8
   4.  Requirements . . . . . . . . . . . . . . . . . . . . . . . . .  9
   5.  Portable Key container definition  . . . . . . . . . . . . . . 11
     5.1.  KeyContainer . . . . . . . . . . . . . . . . . . . . . . . 11
     5.2.  Device . . . . . . . . . . . . . . . . . . . . . . . . . . 13
       5.2.1.  DeviceId . . . . . . . . . . . . . . . . . . . . . . . 13
     5.3.  Key  . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
       5.3.1.  Data (OPTIONAL)  . . . . . . . . . . . . . . . . . . . 17
       5.3.2.  Usage (MANDATORY)  . . . . . . . . . . . . . . . . . . 17
       5.3.3.  ValueFormat  . . . . . . . . . . . . . . . . . . . . . 21
       5.3.4.  PINPolicy  . . . . . . . . . . . . . . . . . . . . . . 22
   6.  Usage and profile of algorithms for the portable symmetric
       key container  . . . . . . . . . . . . . . . . . . . . . . . . 24
     6.1.  Usage of EncryptionKey to protect keys in transit  . . . . 24
       6.1.1.  Protecting keys using a pre-shared key via
               symmetric algorithms . . . . . . . . . . . . . . . . . 24



Hoyer, et al.            Expires August 25, 2008                [Page 2]


Internet-Draft      Portable Symmetric Key Container       February 2008


       6.1.2.  Protecting keys using passphrase based encryption
               keys . . . . . . . . . . . . . . . . . . . . . . . . . 25
     6.2.  Protecting keys using asymmetric algorithms  . . . . . . . 27
     6.3.  Profile of Key Algorithm . . . . . . . . . . . . . . . . . 28
       6.3.1.  OTP Key Algorithm Identifiers  . . . . . . . . . . . . 28
       6.3.2.  PIN key value compare algorithm identifier . . . . . . 28
   7.  Reserved data attribute names  . . . . . . . . . . . . . . . . 30
   8.  Formal Syntax  . . . . . . . . . . . . . . . . . . . . . . . . 31
   9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 35
     9.1.  Payload confidentiality  . . . . . . . . . . . . . . . . . 35
     9.2.  Payload integrity  . . . . . . . . . . . . . . . . . . . . 36
     9.3.  Payload authenticity . . . . . . . . . . . . . . . . . . . 36
   10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 37
   11. Appendix A - Example Symmetric Key Containers  . . . . . . . . 38
     11.1. Symmetric Key Container with a single Non-Encrypted
           HOTP Secret Key  . . . . . . . . . . . . . . . . . . . . . 38
     11.2. Symmetric Key Container with a single PIN protected
           Non-Encrypted HOTP Secret Key  . . . . . . . . . . . . . . 38
     11.3. Symmetric Key Container with a single AES-256-CBC
           Encrypted HOTP Secret Key  . . . . . . . . . . . . . . . . 39
     11.4. Symmetric Key Container with signature and a single
           Password-based Encrypted HOTP Secret Key . . . . . . . . . 40
     11.5. Symmetric Key Container with a single RSA 1.5
           Encrypted HOTP Secret Key  . . . . . . . . . . . . . . . . 42
   12. Normative References . . . . . . . . . . . . . . . . . . . . . 44
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 46
   Intellectual Property and Copyright Statements . . . . . . . . . . 47
























Hoyer, et al.            Expires August 25, 2008                [Page 3]


Internet-Draft      Portable Symmetric Key Container       February 2008


1.  Introduction

   With increasing use of symmetric key based authentication systems
   such as systems based one time password (OTP) and challenge response
   mechanisms, there is a need for vendor interoperability and a
   standard format for importing, exporting or provisioning symmetric
   keys from one system to another.  Traditionally authentication server
   vendors and service providers have used proprietary formats for
   importing, exporting and provisioning these keys into their systems
   making it hard to use tokens from vendor A with a server from vendor
   B.

   This Internet draft describes a standard format for serializing
   symmetric keys such as OTP shared secrets for system import, export
   or network/protocol transport.  The goal is that the format will
   facilitate dynamic provisioning and transfer of a symmetric keys such
   as an OTP shared secret or an encryption key of different types.  In
   the case of OTP shared secrets, the format will facilitate dynamic
   provisioning using an online provisioning protocol to different
   flavors of embedded tokens or allow customers to import new or
   existing tokens in batch or single instances into a compliant system.

   This draft also specifies the key attributes required for computation
   such as the initial event counter used in the HOTP algorithm [HOTP].
   It is also applicable for other time-based or proprietary algorithms.

   To provide an analogy, in public key environments the PKCS#12 format
   [PKCS12] is commonly used for importing and exporting private keys
   and certificates between systems.  In the environments outlined in
   this document where OTP keys may be transported directly down to
   smartcards or devices with limited computing capabilities, a format
   with small (size in bytes) and explicit shared secret configuration
   attribute information is desirable, avoiding complexity of PKCS#12.
   For example, one would have to use opaque data within PKCS#12 to
   carry shared secret attributes used for OTP calculations, whereas a
   more explicit attribute schema definition is better for
   interoperability and efficiency.














Hoyer, et al.            Expires August 25, 2008                [Page 4]


Internet-Draft      Portable Symmetric Key Container       February 2008


2.  Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   In examples, "C:" and "S:" indicate lines sent by the client and
   server respectively.

   In the text below, OTP refers to one time password.









































Hoyer, et al.            Expires August 25, 2008                [Page 5]


Internet-Draft      Portable Symmetric Key Container       February 2008


3.  Use Cases

   This section describes a comprehensive list of use cases that
   inspired the development of this specification.  These requirements
   were used to derive the primary requirement that drove the design.
   These requirements are covered in the next section.

   These use cases also help in understanding the applicability of this
   specification to real world situations.

3.1.  Offline Use Cases

   This section describes the use cases relating to offline transport of
   keys from one system to another, using some form of export and import
   model.

3.1.1.  Key migration by end-user

   A user wants to migrate a key from one authentication token
   (container) to a different authentication token.  For example, the
   authentication tokens may be soft tokens on two different systems
   (computers or mobile phones).  The user can export the key and
   related data in a standard format for import into the other
   authentication token.

   The key protection mechanism may rely on password-based encryption
   for soft tokens, a pre-placed hardware-protected transfer key shared
   between the two systems or may also rely on asymmetric keys/ PKI if
   available.

3.1.2.  Bulk import of new keys

   Tokens are manufactured in bulk and associated keys and algorithm
   data need to be loaded into the validation system through a file on
   portable media.  The manufacturer provides the keys and related data
   in the form of a file containing records in standard format,
   typically on a CD.  Note that the token manufacturer and the vendor
   for the validation system may be the same or different.

   In this case the file usually is protected by a symmetric transport
   key which was communicated separately outside of the file between the
   two parties.

   Some devices will allow local PIN management (the device will have a
   PIN pad) hence random initial PINs set at manufacturing should be
   transmitted together with the respective keys they protect.





Hoyer, et al.            Expires August 25, 2008                [Page 6]


Internet-Draft      Portable Symmetric Key Container       February 2008


3.1.3.  Bulk migration of existing keys

   An enterprise wants to port keys and related data from an existing
   validation system A into a different validation system B. The
   existing validation system provides the enterprise with a
   functionality that enables export of keys and related data (e.g. for
   OTP tokens) in a standard format.  Since the OTP tokens are in the
   standard format, the enterprise can import the token records into the
   new validation system B and start using the existing tokens.  Note
   that the vendors for the two validation systems may be the same or
   different.

   In this case the file usually is protected by a symmetric transport
   key which was communicated separately outside of the file between the
   two validation systems.

   In this case it is also important to be able to communicate the
   existing assignment (binding) of a device to a specific user.

3.1.4.  Key upload case

   User wants to activate and use a new key and related data against a
   validation system that is not aware of this key.  This key may be
   embedded in the authentication token (e.g.  SD card, USB drive) that
   the user has purchased at the local electronics retailer.  Along with
   the authentication token, the user may get the key on a CD or a
   floppy in a standard format.  The user can now upload via a secure
   online channel or import this key and related data into the new
   validation system and start using the key.

   The key protection mechanism may rely on password-based encryption,
   or a pre-placed hardware-protected transfer key shared between the
   token manufacturer and the validation system(s) if available.

3.2.  Online Use Cases

   This section describes the use cases related to provisioning the keys
   using some form of a online provisioning protocol.

3.2.1.  Online provisioning a key to end-user's authentication token

   A mobile device user wants to obtain an OTP key for use with an OTP
   soft token on the device.  The soft token client from vendor A
   initiates the provisioning process against a provisioning system from
   vendor B using a standards-based provisioning protocol such as
   [DSKPP].  The provisioning system delivers one or more keys in a
   standard format that can be processed by the mobile device.  The user
   can download a payload that contains more than one key.



