HIP Research Group Pascal Urien
Internet Draft Telecom ParisTech
Intended status: Experimental Gyu Myoung Lee
Telecom SudParis
Expires: October 2013 Guy Pujolle
LIP6
April 2013
HIP support for RFIDs
draft-irtf-hiprg-rfid-07
Abstract
This document describes an architecture based on the Host Identity
Protocol (HIP), for active RFIDs, i.e. Radio Frequency Identifiers
including tamper resistant computing resources, as specified for
example in the ISO 14443 or 15693 standards. HIP-RFIDs never expose
their identity in clear text, but hide this value (typically an EPC-
Code) by a particular equation that can be only solved by a dedicated
entity, referred as the portal. HIP exchanges occur between HIP-RFIDs
and portals; they are transported by IP packets, through the Internet
cloud.
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is
at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on October 2013.
Urien Expires October 2013 [Page 1]
HIP support for RFIDs April 2013
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
All IETF Documents and the information contained therein are provided
on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.
Urien Expires October 2013 [Page 2]
HIP support for RFIDs April 2013
Table of Contents
Abstract........................................................... 1
Requirements Language.............................................. 1
Status of this Memo................................................ 1
Copyright Notice................................................... 2
Table of Contents.................................................. 3
1 Overview......................................................... 5
1.1 Motivation.................................................. 5
1.2 Passive and active RFIDs.................................... 5
1.3 About the Internet of Things (IoT).......................... 6
1.4 HIP-RFIDs................................................... 6
1.5 Main differences between HIP-RFID and HIP................... 7
2. Basic Exchange.................................................. 8
2.1 I1-T........................................................ 9
2.2 R1-T........................................................ 9
2.3 I2-T........................................................ 9
2.4 R2-T....................................................... 10
2.5 HIT format................................................. 10
2.6 State Machine.............................................. 11
2.6.1 Unassociated. ....................................... 11
2.6.2 I1-Sent ............................................. 11
2.6.3 R1-Sent ............................................. 11
2.6.4 I2-Sent ............................................. 11
2.6.5 R2-Sent ............................................. 11
2.6.6 Established ......................................... 11
3. Formats........................................................ 12
3.1 Payload.................................................... 12
3.2 Packet types............................................... 13
3.3 Summary of HIP parameters.................................. 14
3.4 R-T........................................................ 14
3.5 HIP-T-Transform............................................ 15
3.6 F-T........................................................ 15
3.7 MAC-T...................................................... 16
3.8 ESP-Transform.............................................. 16
3.9 ESP-Info................................................... 16
4. BEX Example.................................................... 17
4.1 Generic example............................................ 17
4.1.1 I1-T ................................................ 17
4.1.2 R1-T ................................................ 17
4.1.3 I2-T ................................................ 18
4.1.4 R2-T ................................................ 19
4.2 HIP-T Transform 0x0001, HMAC............................... 19
4.2.1 I1-T ................................................ 19
4.2.2 R1-T ................................................ 19
4.2.3 I2-T ................................................ 20
5. HIP-T-Transforms Definition.................................... 20
5.1 Type 0x0001, HMAC.......................................... 20
5.1.1 Suite-ID ............................................ 20
5.1.2 F-T computing (f function) .......................... 20
5.1.3 K-Auth-Key computing (g function) ................... 21
Urien Expires October 2013 [Page 3]
HIP support for RFIDs April 2013
5.1.4 MAC-T computing ..................................... 21
5.2 Type 0x0002, Keys-Tree..................................... 21
5.2.1 Suite-ID ............................................ 21
5.2.2 F-T computing (f function) .......................... 21
5.2.3 K-Auth-Key computing (g function) ................... 22
5.2.4 MAC-T computing ..................................... 22
6. Security Considerations........................................ 22
7. IANA Considerations............................................ 23
8 References...................................................... 24
8.1 Normative references....................................... 24
8.2 Informative references..................................... 24
9 Annex I......................................................... 24
9.1 Binary Interface with HIP RFIDs............................ 25
9.3 Exchanged data............................................. 25
9.3 Javacard code sample....................................... 26
Author's Addresses................................................ 31
Urien Expires October 2013 [Page 4]
HIP support for RFIDs April 2013
1 Overview
1.1 Motivation
RFIDs are electronic devices, associated to things or computers,
which transmit their identifier (usually a serial number) via radio
links. The Host Identity Protocol [HIP] is a security protocol based
on the use of cryptographic identifiers, and specified for IP-based
networks [HIP].