Hoyer, et al.            Expires August 25, 2008                [Page 7]


Internet-Draft      Portable Symmetric Key Container       February 2008


   In a variation of the above, instead of the user's mobile phone, a
   key is provisioned in the user's soft token application on a laptop
   using a network-based online protocol.  As before, the provisioning
   system delivers an OTP key in a standard format that can be processed
   by the soft token on the PC.

3.2.2.  Server to server provisioning of keys

   Sometimes, instead of importing keys from a manufacturer using a
   file, an OTP validation server may download the keys using an online
   protocol.  The keys can be downloaded in a standard format that can
   be processed by a validation system.

   In another scenario, an OTA (over-the-air) key provisioning gateway
   that provisions keys to mobile phones may obtain key material from a
   key issuer using an online protocol.  The keys are delivered in a
   standard format that can be processed by the OTA key provisioning
   gateway and subsequently sent to the end-user's mobile phone.

3.2.3.  Online update of an existing authentication token key

   The end-user or the key issuer wants to update or configure an
   existing key in the authentication token and requests a replacement
   key container.  The container may or may not include a new key and
   may include new or updated key attributes such as a new counter value
   in HOTP key case, a modified response format or length, a new
   friendly name, etc.
























Hoyer, et al.            Expires August 25, 2008                [Page 8]


Internet-Draft      Portable Symmetric Key Container       February 2008


4.  Requirements

   This section outlines the most relevant requirements that are the
   basis of this work.  Several of the requirements were derived from
   use cases described above.

   R1:   The format MUST support transport of multiple types of
         symmetric keys and related attributes for algorithms including
         HOTP, other OTP, challenge-response, etc.

   R2:   The format MUST handle the symmetric key itself as well of
         attributes that are typically associated with symmetric keys.
         Some of these attributes may be

         *  Unique Key Identifier

         *  Issuer information

         *  Algorithm ID

         *  Algorithm mode

         *  Issuer Name

         *  Key friendly name

         *  Event counter value (moving factor for OTP algorithms)

         *  Time value

   R3:   The format SHOULD support both offline and online scenarios.
         That is it should be serializable to a file as well as it
         should be possible to use this format in online provisioning
         protocols

   R4:   The format SHOULD allow bulk representation of symmetric keys

   R5:   The format SHOULD allow bulk representation of PINs related to
         specific keys

   R6:   The format SHOULD be portable to various platforms.
         Furthermore, it SHOULD be computationally efficient to process.

   R7:   The format MUST provide appropriate level of security in terms
         of data encryption and data integrity.






Hoyer, et al.            Expires August 25, 2008                [Page 9]


Internet-Draft      Portable Symmetric Key Container       February 2008


   R8:   For online scenarios the format SHOULD NOT rely on transport
         level security (e.g., SSL/TLS) for core security requirements.

   R9:   The format SHOULD be extensible.  It SHOULD enable extension
         points allowing vendors to specify additional attributes in the
         future.

   R10:  The format SHOULD allow for distribution of key derivation data
         without the actual symmetric key itself.  This is to support
         symmetric key management schemes that rely on key derivation
         algorithms based on a pre-placed master key.  The key
         derivation data typically consists of a reference to the key,
         rather than the key value itself.

   R11:  The format SHOULD allow for additional lifecycle management
         operations such as counter resynchronization.  Such processes
         require confidentiality between client and server, thus could
         use a common secure container format, without the transfer of
         key material.

   R12:  The format MUST support the use of pre-shared symmetric keys to
         ensure confidentiality of sensitive data elements.

   R13:  The format MUST support a password-based encryption (PBE)
         [PKCS5] scheme to ensure security of sensitive data elements.
         This is a widely used method for various provisioning
         scenarios.

   R14:  The format SHOULD support asymmetric encryption algorithms such
         as RSA to ensure end-to-end security of sensitive data
         elements.  This is to support scenarios where a pre-set shared
         encryption key is difficult to use.



















Hoyer, et al.            Expires August 25, 2008               [Page 10]


Internet-Draft      Portable Symmetric Key Container       February 2008


5.  Portable Key container definition

   The portable key container is based on an XML schema definition and
   contains the following main entities:

   1.  KeyContainer entity as defined in Section 5.1

   2.  Device entity as defined in Section 5.2

   3.  Key entity as defined in Section 5.3

   Additionally other XML schema types have been defined and are
   detailed in the relevant subsections of this document

   A KeyContainer MAY contain one or more Device entities.  A Device MAY
   contain one or more Key entities

   The figure below indicates a possible relationship diagram of a
   container.

   --------------------------------------------
   | KeyContainer                             |
   |                                          |
   |  ------------------   -----------------  |
   |  | Device 1       |   | Device n      |  |
   |  |                |   |               |  |
   |  |  ------------  |   | ------------  |  |
   |  |  | Key 1    |  |   | | Key n    |  |  |
   |  |  ------------  |   | ------------  |  |
   |  |                |   |               |  |
   |  |                |   |               |  |
   |  |  ------------  |   | ------------  |  |
   |  |  | Key m    |  |   | | Key p    |  |  |
   |  |  ------------  |   | ------------  |  |
   |  ------------------   -----------------  |
   |                                          |
   --------------------------------------------

   The following section describe in detail all the entities and related
   XML schema elements and attributes:

5.1.  KeyContainer

   The KeyContainer represents the key container entity.  A Container
   MAY contain more than one Device entity; each Device entity MAY
   contain more than one Key entity.

   The KeyContainer is defined as follows:



Hoyer, et al.            Expires August 25, 2008               [Page 11]


Internet-Draft      Portable Symmetric Key Container       February 2008


 <xs:complexType name="KeyContainerType">
         <xs:sequence>
                 <xs:element name="EncryptionKey"
                         type="ds:KeyInfoType" minOccurs="0"/>
                         <xs:element name="MACAlgorithm"
                         type="pskc:KeyAlgorithmType" minOccurs="0"/>
                         <xs:element name="Device"
                         type="pskc:DeviceType" maxOccurs="unbounded"/>
                 <xs:element name="Signature"
                         type="ds:SignatureType" minOccurs="0"/>
         </xs:sequence>
   <xs:attribute name="Version" type="pskc:VersionType" use="required"/>
 </xs:complexType>

   The elements of the KeyContainer have the following meanings:

   o  <EncryptionKey (OPTIONAL)>, Identifies the encryption key,
      algorithm and possible parameters used to protect the Secret Key
      data in the container, for profile and usage please see
      Section 6.1

   o  <MACAlgorithm (OPTIONAL)>, Identifies the algorithm used to
      generate a keyed digest of the the Secret Key data values when
      protection algorithms are used that do not have integrity checks.
      The digest guarantees the integrity and the authenticity of the
      key data. for profile and usage please see Section 6.1.1

   o  <Device>, the host Device for one or more Keys as defined in
      Section 5.2 The KeyContainer MAY contain multiple Device data
      elements, allowing for bulk provisioning of keys.

   o  <Signature (OPTIONAL)>, the signature value of the Container.
      When the signature is applied to the entire container, it MUST use
      XML Signature methods as defined in [XMLSIG].  It MAY be omitted
      when application layer provisioning or transport layer
      provisioning protocols provide the integrity and authenticity of
      the payload between the sender and the recipient of the container.
      When required, this specification recommends using a symmetric key
      based signature with the same key used in the encryption of the
      secret key data.  The signature is enveloped.

   o  <Version (MANDATORY)>, the version number for the portable key
      container format (the XML schema defined in this document).








Hoyer, et al.            Expires August 25, 2008               [Page 12]


Internet-Draft      Portable Symmetric Key Container       February 2008


5.2.  Device

   The Device represents the Device entity in the Container.  A Device
   MAY be bound to a user and MAY contain more than one keys.  It is
   recommended that a key is bound to one and only one Device.

   The Device is defined as follows:


<xs:complexType name="DeviceType">
  <xs:sequence>
    <xs:element name="DeviceId" type="pskc:DeviceIdType" minOccurs="0"/>
    <xs:element name="Key" type="pskc:KeyType" maxOccurs="unbounded"/>
    <xs:element name="UserId" type="xs:string" minOccurs="0"/>
  </xs:sequence>
</xs:complexType>

   The elements of the Device have the following meanings:

   o  <DeviceId>, a unique identifier for the device, defined in
      Section 5.2.1

   o  <Key>, represents the key entity as defined in Section 5.3

   o  <UserId>, optionally identifies the owner or the user of the
      Device TODO

5.2.1.  DeviceId

   The DeviceId represents the identifying criteria to uniquely identify
   the device that contains the associated keys.  Since devices can come
   in different form factors such as hardware tokens, smartcards, soft
   tokens in a mobile phone or PC etc this type allows different
   criteria to be used.  Combined though the criteria MUST uniquely
   identify the device.  For example for hardware tokens the combination
   of SerialNo and Manufacturer will uniquely identify a device but not
   SerialNo alone since two different token manufacturers might issue
   devices with the same serial number (similar to the IssuerDN and
   serial number of a certificate).  For keys hold on banking cards the
   identification of the device is often done via the Primary Account
   Number (PAN, the big number printed on the front of the card) and an
   expiry date of the card.  DeviceId is an extensible type that allows
   all these different ways to uniquely identify a specific key
   containing device.

   The DeviceId is defined as follows:





Hoyer, et al.            Expires August 25, 2008               [Page 13]


Internet-Draft      Portable Symmetric Key Container       February 2008


   <xs:complexType name="DeviceIdType">
   <xs:sequence>
       <xs:element name="Manufacturer" type="xs:string"/>
       <xs:element name="SerialNo" type="xs:string"/>
       <xs:element name="Model" type="xs:string" minOccurs="0"/>
       <xs:element name="IssueNo" type="xs:string" minOccurs="0"/>
       <xs:element name="ExpiryDate" type="xs:dateTime" minOccurs="0"/>
       <xs:element name="StartDate" type="xs:dateTime" minOccurs="0"/>
   </xs:sequence>
   </xs:complexType>

   The elements of DeviceId have the following meanings:

   o  <Manufacturer>, the manufacturer of the device.

   o  <SerialNo>, the serial number of the device or the PAN (primary
      account number) in case of EMV (Europay-MasterCard-Visa) smart
      cards.

   o  <Model>, the model of the device (e.g one-button-HOTP-token-V1)

   o  <IssueNo>, the issue number in case of smart cards with the same
      PAN, equivalent to a PSN (PAN Sequence Number).

   o  <ExpiryDate>, the expiry date of a device (such as the one on an
      EMV card,used when issue numbers are not printed on cards).

   o  <StartDate>, the start date of a device (such as the one on an EMV
      card,used when issue numbers are not printed on cards).

5.3.  Key

   The Key represents the key entity in the KeyContainer.  The Key is
   defined as follows:

















Hoyer, et al.            Expires August 25, 2008               [Page 14]


Internet-Draft      Portable Symmetric Key Container       February 2008


   <xs:complexType name="KeyType">
     <xs:sequence>
       <xs:element name="Issuer" type="xs:string" minOccurs="0"/>
       <xs:element name="Usage" type="pskc:UsageType"/>
       <xs:element name="CardAppPersoProfileId" type="xs:string"
         minOccurs="0"/>
       <xs:element name="FriendlyName" type="xs:string" minOccurs="0"/>
       <xs:element name="Data" type="pskc:DataType" minOccurs="0"
         maxOccurs="unbounded"/>
       <xs:element name="PINPolicy" type="pskc:PINPolicyType"
         minOccurs="0"/>
       <xs:element name="ExpiryDate" type="xs:dateTime" minOccurs="0"/>
       <xs:element name="StartDate" type="xs:dateTime" minOccurs="0"/>
     </xs:sequence>
     <xs:attribute name="KeyId" type="xs:string" use="required"/>
     <xs:attribute name="KeyAlgorithm" type="pskc:KeyAlgorithmType"
       use="required"/>
   </xs:complexType>

   The attributes of the Key entity have the following meanings:

   o  KeyId (MANDATORY), a unique and global identifier of the symmetric
      key.  The identifier is defined as a string of alphanumeric
      characters.

   o  <KeyAlgorithm (MANDATORY)>, the unique URI of the type of
      algorithm to use with the secret key, for profiles are described
      in Section 6.3

   The elements of the Key entity have the following meanings:

   o  <Issuer (OPTIONAL)>, The key issuer name, this is normally the
      name of the organization that issues the key to the end user of
      the key.  For example MyBank issuing hardware tokens to their
      retail banking users 'MyBank' would be the issuer.  The Issuer is
      defined as a String.

   o  <Usage (MANDATORY)>, defines the intended usage of the key and
      related metadata as defined in Section 5.3.2

   o  <CardAppPersoProfileId (OPTIONAL)>, A uniquie identifier used
      between the sending and receiving party of the container to
      establish a set of constant values related to a key that are not
      transmitted via the container.  For example a smart card
      application personalisation profile id related to attributes
      present on a smart card application that have influence when
      computing a response.  An example could be an EMV MasterCard CAP
      [CAP] application on a card personalised with data for a specific



Hoyer, et al.            Expires August 25, 2008               [Page 15]


Internet-Draft      Portable Symmetric Key Container       February 2008


      batch of cards such as:

         IAF Internet authentication flag

         CVN Cryptogram version number, for example (MCHIP2, MCHIP4,
         VISA 13, VISA14)

         AIP (Application Interchange Profile), 2 bytes

         TVR Terminal Verification Result, 5 bytes

         CVR The card verification result

         AmountOther

         TransactionDate

         TerminalCountryCode

         TransactionCurrencyCode

         AmountAuthorised

         IIPB

      These values are not contained within attributes in the container
      but are shared between the manufacturing and the validation
      service through this unique CardAppPersoProfileId.  The
      CardAppPersoProfileId is defined as a String.

   o  <FriendlyName (OPTIONAL)>, The user friendly name that is assigned
      to the secret key for easy reference.  The FriendlyName is defined
      as a String.

   o  <Data (OPTIONAL)>, the element carrying the data related to the
      key as defined in Section 5.3.1

   o  <PINPolicy (OPTIONAL)>, the policy of the PIN relating to the
      usage of this key as defined in Section 5.3.4

   o  <ExpiryDate (OPTIONAL)>, the expiry date of the key, it MUST not
      be possible to use this key after this date

   o  <StartDate (OPTIONAL)>, the start date of the key, it MUST not be
      possible to use this key before this date






Hoyer, et al.            Expires August 25, 2008               [Page 16]


Internet-Draft      Portable Symmetric Key Container       February 2008


5.3.1.  Data (OPTIONAL)

   Defines the data attributes of the symmetric key.  Each is a name
   value pair which has either a plain value (in case of no encryption)
   or an encrypted value as defined in EncryptedDataType in XML
   Encryption.

   This is also where the key value is transported, Section 7 defines a
   list of reserved attribute names.

   Data element is defined as follows:


<xs:complexType name="DataType">
    <xs:sequence>
    <xs:choice>
       <xs:element name="PlainValue" type="xs:base64Binary"/>
       <xs:element name="EncryptedValue" type="xenc:EncryptedDataType"/>
    </xs:choice>
    <xs:element name="ValueMAC" type="xs:base64Binary" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>

   The attributes of the Data element have the following meanings:

   o  Name, defines the name of the name-value pair, Section 7 defines a
      list of reserved attribute names

   The elements of the Data element have the following meanings:

   o  The <PlainValue> conveys an unencrypted value of the name-value
      pair in base 64 encoding.

   o  The <EncryptedValue> element in the DataType conveys an encrypted
      value of the name-value pair inside an EncryptedDataType as
      defined in XML Encryption.

   o  The <ValueMAC (OPTIONAL)> element in the DataType conveys a keyed
      MAC value of the unencrypted data for the cases where the key
      protection algorithm does not support integrity checks

5.3.2.  Usage (MANDATORY)

   The Usage element defines the usage attribute(s) of the key entity.
   Usage is defined as follows:





Hoyer, et al.            Expires August 25, 2008               [Page 17]


Internet-Draft      Portable Symmetric Key Container       February 2008


  <xs:complexType name="UsageType">
      <xs:sequence>
              <xs:element name="ResponseFormat">
                      <xs:complexType>
                          <xs:attribute name="Format"
                          type="pskc:ValueFormatType" use="required"/>
                          <xs:attribute name="Length"
                          type="xs:unsignedInt" use="required"/>
                          <xs:attribute name="CheckDigits"
                          type="xs:boolean" default="false"/>
                      </xs:complexType>
              </xs:element>
              <xs:element name="ChallengeFormat" minOccurs="0">
                      <xs:complexType>
                          <xs:attribute name="Format"
                          type="pskc:ValueFormatType" use="required"/>
                          <xs:attribute name="Min"
                          type="xs:unsignedInt" use="required"/>
                          <xs:attribute name="Max"
                          type="xs:unsignedInt" use="required"/>
                          <xs:attribute name="CheckDigits"
                          type="xs:boolean" default="false"/>
                      </xs:complexType>
              </xs:element>
      </xs:sequence>
      <xs:attribute name="OTP" type="xs:boolean" default="false"/>
      <xs:attribute name="CR" type="xs:boolean" default="false"/>
      <xs:attribute name="Integrity" type="xs:boolean" default="false"/>
      <xs:attribute name="Encrypt" type="xs:boolean" default="false"/>
      <xs:attribute name="Unlock" type="xs:boolean" default="false"/>
  </xs:complexType>