The first motivation for designing HIP support for RFIDs is to
enforce a strong privacy for the Internet of Things, e.g. identity is
protected by cryptographic procedures compatible with RFID computing
resources. As an illustration, EPC codes or IP addresses are today
transmitted in the clear.
The second motivation is to define an identity layer for RFIDs
logically independent from the transport facilities, which may
optionally support IP stacks.
In other words, we believe that the Internet of Things will be
Identity oriented; RFIDs will act as electronic ID for objects to
which they are linked. In this context, privacy is a major challenge.
1.2 Passive and active RFIDs
An RFID is a slice of silicon whose area is about 1 mm2 for
components used as cheap electronic RFIDs, and around 25 mm2 for
chips like contact-less smart cards inserted in passports and mobile
phones.
RFIDs are divided into two classes, the first includes devices that
embed CPU and memory (RAM, ROM, E2PROM) such as contact-less smart
cards, and the second comprises electronic chips based on cabled
logic circuits.
There are multiple standards relative to RFIDs. The ISO 14443
standard introduces components dealing with the 13.56 MHz frequency
that embed a CPU and consume about 10mW; data throughput is about 100
Kbits/s and the maximum working distance (from the reader) is around
10cm.
The ISO 15693 standard also uses the same 13.56 MHz frequency, but
enables working distances as high as one meter, with a data
throughput of a few Kbits/s.
The ISO 18000 standard defines parameters for air interface
communications associated with frequency such as 135 KHz, 13.56 MHz,
2.45 GHz, 5.8 GHz, 860 to 960 MHz and 433 MHz. The ISO 18000-6
standard uses the 860-960 MHz range and is the basis for the Class-1
Urien Expires October 2013 [Page 5]
HIP support for RFIDs April 2013
Generation-2 UHF RFID, introduced by the EPCglobal [EPCGLOBAL]
consortium.
1.3 About the Internet of Things (IoT)
The term "Internet of Thing (IoT)" was invented by the MIT Auto-ID
Center, in 2001, and refers to an architecture that comprises four
levels,
- Passive RFIDs, such as Class-1 Generation-2 UHF RFIDs, introduced
by the EPC Global consortium and operating in the 860-960 MHz range.
- Readers plugged to a local (computing) system, which read the
Electronic Product Code [EPC].
- A local system, offering IP connectivity, which collects
information pointed by the EPC thanks to a protocol called Object
Naming Service (ONS)
- EPCIS (EPC Information Services) servers, which process incoming
ONS requests and returns PML (Physical Markup Language) files [PML],
e.g. XML documents that carry meaningful information linked to RFIDs.
1.4 HIP-RFIDs
PORTAL READER RFID
+-----------------------+
! ! +-----------+
! +-----+ ! ! +-------+ !
! +---------+ + HIP + !<=========================>! + HIP + !
! + IDENTITY+ +-----+ ! +-------------------+ ! +-------+ !
! + SOLVER + [HEP] !<=>! [HEP] ! ! | !
! +---------+ +-----+ ! ! +------+-------+ ! ! +-------+ !
! + + ! ! + + RFID + ! ! + RFID + !
! EPC-Code + IP + !<=>! + IP + Radio + !<=>! + Radio + !
! + + ! ! + + Ptcol + ! ! + Ptcol + !
! +-----+ ! ! +------+-------+ ! ! +-------+ !
! ! ! ! ! !
+----------+------------+ +-------------------+ +-----------+
!
V
TO EPC GLOBAL
SERVICES
Figure 1. HIP-RFID Architecture
This document suggests embedding a modified version of a HIP-enabled
stack in active RFIDs, named HIP-RFIDs. It assumes that such devices
would not support an IP stack, but should be rather identity
oriented, i.e. will use readers' IP resources in order to unveil
Urien Expires October 2013 [Page 6]
HIP support for RFIDs April 2013
their EPC-Code only to trusted entities (called portals in the
architecture shown by Figure 1). Privacy, e.g. identity protection
seems a key prerequisite [SEC] before the effective massive
deployment of these devices.
The HIP-RFID architecture includes three functional entities: HIP
RFIDs, RFID readers, and portals, and defines a new HIP encapsulation
protocol (HEP):
- HIP RFIDs. HIP, as defined in [HIP], is transported by IP packets.
HIP-RFIDs support a modified version of this protocol but do not
require end-to-end IP transport.
- RFID readers. These provide IP connectivity and communicate with
RFIDs through radio links either defined by EPC Global or ISO
standards. The IP layer transports HIP messages between RFIDs and
other HIP entities. According to HIP, an SPI (Security Parameter
Index) associated to an IPsec tunnel MAY be used by the IP host (e.g.
a reader) in order to route HIP packets to/from the right software
identity.
- HEP, HIP Encapsulation Protocol. HIP messages MAY be encapsulated
by protocols such as UDP or TCP in order to facilitate HIP transport
in existing software and networking architectures. The HEP does not
modify the content of an HIP packet. This class of protocol is not
specified by this document.
- PORTAL entity. This device manages a set of readers; it is a HIP
entity that includes a full IP stack. Communications between portal
and RFIDs logically work as peer to peer HIP exchanges. RFID
identifier (HIT) is hidden and appears as a pseudo random value;
within the portal a software block called the IDENTITY SOLVER
resolves an equation f, whose solution is an EPC Code. The portal
accesses EPCIS services; when required privacy may be enforced by
legacy protocol such as SSL or IPsec.
- The portal maintains a table linking HIT and EPC-Code. It acts as a
router for that purpose it MUST provide an identity resolution
mechanism, i.e. a relation between HIT and EPC-Code.
1.5 Main differences between HIP-RFID and HIP
In HIP [HIP], the HIT (Host Identifier Tag) is a fixed value obtained
from the hash of an RSA public key. This parameter is therefore
linked to a unique identity, and can be used for traceability
purposes; in other words HIP does not natively include privacy
features.
In [BLIND], it is proposed to hide the HIT with a random number
thanks to a hash function, i.e.
Urien Expires October 2013 [Page 7]
HIP support for RFIDs April 2013
B-HIT = sha1(HIT || N), with N a random value and || the
concatenation operation.
The case in which only one HIT (either initiator or responder) is
blinded looks similar to the HIP-RFID protocol described in this
draft working with a particular transform (HMAC Transform, 0x0001).
2. Basic Exchange
The HIP-RFID base exchange (T-BEX) is derived from the "classical"
base exchange (BEX), introduced in [HIP]. It is a four way handshake
illustrated by Figure 2.
RFID READER PORTAL
--+-- --+-- ---+---
! START ! !
!<---------------! !
! ! !
! I1-T !
! HIT-I HIT-R !
! ----------------------------------------------------> !
! !
! !
! R1-T !
! HIT-I HIT-R R-T(r1) HIP-T-Transforms !
! [*ESP-Transforms] !
! <---------------------------------------------------- !
! !
! !
! I2-T !
! HIT-I HIT-R HIP-T-Transform [*ESP-Transform] R-T(r2) !
! F-T=f(r1, r2, EPC-Code) [*ESP-Info] MAC-T !
! ----------------------------------------------------> !
! !
! !
! R2-T !
! HIT-I HIT-R [*ESP-Info] MAC-T !
! <---------------------------------------------------- !
! !
! !
! Optional ESP Dialog !
! <---------------------------------------------------> !
! !
! !
Figure 2. HIP-RFIDs Base Exchange (T-BEX), *means optional attributes
A HEP layer MAY be used to transport HIP messages in a non-IP
context, but this optional facility is out of scope for this
document.
Urien Expires October 2013 [Page 8]
HIP support for RFIDs April 2013
2.1 I1-T
When a reader detects an RFID, it realizes all low level operations
in order to set up a radio communication link. Finally the reader
delivers a START message that triggers the RFID.
The HIP-RFID sends the I1-T packet (I suffix meaning initiator), in
which HIT-I is a pseudorandom value internally generated by the HIP-
RFID.
If the RFID doesn't known the portal HIT it sets the HIT-R value to
zero; in that case the reader MAY modify this field in order to
identify the appropriate entity.
The I1-T message is not MACed.
2.2 R1-T
The portal produces the R1-T (R suffix meaning responder) packet,
which includes a nonce r1 and optional parameters. These fields
indicate a list of supported authentication schemes (HIP-T-
TRANSFORMs) and a list of ESP-TRANSFORMs, i.e. secure channels that
could be opened between portal and RFIDs.