   The attributes of the Usage element define the intended usage of the
   key and are a combination of one or more of the following (set to
   true):

   o  OTP, the key will be used for OTP generation

   o  CR, the key will be used for Challenge/Response purposes

   o  Encrypt, the key will be used for data encryption purposes

   o  Integrity, the key will be used to generate a keyed message digest
      for data integrity or authentication purposes.

   o  Unlock, the key will be used for an inverse challenge response in
      the case a user has locked the device by entering a wrong PIN too
      many times (for devices with PIN-input capability)



Hoyer, et al.            Expires August 25, 2008               [Page 18]


Internet-Draft      Portable Symmetric Key Container       February 2008


5.3.2.1.  OTP and CR specific Usage elements (OPTIONAL)

   When the key usage is set to OTP or CR, additional attributes MUST be
   provided to support the OTP and/or the response computation as
   required by the underlying algorithm and to customize or configure
   the outcome of the computation (format, length and usage modes).

5.3.2.1.1.  ChallengeFormat element (MANDATORY)

   The ChallengeFormat element defines the characteristics of the
   challenge in a CR usage scenario.  The Challenge element is defined
   by the following attributes:

   o  Format (MANDATORY)

         Defines the format of the challenge accepted by the device and
         MUST be one of the values defined in Section 5.3.3

   o  CheckDigit (OPTIONAL)

         Defines if the device needs to check the appended Luhn check
         digit contained in a provided challenge.  This is only valid if
         the Format attribute is 'DECIMAL'.  Value MUST be:

            TRUE device will check the appended Luhn check digit in a
            provided challenge

            FALSE device will not check appended Luhn check digit in
            challenge

   o  Min (MANDATORY)

         Defines the minimum size of the challenge accepted by the
         device for CR mode.

         If the Format attribute is 'DECIMAL', 'HEXADECIMAL' or
         'ALPHANUMERIC' this value indicates the minimum number of
         digits/characters.

         If the Format attribute is 'BASE64' or 'BINARY', this value
         indicates the minimum number of bytes of the unencoded value.

         Value MUST be:








Hoyer, et al.            Expires August 25, 2008               [Page 19]


Internet-Draft      Portable Symmetric Key Container       February 2008


            Unsigned integer.

   o  Max (MANDATORY)

         Defines the maximum size of the challenge accepted by the
         device for CR mode.

         If the Format attribute is 'DECIMAL', 'HEXADECIMAL' or
         'ALPHANUMERIC' this value indicates the maximum number of
         digits/characters.

         If the Format attribute is 'BASE64' or 'BINARY', this value
         indicates the maximum number of bytes of the unencoded value.

         Value MUST be:



            Unsigned integer.

5.3.2.1.2.  ResponseFormat element (MANDATORY)

   The ResponseFormat element defines the characteristics of the result
   of a computation.  This defines the format of the OTP or of the
   response to a challenge.  The Response attribute is defined by the
   following attributes:

   o  Format (MANDATORY)

         Defines the format of the response generated by the device and
         MUST be one of the values defined in Section 5.3.3

   o  CheckDigit (OPTIONAL)

         Defines if the device needs to append a Luhn check digit to the
         response.  This is only valid if the Format attribute is
         'DECIMAL'.  Value MUST be:

            TRUE device will append a Luhn check digit to the response.

            FALSE device will not append a Luhn check digit to the
            response.

   o  Length (MANDATORY)







Hoyer, et al.            Expires August 25, 2008               [Page 20]


Internet-Draft      Portable Symmetric Key Container       February 2008


         Defines the length of the response generated by the device.

         If the Format attribute is 'DECIMAL', 'HEXADECIMAL' or
         'ALPHANUMERIC' this value indicates the number of digits/
         characters.

         If the Format attribute is 'BASE64' or 'BINARY', this value
         indicates the number of bytes of the unencoded value.

         Value MUST be:



            Unsigned integer.

5.3.3.  ValueFormat

   The ValueFormat element defines allowed formats for challenges or
   responses in OTP algorithms.

   ValueFormat is defined as follows:


   <simpleType name="ValueFormat">
     <restriction base="string">
       <enumeration value="DECIMAL"/>
       <enumeration value="HEXADECIMAL"/>
       <enumeration value="ALPHANUMERIC"/>
       <enumeration value="BASE64"/>
       <enumeration value="BINARY"/>
     </restriction>
   </simpleType>

      DECIMAL Only numerical digits

      HEXADECIMAL Hexadecimal response

      ALPHANUMERIC All letters and numbers (case sensitive)

      BASE64 Base 64 encoded

      BINARY Binary data, this is mainly used in case of connected
      devices








Hoyer, et al.            Expires August 25, 2008               [Page 21]


Internet-Draft      Portable Symmetric Key Container       February 2008


5.3.4.  PINPolicy

   The PINPolicy element defines a mean to define how the usage of a
   specific key is protected by a PIN.  The PIN itself can be
   transmitted using the container as another Key

   PINPolicy is defined as follows:


  <xs:complexType name="PINPolicyType">
      <xs:sequence>
          <xs:element name="PINUsageMode" type="pskc:PINUsageModeType"/>
          <xs:element name="WrongPINtry" type="xs:unsignedInt"
            minOccurs="0"/>
      </xs:sequence>
      <xs:attribute name="PINKeyId" type="xs:string" use="required"/>
  </xs:complexType>

   The attributes of PINPolicy have the following meaning

   o  PINKeyId, the unique key Id within this container that contains
      the value of the PIN that protects the key

   The elements of PINPolicy have the following meaning

   o  <PINUsageMode>, the way the PIN is used during the usage of the
      key as defined in Section 5.3.4.1

   o  <WrongPINtry>, the number of times the PIN can be entered wrongly
      before it MUST not be possible to use the key anymore

5.3.4.1.  PINUsageMode

   The PINUsageMode element defines how the PIN is used with a specific
   key

   PINUsageMode is defined as follows:














Hoyer, et al.            Expires August 25, 2008               [Page 22]


Internet-Draft      Portable Symmetric Key Container       February 2008


   <xs:complexType name="PINUsageModeType">
       <xs:choice maxOccurs="unbounded">
           <xs:element name="Local"/>
           <xs:element name="Prepend"/>
           <xs:element name="InAlgo"/>
       </xs:choice>
   </xs:complexType>

   The elements of PINPolicy have the following meaning

   o  <Local>, the PIN is checked locally on the device before allowing
      the key to be used in executing the algorithm

   o  <Prepend>, the PIN is prepended to the OTP or response hance it
      MUST be chacked by the validation server

   o  <InAlgo>, the PIN is used as part of the algorithm computation


































Hoyer, et al.            Expires August 25, 2008               [Page 23]


Internet-Draft      Portable Symmetric Key Container       February 2008


6.  Usage and profile of algorithms for the portable symmetric key
    container

   This section details the use of the XML encryption and XML signature
   elements to protect the keys transported in the cotainer.  It also
   profiles the number of algorithms supported by XML encryption and XML
   signature to a mandatory subset for interoperability.

   When no algorithm is provided the values within the container are
   unencrypted, implementations SHALL ensure the privacy of the key data
   through other standard mechanisms e.g. transport level encryption.

6.1.  Usage of EncryptionKey to protect keys in transit

   The EncryptionKey element in the KeyContainer defines the key,
   algorithm and parameters used to encrypt the Secret Key data
   attributes in the Container.  The encryption is applied on each
   individual Secret Key data in the Container.  The encryption method
   MUST be the same for all Secret Key data in the container.

   The following sections define specifically the different supported
   means to protect the keys:

6.1.1.  Protecting keys using a pre-shared key via symmetric algorithms

   When protecting the payload with pre-shared keys implementations
   SHOULD set the name of the specific pre-shared key in the KeyName
   element of the EncryptionKey of the KeyContainer.  For example:


   <KeyContainer Version="1.0"
     xmlns="urn:ietf:params:xml:ns:keyprov:container:1.0"
     xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
     xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
       <EncryptionKey>
           <ds:KeyName>PRE_SHARED_KEY</ds:KeyName>
       </EncryptionKey>
       ....

   The following is the list of symmetric key encryption algorithm and
   possible parameters used to protect the Secret Key data in the
   container.  Systems implementing PSKC MUST support the MANDATORY
   algorithms detailed below.