This message includes the following fields:
- HIT-I, a random number which identifies a RFID
- HIT-R, the portal HIP, either a null or fixed value.
- HIT-T-TRANSFORMs, a list of authentication schemes
- ESP-T-TRANSFORMs, an optional list of ESP secure channels
The R1-T message is not MACed.
2.3 I2-T
The HIP-RFID builds the I2-T message, which contains
- The selected HIP-T-TRANSFORM (the current authentication scheme).
- An optional ESP-TRANSFORM (a class of secure channel between RFID
and portal).
- A nonce r2, included in the R-T attribute.
- An equation f(r1, r2, EPC-Code), whose solution, according to the
selected HIP-T-TRANSFORM, unveils the EPC-Code value.
- An optional ESP-Info attribute that gives information about the
secure (ESP) channel, and which includes the SPI-I value.
- A keyed MAC (MAC-T), which works with a KI-Auth-key deduced from
r1, r2 and the hidden EPC-Code value.
KI-Auth-key = g(r1, r2, EPC-Code)
The keyed MAC is by default computed over the complete I2-T message,
the content of MAC-T resulting from this calculation is initially set
Urien Expires October 2013 [Page 9]
HIP support for RFIDs April 2013
to a null value. Particular HIP-T-TRANSFORMs MAY work with different
rules (see section 6).
The portal and the RFID shares secret keys. The meaning of these keys
are dependent upon the f equation.
In some cases the EPC-Code is the only shared key. The portal knows a
list of EPC-Code and tries all solutions for solving f, according to
brute force techniques. As an illustration a hash function may be
used for f:
f= sha1(r1 || r2 || EPC-Code), where || is the concatenation
operation.
In other cases a set of keys is shared between portal and RFIDs. For
example a binary tree of HMAC procedure MAY be used, each HMAC beeing
associated to a particular key. A binary tree of depth n may identify
2**n RFIDs, each of them stores n keys (ki:j). The f function is a
list of n values such as
HMAC(r1 || r2, ki:j)
Where ki:j is a secret key, and j the bit value (either 0 or 1) at
the rank i (ranging between 0 and n-1) for the EPC-Code (or the RFID
index).
2.4 R2-T
The fourth and last R2-T packet is optional. It includes
- A keyed MAC (MAC-T) computed with the KI-Auth-key deduced from r1,
r2 and the hidden EPC-Code value.
KI-Auth-key = g(r1, r2, EPC-Code)
- An optional ESP-Info attribute that gives information about the
secure (ESP) channel, and which includes the SPI-R value.
The R2-T packet is mandatory when an ESP channel has been previously
negotiated. ESP channel is required if the portal intends to perform
read or write operations with the RFIDs.
2.5 HIT format
HIT-R MAY be a fixed value embedded in the RFID during the
manufacturing process or a null value if no specific portal is
required.
HIT-I MAY comprise an optional header given coded according to
various hierarchical rules and MUST include a trailer, which is a
true random number.
Urien Expires October 2013 [Page 10]
HIP support for RFIDs April 2013
2.6 State Machine
The state machine is similar to the one described in [RFC 5201]. No
retry operations are performed, because the communication with the
RFID may be lost at any time. Furthermore RFIDs are generally not
equipped with timers.
2.6.1 Unassociated.
The state machine starts.
2.6.2 I1-Sent
The RFID has been reset by the reader, and has sent the I1-T message.
2.6.3 R1-Sent
The responder has received the I1-T message and has sent the R1-T
packet.
2.6.4 I2-Sent
The RFID has received the R1-T packet, and has sent the I2-T message.
2.6.5 R2-Sent
The responder has received the I2-T message and has sent the optional
R2-T packet.
2.6.6 Established
The RFID has received the R2-T message. A secure channel is
established.
Urien Expires October 2013 [Page 11]
HIP support for RFIDs April 2013
3. Formats
3.1 Payload
The payload format is imported from the [HIP] specification.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Header Length |0| Packet Type | VER. | RES.|1|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | Controls |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender's Host Identity RFID (HIT) |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiver's Host Identity RFID (HIT) |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ HIP Parameters /
/ /
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header : normal value is decimal 59, IPPROTO_NONE.
Header Length: the length of the HIP Header and HIP parameters in 8
bytes units, excluding the first 8 bytes
Packet Type: Detailed in section 4.2
VER: 0001
RES: 000
Checksum: This checksum covers the source and destination addresses
in the IP header.