   The encryption algorithm URI can be one of the following.

   o  http://www.w3.org/2001/04/xmlenc#tripledes-cbc - MANDATORY




Hoyer, et al.            Expires August 25, 2008               [Page 24]


Internet-Draft      Portable Symmetric Key Container       February 2008


   o  http://www.w3.org/2001/04/xmlenc#aes128-cbc - MANDATORY

   o  http://www.w3.org/2001/04/xmlenc#aes192-cbc - OPTIONAL

   o  http://www.w3.org/2001/04/xmlenc#aes256-cbc - MANDATORY

   o  http://www.w3.org/2001/04/xmlenc#kw-tripledes - MANDATORY

   o  http://www.w3.org/2001/04/xmlenc#kw-aes128 - MANDATORY

   o  http://www.w3.org/2001/04/xmlenc#kw-aes256 - MANDATORY

   o  http://www.w3.org/2001/04/xmlenc#kw-aes512 - OPTIONAL

   When algorithms without integrity checks are used (e.g.
   http://www.w3.org/2001/04/xmlenc#aes256-cbc) a keyed MAC value using
   the same key as the encryption key SHOULD be placed in the ValueMAC
   element of the Data element.  In this case the MAC algorithm type
   MUST be set in the MACAlgorithm element in the key container entity
   as defined in Section 5.1.  Implementations of PSKC MUST support the
   MANDATORY MAC algorithms detailed below.  The MACAlgorithm URI can be
   one of the following:

   o  http://www.w3.org/2000/09/xmldsig#hmac-sha1 - MANDATORY

   For example:


   <KeyContainer Version="1.0"
     xmlns="urn:ietf:params:xml:ns:keyprov:container:1.0"
     xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
     xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
       <EncryptionKey>
           <ds:KeyName>PRE_SHARED_KEY</ds:KeyName>
       </EncryptionKey>
       <MACAlgorithm>http://www.w3.org/2000/09/xmldsig#hmac-sha1
       </MACAlgorithm>
       .....

6.1.2.  Protecting keys using passphrase based encryption keys

   To be able to support passphrase based encryption keys as defined in
   PKCS#5 the following XML representation of the PBE relates parameters
   have been introduced in the schema.  Although the approach is
   extensible implementations of PSKC MUST support the
   KeyDerivationMethod algorithm URI of
   http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbkdf2.




Hoyer, et al.            Expires August 25, 2008               [Page 25]


Internet-Draft      Portable Symmetric Key Container       February 2008


   <xs:complexType name="DerivedKeyType">
       <xs:sequence>
           <xs:element name="KeyDerivationMethod"
             type="pskc:KeyDerivationMethodType" minOccurs="0"/>
           <xs:element ref="xenc:ReferenceList" minOccurs="0"/>
           <xs:element name="CarriedKeyName" type="xs:string"
             minOccurs="0"/>
       </xs:sequence>
       <xs:attribute name="Id" type="xs:ID" use="optional"/>
       <xs:attribute name="Type" type="xs:anyURI" use="optional"/>
       </xs:complexType>
       <xs:complexType name="KeyDerivationMethodType">
       <xs:sequence>
               <xs:any namespace="##other" minOccurs="0"
                 maxOccurs="unbounded"/>
       </xs:sequence>
       <xs:attribute name="Algorithm" type="xs:anyURI" use="required"/>
   </xs:complexType>

   The attributes of the DerivedKey have the following meanings:

   o  ID (OPTIONAL), the unique ID for this key

   o  Type (OPTIONAL), TODO

   The elements of the DerivedKey have the following meanings:

   o  <KeyDerivationMethod>: URI of the algorithms used to derive the
      key e.g.
      (http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbkdf2)

   o  <ReferenceList (OPTIONAL)>: a list of IDs of the elements that
      have been encrypted by this key

   o  <CarriedKeyName (OPTIONAL)>: friendly name of the key

   When using the PKCS5 PBE algorithm
   (URI=http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbes2)
   and related parameters, the DerivedKey element MUST be used within
   the EncryptionKey element of the KeyContainer in exactly the form as
   shown below:










Hoyer, et al.            Expires August 25, 2008               [Page 26]


Internet-Draft      Portable Symmetric Key Container       February 2008


<?xml version="1.0" encoding="UTF-8"?>
<KeyContainer
  xmlns="urn:ietf:params:xml:ns:keyprov:container:1.0"
  xmlns:pkcs-5=
    "http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5v2-0#"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
  xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
  Version="1.0">
    <EncryptionKey>
      <DerivedKey Id="#Passphrase1">
        <CarriedKeyName>Passphrase1</CarriedKeyName>
        <KeyDerivationMethod
          Algorithm=
        "http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbkdf2">
          <Parameters xsi:type="pkcs-5:PBKDF2ParameterType">
            <Salt>
              <Specified>Df3dRAhjGh8=</Specified>
            </Salt>
            <IterationCount>2000</IterationCount>
            <KeyLength>16</KeyLength>
            <PRF/>
          </Parameters>
        </KeyDerivationMethod>
      </DerivedKey>
    </EncryptionKey>
....

6.2.  Protecting keys using asymmetric algorithms

   The following is the list of asymmetric key encryption algorithm and
   possible parameters used to protect the Secret Key data in the
   container.  Systems implementing PSKC MUST support the MANDATORY
   algorithms detailed below.  The encryption algorithm URI can be one
   of the following.

   o  http://www.w3.org/2001/04/xmlenc#rsa-1_5 - MANDATORY

   o  http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p - OPTIONAL

   For example:


   TODO







Hoyer, et al.            Expires August 25, 2008               [Page 27]


Internet-Draft      Portable Symmetric Key Container       February 2008


6.3.  Profile of Key Algorithm

   This section profiles the type(s) of algorithm of that can be used by
   the key(s) transported in the container.  The following algorithm
   URIs are among the default support list.

   o  http://www.w3.org/2001/04/xmlenc#tripledes-cbc

   o  http://www.w3.org/2001/04/xmlenc#aes128-cbc

   o  http://www.w3.org/2001/04/xmlenc#aes192-cbc

   o  http://www.w3.org/2001/04/xmlenc#aes256-cbc

   o  http://www.ietf.org/keyprov/pskc#hotp

   o  http://www.ietf.org/keyprov/pskc#valuecompare

6.3.1.  OTP Key Algorithm Identifiers

   OTP key algorithm URIs have not been defined in a commonly available
   standard specification.  This document defines the following URIs for
   the known open standard OTP algorithms.

6.3.1.1.  HOTP

   Standard document: RFC4226

   Identifier: http://www.ietf.org/keyprov/pskc#hotp

   Note that the actual URL will be finalized once a URL for this
   document is determined.

6.3.1.2.  Other OTP Algorithms

   An implementation should refer to vendor supplied OTP key algorithm
   URIs for proprietary algorithms.

6.3.2.  PIN key value compare algorithm identifier

   PIN key algorithm URIs have not been defined in a commonly available
   standard specification.  This document defines the following URIs for
   a straight value comaprison of the transported secret key data as
   when required to compare a PIN.

   Identifier: http://www.ietf.org/keyprov/pskc#valuecompare

   Note that the actual URL will be finalized once a URL for this



Hoyer, et al.            Expires August 25, 2008               [Page 28]


Internet-Draft      Portable Symmetric Key Container       February 2008


   document is determined.


















































Hoyer, et al.            Expires August 25, 2008               [Page 29]


Internet-Draft      Portable Symmetric Key Container       February 2008


7.  Reserved data attribute names

   The following key data attribute names have been reserved:

      SECRET: the shared secret key value in binary, base64 encoded

      COUNTER: the event counter for event based OTP algorithms. 8 bytes
      unsigned integer in big endian (i.e. network byte order) form
      base64 encoded

      TIME: the time for time based OTP algorithms. 8 bytes unsigned
      integer in big endian (i.e. network byte order) form base64
      encoded (Number of seconds since 1970)

      TIME_INTERVAL: the time interval value for time based OTP
      algorithms. 8 bytes unsigned integer in big endian (i.e. network
      byte order) form base64 encoded.

      TIME_DRIFT: the device clock drift value for time based OTP
      algorithms.  The value indicates number of seconds that the device
      clock may drift each day. 2 bytes unsigned integer in big endian
      (i.e. network byte order) form base64 encoded.





























Hoyer, et al.            Expires August 25, 2008               [Page 30]


Internet-Draft      Portable Symmetric Key Container       February 2008


8.  Formal Syntax

   The following syntax specification uses the widely adopted XML schema
   format as defined by a W3C recommendation
   (http://www.w3.org/TR/xmlschema-0/).  It is a complete syntax
   definition in the XML Schema Definition format (XSD)

   All implementations of this standard must comply with the schema
   below.


<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns:pskc="urn:ietf:params:xml:ns:keyprov:container:1.0"
  xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
  xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
  targetNamespace="urn:ietf:params:xml:ns:keyprov:container:1.0"
  elementFormDefault="qualified" attributeFormDefault="unqualified"
  version="1.0">
    <xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
      schemaLocation=
      "http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
      xmldsig-core-schema.xsd"/>
    <xs:import namespace="http://www.w3.org/2001/04/xmlenc#"
      schemaLocation="http://www.w3.org/TR/2002/
      REC-xmlenc-core-20021210/xenc-schema.xsd"/>

    <xs:complexType name="KeyContainerType">
    <xs:sequence>
        <xs:element name="EncryptionKey" type="ds:KeyInfoType"
          minOccurs="0"/>
        <xs:element name="MACAlgorithm" type="pskc:KeyAlgorithmType"
          minOccurs="0"/>
        <xs:element name="Device" type="pskc:DeviceType"
          maxOccurs="unbounded"/>
        <xs:element name="Signature" type="ds:SignatureType"
          minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="Version" type="pskc:VersionType"
      use="required"/>
    </xs:complexType>
    <xs:simpleType name="VersionType" final="restriction">
            <xs:restriction base="xs:string">
                    <xs:pattern value="\d{1,2}\.\d{1,3}"/>
            </xs:restriction>
    </xs:simpleType>
    <xs:complexType name="KeyType">
        <xs:sequence>



Hoyer, et al.            Expires August 25, 2008               [Page 31]


Internet-Draft      Portable Symmetric Key Container       February 2008


            <xs:element name="Issuer" type="xs:string" minOccurs="0"/>
            <xs:element name="Usage" type="pskc:UsageType"/>
            <xs:element name="CardAppPersoProfileId" type="xs:string"
              minOccurs="0"/>
            <xs:element name="FriendlyName" type="xs:string"
              minOccurs="0"/>
            <xs:element name="Data" type="pskc:DataType" minOccurs="0"
              maxOccurs="unbounded"/>
            <xs:element name="PINPolicy" type="pskc:PINPolicyType"
              minOccurs="0"/>
            <xs:element name="ExpiryDate" type="xs:dateTime"
              minOccurs="0"/>
            <xs:element name="StartDate" type="xs:dateTime"
              minOccurs="0"/>
        </xs:sequence>
        <xs:attribute name="KeyId" type="xs:string" use="required"/>
        <xs:attribute name="KeyAlgorithm" type="pskc:KeyAlgorithmType"
          use="required"/>
    </xs:complexType>
    <xs:complexType name="DerivedKeyType">
        <xs:sequence>
            <xs:element name="KeyDerivationMethod"
              type="pskc:KeyDerivationMethodType" minOccurs="0"/>
            <xs:element ref="xenc:ReferenceList" minOccurs="0"/>
            <xs:element name="CarriedKeyName" type="xs:string"
              minOccurs="0"/>
        </xs:sequence>
        <xs:attribute name="Id" type="xs:ID" use="optional"/>
        <xs:attribute name="Type" type="xs:anyURI" use="optional"/>
    </xs:complexType>
    <xs:complexType name="KeyDerivationMethodType">
        <xs:sequence>
            <xs:any namespace="##other" minOccurs="0"
            maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="Algorithm" type="xs:anyURI" use="required"/>
    </xs:complexType>
    <xs:complexType name="PINPolicyType">
        <xs:sequence>
            <xs:element name="PINUsageMode"
              type="pskc:PINUsageModeType"/>
            <xs:element name="WrongPINtry" type="xs:unsignedInt"
              minOccurs="0"/>
        </xs:sequence>
        <xs:attribute name="PINKeyId" type="xs:string"
          use="required"/>
    </xs:complexType>
    <xs:complexType name="PINUsageModeType">



Hoyer, et al.            Expires August 25, 2008               [Page 32]


Internet-Draft      Portable Symmetric Key Container       February 2008


            <xs:choice maxOccurs="unbounded">
                    <xs:element name="Local"/>
                    <xs:element name="Prepend"/>
                    <xs:element name="Embed"/>
            </xs:choice>
    </xs:complexType>
    <xs:complexType name="DeviceIdType">
        <xs:sequence>
        <xs:element name="Manufacturer" type="xs:string"/>
        <xs:element name="SerialNo" type="xs:string"/>
        <xs:element name="Model" type="xs:string" minOccurs="0"/>
        <xs:element name="IssueNo" type="xs:string" minOccurs="0"/>
        <xs:element name="ExpiryDate" type="xs:dateTime" minOccurs="0"/>
        <xs:element name="StartDate" type="xs:dateTime" minOccurs="0"/>
        </xs:sequence>
    </xs:complexType>
    <xs:complexType name="DeviceType">
      <xs:sequence>
        <xs:element name="DeviceId" type="pskc:DeviceIdType"
          minOccurs="0"/>
        <xs:element name="Key" type="pskc:KeyType"
          maxOccurs="unbounded"/>
        <xs:element name="UserId" type="xs:string" minOccurs="0"/>
      </xs:sequence>
    </xs:complexType>
    <xs:complexType name="UsageType">
        <xs:sequence>
            <xs:element name="ResponseFormat">
                <xs:complexType>
                    <xs:attribute name="Format"
                      type="pskc:ValueFormatType" use="required"/>
                    <xs:attribute name="Length" type="xs:unsignedInt"
                      use="required"/>
                    <xs:attribute name="CheckDigits" type="xs:boolean"
                      default="false"/>
                </xs:complexType>
            </xs:element>
            <xs:element name="ChallengeFormat" minOccurs="0">
                <xs:complexType>
                    <xs:attribute name="Format"
                      type="pskc:ValueFormatType" use="required"/>
                    <xs:attribute name="Min" type="xs:unsignedInt"
                      use="required"/>
                    <xs:attribute name="Max" type="xs:unsignedInt"
                      use="required"/>
                    <xs:attribute name="CheckDigits" type="xs:boolean"
                      default="false"/>
                </xs:complexType>



Hoyer, et al.            Expires August 25, 2008               [Page 33]


Internet-Draft      Portable Symmetric Key Container       February 2008


            </xs:element>
            </xs:sequence>
            <xs:attribute name="OTP" type="xs:boolean" default="false"/>
            <xs:attribute name="CR" type="xs:boolean" default="false"/>
            <xs:attribute name="Integrity" type="xs:boolean"
              default="false"/>
            <xs:attribute name="Encrypt" type="xs:boolean"
              default="false"/>
            <xs:attribute name="Unlock" type="xs:boolean"
              default="false"/>
    </xs:complexType>
    <xs:complexType name="DataType">
        <xs:sequence>
            <xs:choice>
                <xs:element name="PlainValue" type="xs:base64Binary"/>
                <xs:element name="EncryptedValue"
                  type="xenc:EncryptedDataType"/>
            </xs:choice>
            <xs:element name="ValueMAC" type="xs:base64Binary"
              minOccurs="0"/>
        </xs:sequence>
        <xs:attribute name="Name" type="xs:string" use="required"/>
    </xs:complexType>
    <xs:simpleType name="KeyAlgorithmType">
        <xs:restriction base="xs:anyURI"/>
    </xs:simpleType>
    <xs:simpleType name="ValueFormatType">
        <xs:restriction base="xs:string">
            <xs:enumeration value="DECIMAL"/>
            <xs:enumeration value="HEXADECIMAL"/>
            <xs:enumeration value="ALPHANUMERIC"/>
            <xs:enumeration value="BASE64"/>
            <xs:enumeration value="BINARY"/>
        </xs:restriction>
    </xs:simpleType>
    <xs:element name="KeyContainer" type="pskc:KeyContainerType"/>
</xs:schema>














Hoyer, et al.            Expires August 25, 2008               [Page 34]


Internet-Draft      Portable Symmetric Key Container       February 2008


9.  Security Considerations

   The portable key container carries sensitive information (e.g.,
   cryptographic keys) and may be transported across the boundaries of
   one secure perimeter to another.  For example, a container residing
   within the secure perimeter of a back-end provisioning server in a
   secure room may be transported across the internet to an end-user
   device attached to a personal computer.  This means that special care
   must be taken to ensure the confidentiality, integrity, and
   authenticity of the information contained within.

9.1.  Payload confidentiality

   By design, the container allows two main approaches to guaranteeing
   the confidentiality of the information it contains while transported.

   First, the container key data payload may be encrypted.