HIP-RFIDs always deliver HIP packets with the null value for the
checksum field. The reader MUST compute the checksum.
HIP-RFIDs do not check the checksum of received packets.
Controls: this field is reserved for future use (RFU)
Sender's Host Identity RFID: 16 bytes HIT
Urien Expires October 2013 [Page 12]
HIP support for RFIDs April 2013
Receiver's Host Identity RFID: 16 bytes HIT
HIP Parameters: a list of attributes encoded in the TLV format
3.2 Packet types
+-----------------+--------------------------------------------+
| Packet type | Packet name |
+-----------------+--------------------------------------------+
| 0x40 | I1-T - The HIP-RFID Initiator Packet |
| | |
| 0x41 | R1-T - The HIP-RFID Responder Packet |
| | |
| 0x42 | I2-T - The Second HIP-RFID Initiator Packet|
| | |
| 0x43 | R2-T - The Second HIP-RFID Responder Packet|
| | |
+-----------------+--------------------------------------------+
Urien Expires October 2013 [Page 13]
HIP support for RFIDs April 2013
3.3 Summary of HIP parameters
+----------------------+-------+----------+-----------------------+
| TLV | Type | Length | Data |
+----------------------+-------+----------+-----------------------+
| R-T | 0x400 | variable | Random value r1 or r2 |
| | | | |
| HIP-T-TRANSFORM | 0x402 | variable | HIP-RFID transform(s) |
| | | | |
| F-T | 0x404 | variable | f function value |
| | | | |
| MAC-T | 0x406 | variable | Keyed MAC |
| | | | |
| ESP-Transform | 0x408 | variable | ESP transform(s) |
| | | | |
| ESP-Info | 0x40A | variable | ESP parameter(s) |
| | | | |
+----------------------+-------+----------+-----------------------+
3.4 R-T
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding-Length | value /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ value | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type 0x400
Length total length in bytes
Value random value
Padding-Length padding length in bytes
Padding padding bytes
Urien Expires October 2013 [Page 14]
HIP support for RFIDs April 2013
3.5 HIP-T-Transform
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding-Length | Suite-ID#1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ Length-of-Suite-ID#1 | value +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ value | Suite-ID#2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type 0x402
Length Total length
Padding-Length Number of padding bytes
Suite-ID Defines the HIP Cipher Suite to be used
Length-of-Suite-ID Defines the length of optional data
Padding Padding bytes
3.6 F-T
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding-Length | value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type 0x404
Length total length, in bytes
Padding-Length padding length in bytes
Value the f value with a variable length
Padding padding bytes
Urien Expires October 2013 [Page 15]
HIP support for RFIDs April 2013
3.7 MAC-T
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding-Length | MAC /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type 0x406
Length total length, in bytes
Padding-Length padding length, in bytes
Value Keyed MAC value
Padding padding bytes
A MAC procedure works with the K-Auth-Key and is computed over the
whole HIP message according to the following rules
- The checksum field of the HIP header is set to a null value.
- The MAC field of the MAC-T attribute is set to a null value
3.8 ESP-Transform
Details of the attribute will be specified by another document.
3.9 ESP-Info
Details of the attribute will be specified by another document.
Urien Expires October 2013 [Page 16]
HIP support for RFIDs April 2013
4. BEX Example
4.1 Generic example
4.1.1 I1-T
Next Header: 0x3B
Header Length: 0x4
Packet Type: 0x40
Version: 0x1
Reserved: 0x1
Control: 0x0
Checksum: 0x0000
Sender's HIT (RFID) : 0x0123456789ABCDEF
0123456789ABCDEF
Receiver's HIT (Portal) : 0x0000000000000000
0000000000000000
The checksum is computed by portal and reader according to rules
specified in [HIP]; it covers the source and destination IP
addresses.
4.1.2 R1-T
Next Header: 0x3B
Header Length: 0xB
Packet Type: 0x41
Version: 0x1
Reserved: 0x1
Control: 0x0
Checksum: 0xabcd
Sender's HIT (Portal) 0xA5A5A5A5A5A5A5A5
5A5A5A5A5A5A5A5A
Receiver's HIT (RFID) 0x0123456789ABCDEF
0123456789ABCDEF
R-T 0x040000280002rrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrpppp
HIP-T-Transforms 0x0402001000020001
000000020000pppp
r1 is a 128 bits value
Transforms 1, 2 are supported by the reader.