   In this case no transport layer security is required.  However,
   standard security best practices apply when selecting the strength of
   the cryptographic algorithm for payload encryption.  Symmetric
   cryptographic cipher should be used - the longer the cryptographic
   key, the stronger the protection.  At the time of this writing both
   3DES and AES are recommended algorithms but 3DES may be dropped in
   the relatively near future.  Applications concerned with algorithm
   longevity are advised to use AES.  In cases where the exchange of
   encryption keys between the sender and the receiver is not possible,
   asymmetric encryption of the secret key payload may be employed.
   Similarly to symmetric key cryptography, the stronger the asymmetric
   key, the more secure the protection is.

   If the payload is encrypted with a method that uses one of the
   password-based encryption methods provided above, the payload may be
   subjected to password dictionary attacks to break the encryption
   password and recover the information.  Standard security best
   practices for selection of strong encryption passwords apply
   [Schneier].

   Practical implementations should use PBESalt and PBEIterationCount
   when PBE encryption is used.  Different PBESalt value per key
   container should be used for best protection.

   The second approach to protecting the confidentiality of the payload
   is based on using transport layer security.  The secure channel
   established between the source secure perimeter (the provisioning
   server from the example above) and the target perimeter (the device
   attached to the end-user computer) utilizes encryption to transport
   the messages that travel across.  No payload encryption is required



Hoyer, et al.            Expires August 25, 2008               [Page 35]


Internet-Draft      Portable Symmetric Key Container       February 2008


   in this mode.  Secure channels that encrypt and digest each message
   provide an extra measure of security, especially when the signature
   of the payload does not encompass the entire payload.

   Because of the fact that the plain text payload is protected only by
   the transport layer security, practical implementation must ensure
   protection against man-in-the-middle attacks [Schneier].  Validating
   the secure channel end-points is critically important for eliminating
   intruders that may compromise the confidentiality of the payload.

9.2.  Payload integrity

   The portable symmetric key container provides a mean to guarantee the
   integrity of the information it contains through digital signatures.
   For best security practices, the digital signature of the container
   should encompass the entire payload.  This provides assurances for
   the integrity of all attributes.  It also allows verification of the
   integrity of a given payload even after the container is delivered
   through the communication channel to the target perimeter and channel
   message integrity check is no longer possible.

9.3.  Payload authenticity

   The digital signature of the payload is the primary way of showing
   its authenticity.  The recipient of the container may use the public
   key associated with the signature to assert the authenticity of the
   sender by tracing it back to a preloaded public key or certificate.
   Note that the digital signature of the payload can be checked even
   after the container has been delivered through the secure channel of
   communication.

   A weaker payload authenticity guarantee may be provided by the
   transport layer if it is configured to digest each message it
   transports.  However, no authenticity verification is possible once
   the container is delivered at the recipient end.  This approach may
   be useful in cases where the digital signature of the container does
   not encompass the entire payload.














Hoyer, et al.            Expires August 25, 2008               [Page 36]


Internet-Draft      Portable Symmetric Key Container       February 2008


10.  Acknowledgements

   The authors of this draft would like to thank the following people
   for their contributions and support to make this a better
   specification: Apostol Vassilev, Shuh Chang, Jon Martinson, Siddhart
   Bajaj, Stu Veath, Kevin Lewis, Philip Hallam-Baker, Hannes
   Tschofenig, Andrea Doherty, Magnus Nystrom, Tim Moses, and Anders
   Rundgren.











































Hoyer, et al.            Expires August 25, 2008               [Page 37]


Internet-Draft      Portable Symmetric Key Container       February 2008


11.  Appendix A - Example Symmetric Key Containers

   All examples are syntactically correct and compatible with the XML
   schema in section 7.

11.1.  Symmetric Key Container with a single Non-Encrypted HOTP Secret
       Key


   <?xml version="1.0" encoding="UTF-8"?>
   <KeyContainer Version="1.0"
     xmlns="urn:ietf:params:xml:ns:keyprov:container:1.0">
       <Device>
           <DeviceId>
               <Manufacturer>ACME</Manufacturer>
               <SerialNo>0755225266</SerialNo>
           </DeviceId>
           <Key KeyAlgorithm="http://www.ietf.org/keyprov/pskc#hotp"
             KeyId="0755225266">
               <Issuer>AnIssuer</Issuer>
               <Usage OTP="true">
                   <ResponseFormat Length="6" Format="DECIMAL"/>
               </Usage>
               <Data Name="COUNTER">
                   <PlainValue>AprkuA==</PlainValue>
               </Data>
               <Data Name="SECRET">
                   <PlainValue>/4h3rOTeBegJwGpmTTq4F+RlNR0=</PlainValue>
               </Data>
               <ExpiryDate>2012-12-31T00:00:00</ExpiryDate>
           </Key>
       </Device>
   </KeyContainer>


11.2.  Symmetric Key Container with a single PIN protected Non-Encrypted
       HOTP Secret Key














Hoyer, et al.            Expires August 25, 2008               [Page 38]


Internet-Draft      Portable Symmetric Key Container       February 2008


   <?xml version="1.0" encoding="UTF-8"?>
   <KeyContainer Version="1.0"
     xmlns="urn:ietf:params:xml:ns:keyprov:container:1.0">
       <Device>
           <DeviceId>
               <Manufacturer>ACME</Manufacturer>
               <SerialNo>0755225266</SerialNo>
           </DeviceId>
           <Key KeyAlgorithm="http://www.ietf.org/keyprov/pskc#hotp"
             KeyId="0755225266">
               <Issuer>AnIssuer</Issuer>
               <Usage OTP="true">
                   <ResponseFormat Length="6" Format="DECIMAL"/>
               </Usage>
               <Data Name="COUNTER">
                   <PlainValue>AprkuA==</PlainValue>
               </Data>
               <Data Name="SECRET">
                   <PlainValue>/4h3rOTeBegJwGpmTTq4F+RlNR0=</PlainValue>
               </Data>
               <PINPolicy PINKeyId="07552252661">
                   <PINUsageMode>
                       <Local/>
                   </PINUsageMode>
               </PINPolicy>
           </Key>
           <Key KeyId="07552252661"
             KeyAlgorithm="http://www.ietf.org/keyprov/pskc#pin">
               <Usage>
                   <ResponseFormat Length="4" Format="DECIMAL"/>
               </Usage>
               <Data Name="SECRET">
                   <PlainValue>MTIzNA==</PlainValue>
               </Data>
           </Key>
       </Device>
   </KeyContainer>

11.3.  Symmetric Key Container with a single AES-256-CBC Encrypted HOTP
       Secret Key











Hoyer, et al.            Expires August 25, 2008               [Page 39]


Internet-Draft      Portable Symmetric Key Container       February 2008


<?xml version="1.0" encoding="UTF-8"?>
<KeyContainer Version="1.0"
  xmlns="urn:ietf:params:xml:ns:keyprov:container:1.0"
  xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
  xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
    <EncryptionKey>
        <ds:KeyName>PRE_SHARED_KEY</ds:KeyName>
    </EncryptionKey>
    <MACAlgorithm>http://www.w3.org/2000/09/xmldsig#hmac-sha1
    </MACAlgorithm>
    <Device>
        <DeviceId>
            <Manufacturer>ACME</Manufacturer>
            <SerialNo>0755225266</SerialNo>
        </DeviceId>
        <Key KeyAlgorithm="http://www.ietf.org/keyprov/pskc#hotp"
          KeyId="0755225266">
            <Issuer>AnIssuer</Issuer>
            <Usage OTP="true">
                <ResponseFormat Length="8" Format="DECIMAL"/>
            </Usage>
            <Data Name="COUNTER">
                <PlainValue>AprkuA==</PlainValue>
            </Data>
            <Data Name="SECRET">
                <EncryptedValue>
                    <xenc:EncryptionMethod
               Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>
                    <xenc:CipherData>
                      <xenc:CipherValue>
                        kyzrWTJuhJKQHhZtf2CWbKC5H3LdfAPvKzHHQ8SdxyE=
                      </xenc:CipherValue>
                    </xenc:CipherData>
                </EncryptedValue>
                <ValueMAC>cwJI898rRpGBytTqCAsegaQqPZA=</ValueMAC>
            </Data>
        </Key>
    </Device>
</KeyContainer>

11.4.  Symmetric Key Container with signature and a single Password-
       based Encrypted HOTP Secret Key


 <?xml version="1.0" encoding="UTF-8"?>
 <pskc:KeyContainer
   xmlns:pskc="urn:ietf:params:xml:ns:keyprov:container:1.0"
   xmlns:pkcs-5=



Hoyer, et al.            Expires August 25, 2008               [Page 40]


Internet-Draft      Portable Symmetric Key Container       February 2008


     "http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5v2-0#"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
   xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
   Version="1.0">
     <pskc:EncryptionKey>
       <pskc:DerivedKey Id="#Passphrase1">
         <pskc:CarriedKeyName>Passphrase1</pskc:CarriedKeyName>
         <pskc:KeyDerivationMethod
           Algorithm=
      "http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbkdf2">
           <pkcs-5:Parameters xsi:type="pkcs-5:PBKDF2ParameterType">
             <Salt>
               <Specified>Df3dRAhjGh8=</Specified>
             </Salt>
             <IterationCount>2000</IterationCount>
             <KeyLength>16</KeyLength>
             <PRF/>
           </pkcs-5:Parameters>
         </pskc:KeyDerivationMethod>
         <xenc:ReferenceList>
           <xenc:DataReference URI="#ED"/>
         </xenc:ReferenceList>
       </pskc:DerivedKey>
     </pskc:EncryptionKey>
   <pskc:Device>
     <pskc:DeviceId>
       <pskc:Manufacturer>ACME</pskc:Manufacturer>
       <pskc:SerialNo>0755225266</pskc:SerialNo>
     </pskc:DeviceId>
         <pskc:Key KeyAlgorithm="http://www.ietf.org/keyprov/pskc#hotp"
           KeyId="0755225266">
             <pskc:Issuer>AnIssuer</pskc:Issuer>
             <pskc:Usage OTP="true">
                 <pskc:ResponseFormat Length="6" Format="DECIMAL"/>
             </pskc:Usage>
             <pskc:Data Name="COUNTER">
                 <pskc:PlainValue>AprkuA==</pskc:PlainValue>
             </pskc:Data>
             <pskc:Data Name="SECRET">
                 <pskc:EncryptedValue Id="ED">
                   <xenc:EncryptionMethod Algorithm=
                   "http://www.w3.org/2001/04/xmlenc#kw-aes128"/>
                   <xenc:CipherData>
                     <xenc:CipherValue>rf4dx3rvEPO0vKtKL14NbeVu8nk=
                     </xenc:CipherValue>
                   </xenc:CipherData>
                 </pskc:EncryptedValue>



Hoyer, et al.            Expires August 25, 2008               [Page 41]


Internet-Draft      Portable Symmetric Key Container       February 2008


             </pskc:Data>
         </pskc:Key>
   </pskc:Device>
   <pskc:Signature>
     <ds:SignedInfo>
       <ds:CanonicalizationMethod
         Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
       <ds:SignatureMethod
         Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
       <ds:Reference URI="">
         <ds:DigestMethod Algorithm=
           "http://www.w3.org/2000/09/xmldsig#sha1"/>
         <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>
       </ds:Reference>
     </ds:SignedInfo>
     <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>
     <ds:KeyInfo>
       <ds:X509Data>
         <ds:X509IssuerSerial>
           <ds:X509IssuerName>CN=KeyProvisioning'R'Us.com,C=US
           </ds:X509IssuerName>
           <ds:X509SerialNumber>12345678</ds:X509SerialNumber>
         </ds:X509IssuerSerial>
       </ds:X509Data>
     </ds:KeyInfo>
   </pskc:Signature>
 </pskc:KeyContainer>


11.5.  Symmetric Key Container with a single RSA 1.5 Encrypted HOTP
       Secret Key




















Hoyer, et al.            Expires August 25, 2008               [Page 42]


Internet-Draft      Portable Symmetric Key Container       February 2008


<?xml version="1.0" encoding="UTF-8"?>
<pskc:KeyContainer Version="1.0"
  xmlns:pskc="urn:ietf:params:xml:ns:keyprov:container:1.0"
  xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
  xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
    <pskc:EncryptionKey>
        <ds:X509Data>
            <ds:X509Certificate>miib</ds:X509Certificate>
        </ds:X509Data>
    </pskc:EncryptionKey>
    <pskc:Device>
        <pskc:DeviceId>
            <pskc:Manufacturer>ACME</pskc:Manufacturer>
            <pskc:SerialNo>0755225266</pskc:SerialNo>
        </pskc:DeviceId>
        <pskc:Key KeyAlgorithm="http://www.ietf.org/keyprov/pskc#hotp"
                  KeyId="0755225266">
            <pskc:Issuer>AnIssuer</pskc:Issuer>
            <pskc:Usage OTP="true">
                <pskc:ResponseFormat Length="8" Format="DECIMAL"/>
            </pskc:Usage>
            <pskc:Data Name="COUNTER">
                <pskc:PlainValue>AprkuA==</pskc:PlainValue>
            </pskc:Data>
            <pskc:Data Name="SECRET">
              <pskc:EncryptedValue Id="ED">
                <xenc:EncryptionMethod
                  Algorithm="http://www.w3.org/2001/04/xmlenc#rsa_1_5"/>
                <xenc:CipherData>
                  <xenc:CipherValue>rf4dx3rvEPO0vKtKL14NbeVu8nk=
                  </xenc:CipherValue>
                </xenc:CipherData>
              </pskc:EncryptedValue>
            </pskc:Data>
        </pskc:Key>
    </pskc:Device>
</pskc:KeyContainer>














Hoyer, et al.            Expires August 25, 2008               [Page 43]


Internet-Draft      Portable Symmetric Key Container       February 2008


12.  Normative References

   [CAP]      MasterCard International, "Chip Authentication Program
              Functional Architecture", September 2004.

   [DSKPP]    "Dynamic Symmetric Key Provisioning Protocol", Internet
              Draft Informational, URL: http://tools.ietf.org/wg/
              keyprov/draft-doherty-keyprov-dskpp-00.txt, June 2007.

   [HOTP]     MRaihi, D., "HOTP: An HMAC-Based One Time Password
              Algorithm", RFC 4226,
              URL: http://rfc.sunsite.dk/rfc/rfc4226.html,
              December 2005.

   [OATH]     "Initiative for Open AuTHentication",
              URL: http://www.openauthentication.org.

   [OATHRefArch]
              OATH, "Reference Architecture",
              URL: http://www.openauthentication.org, Version 1.0, 2005.

   [OCRA]     MRaihi, D., "OCRA: OATH Challenge Response Algorithm",
              Internet Draft Informational, URL: http://www.ietf.org/
              internet-drafts/
              draft-mraihi-mutual-oath-hotp-variants-01.txt,
              December 2005.

   [PKCS1]    Kaliski, B., "RFC 2437: PKCS #1: RSA Cryptography
              Specifications Version 2.0.",
              URL: http://www.ietf.org/rfc/rfc2437.txt, Version: 2.0,
              October 1998.

   [PKCS12]   RSA Laboratories, "PKCS #12: Personal Information Exchange
              Syntax Standard", Version 1.0,
              URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/.

   [PKCS5]    RSA Laboratories, "PKCS #5: Password-Based Cryptography
              Standard", Version 2.0,
              URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5/,
              March 1999.

   [RFC2119]  "Key words for use in RFCs to Indicate Requirement
              Levels", BCP 14, RFC 2119, March 1997,
              <http://www.ietf.org/rfc/rfc2119.txt>.

   [Schneier]
              Schneier, B., "Secrets and Lies: Digitial Security in a
              Networked World",  Wiley Computer Publishing, ISBN 0-8493-



Hoyer, et al.            Expires August 25, 2008               [Page 44]


Internet-Draft      Portable Symmetric Key Container       February 2008


              8253-7, 2000.

   [XMLENC]   Eastlake, D., "XML Encryption Syntax and Processing.",
              URL: http://www.w3.org/TR/xmlenc-core/, December 2002.

   [XMLSIG]   Eastlake, D., "XML-Signature Syntax and Processing",
              URL: http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/,
              W3C Recommendation, February 2002.











































Hoyer, et al.            Expires August 25, 2008               [Page 45]


Internet-Draft      Portable Symmetric Key Container       February 2008


Authors' Addresses

   Philip Hoyer
   ActivIdentity, Inc.
   109 Borough High Street
   London, SE1  1NL
   UK

   Phone: +44 (0) 20 7744 6455
   Email: Philip.Hoyer@actividentity.com


   Mingliang Pei
   VeriSign, Inc.
   487 E. Middlefield Road
   Mountain View, CA  94043
   USA

   Phone: +1 650 426 5173
   Email: mpei@verisign.com


   Salah Machani
   Diversinet, Inc.
   2225 Sheppard Avenue East
   Suite 1801
   Toronto, Ontario  M2J 5C2
   Canada

   Phone: +1 416 756 2324 Ext. 321
   Email: smachani@diversinet.com




















Hoyer, et al.            Expires August 25, 2008               [Page 46]


Internet-Draft      Portable Symmetric Key Container       February 2008


Full Copyright Statement

   Copyright (C) The IETF Trust (2008).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.


Acknowledgment

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).





Hoyer, et al.            Expires August 25, 2008               [Page 47]