Urien Expires October 2013 [Page 17]
HIP support for RFIDs April 2013
4.1.3 I2-T
Next Header: 0x3B
Header Length: 0x14
Packet Type: 0x42
Version: 0x1
Reserved: 0x1
Control: 0x0
Checksum: 0x0000
Sender's HIT (RFID) : 0x0123456789ABCDEF
0123456789ABCDEF
Sender's HIT (Portal) : 0xA5A5A5A5A5A5A5A5
5A5A5A5A5A5A5A5A
HIP-T-Transform 0x0402001000060001
0000pppppppppppp
R-T 0x040000280002rrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrpppp
F-T 0x040400280002ffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffpppp
MAC-T 0x040600040006ssss
ssssssssssssssss
ssssssssssssssss
sssspppppppppppp
The RFID selects the HIP-Transform number one. It produces an r2
nonce and computes a f value. It appends a 20 bytes keyed MAC.
Urien Expires October 2013 [Page 18]
HIP support for RFIDs April 2013
4.1.4 R2-T
Next Header: 0x3B
Header Length: 0x08
Packet Type: 0x40
Version: 0x1
Reserved: 0x1
Control: 0x0
Checksum: 0xabcd
Sender's HIT (RFID) : 0x0123456789ABCDEF
0123456789ABCDEF
Sender's HIT (Portal) : 0xA5A5A5A5A5A5A5A5
5A5A5A5A5A5A5A5A
MAC-T 0x040600040006ssss
ssssssssssssssss
ssssssssssssssss
sssspppppppppppp
Reader ends the BEX-T.
4.2 HIP-T Transform 0x0001, HMAC
EPC = 0123456789abcdefcdab
4.2.1 I1-T
<< 3B 04 40 11 00 00 00 00 6A 68 2E 53 51 6B 51 6F
2F 58 CE 60 25 42 1A E6 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
HEAD 3b04401100000000
sHIT 6a682e53516b516f2f58ce6025421ae6
dHIT 00000000000000000000000000000000
4.2.2 R1-T
>> 3B 0A 41 11 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 6A 68 2E 53 51 6B 51 6F
2F 58 CE 60 25 42 1A E6 04 00 00 20 00 06 27 6D
03 4D DD 2D 52 79 3B 17 2C B9 5B CD 02 97 E2 DF
61 15 00 00 00 00 00 00 04 02 00 10 00 06 00 02
00 00 00 00 00 00 00 00
HEAD 3b0a411100000000
sHIT 00000000000000000000000000000000
dHIT 6a682e53516b516f2f58ce6025421ae6
ATT 0400 20 bytes 276d034ddd2d52793b172cb95bcd0297e2df6115
ATT 0402 04 bytes 00020000
Urien Expires October 2013 [Page 19]
HIP support for RFIDs April 2013
4.2.3 I2-T
<< 3B 13 40 11 00 00 00 00 6A 68 2E 53 51 6B 51 6F
2F 58 CE 60 25 42 1A E6 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 04 02 00 10 00 06 00 01
00 00 00 00 00 00 00 00 04 00 00 20 00 06 C5 95
8B 23 6B 9B 0E AA 7A BB 25 F2 7D 24 C5 04 6E 89
19 9E 00 00 00 00 00 00 04 04 00 20 00 06 80 1D
BC 55 C5 F3 97 89 F8 3C 6C BA 14 50 18 7D 83 83
3C AF 00 00 00 00 00 00 04 06 00 20 00 06 2A 23
68 93 2B F7 3A BE C4 6B DD B8 3F 1B 3F 7F 9D ED
8B 83 00 00 00 00 00 00
HEAD 3b13401100000000
sHIT 6a682e53516b516f2f58ce6025421ae6
dHIT 00000000000000000000000000000000
ATT 0402 04 bytes 00010000
ATT 0400 20 bytes c5958b236b9b0eaa7abb25f27d24c5046e89199e
ATT 0404 20 bytes 801dbc55c5f39789f83c6cba1450187d83833caf
ATT 0406 20 bytes 2a2368932bf73abec46bddb83f1b3f7f9ded8b83
5. HIP-T-Transforms Definition
5.1 Type 0x0001, HMAC
5.1.1 Suite-ID
Suite-ID: 0x0001
Length-of-Suite-ID: 0x0000
5.1.2 F-T computing (f function)
The F-T function produces a 20 bytes result, according to the
relation:
K = HMAC-SHA1(r1 | r2, EPC-Code)
Y = f(r1, r2, EPC-Code) = HMAC-SHA1(K, CT1 | "Type 0001 key")
Where:
- SHA1 is the SHA1 digest function
- EPC-Code is the RFID identity
- HMAC-SHA1 is the keyed MAC algorithm based on the SHA1 digest
procedure.
- CT1 is a 32 bits string, whose value is equal to 0x00000001
Urien Expires October 2013 [Page 20]
HIP support for RFIDs April 2013
- r1 and r2 are the two random values exchanged by the BEX
5.1.3 K-Auth-Key computing (g function)
The K-Auth-Key is computing according to the relation:
K = HMAC-SHA1(r1 | r2, EPC-Code)
Y = HMAC-SHA1(K, CT2 | "Type 0001 key")
Where:
- SHA1 is the SHA1 digest function
- EPC-Code is the RFID identity
- HMAC-SHA1 is the keyed MAC algorithm based on the SHA1 digest
procedure.
- CT2 is a 32 bits string, whose value is equal to 0x00000002
- r1 and r2 are the two random values exchanged by the BEX
5.1.4 MAC-T computing
The HMAC-SHA1 function is used with the K-Auth-Key secret value:
MAC-T(HIT-T packet) = HMAC-SHA1(K-Auth-Key, HIP-T packet)
5.2 Type 0x0002, Keys-Tree
5.2.1 Suite-ID
Suite-ID: 0x0002
Length-of-Suite-ID: 0x0006
Value1: an index, a two bytes number, identifying a HASH function
(H), which produces h bytes.
Value2: n, the depth of the tree, a two bytes number.
Value3: p, the maximum number of child nodes, for each node, a two
bytes number.
The maximum elements of a keys-tree is therefore p**n
5.2.2 F-T computing (f function)
The F-T function produces a list of Hi, 1<= i <= n, of nh bytes
results, according to the relation:
Y = f(r1, r2, EPC-Code) = H1 | H2 | Hi | Hn
Urien Expires October 2013 [Page 21]
HIP support for RFIDs April 2013
With
Hi = HMAC-SHA1(r1 | r2, Ki:j)
Where:
- H is digest function producing t bytes
- Ki:j is a set of pn secret keys.
Each EPC-Code is associated with an index, whose value is written as:
RFID-Index = an p**(n-1) + an-1 p**(n-2) + a1
Each ai digit( ai p**(i-1) )whose value ranges between 0 and p-1, is
associated with a key Ki:j (i.e. the tree is made with pn keys, but
only n values are stored in a given RFID), with j=ai
- HMAC-H is the keyed MAC algorithm based on the H digest procedure.
- r1 and r2 are the two random values exchanged by the BEX.
5.2.3 K-Auth-Key computing (g function)
The K-Auth-Key is computing according to the relation:
K-Auth-Key = HMAC-H(r1 | r2, RFID-Index)
Where:
- H is a digest function producing t bytes
- HMAC-H is the keyed MAC algorithm based on the H digest procedure.
- RFID INDEX is the RFID index.
- r1 and r2 are the two random values exchanged by the BEX.
5.2.4 MAC-T computing
The HMAC-H function is used with the K-Auth-Key secret value:
MAC-T(HIT-T packet) = HMAC-H(K-Auth-Key, HIP-T packet)
6. Security Considerations
In this section we only discuss the case where no ESP channel is
negotiated, i.e. a three ways handshake is performed thanks to the
I1-T, R1-T and I2-T packets.
The HIP-RFID infrastructure comprises a set readers establishing
sessions with a PORTAL. The exchanged packets MUST be protected by
Urien Expires October 2013 [Page 22]
HIP support for RFIDs April 2013
secure tunnels such as IPSEC or any appropriate means. Readers feed
RFIDs and consequently deliver information about their position.
Without security association between readers and PORTALs rogue
devices can inject malicious packets such as I1-T and I2-T whose goal
is to forward a fake f equation that could not be solved by the
IDENTITY-SOLVER entity. This class of attack targets a Denial of
Service (DoS) threat; computing resources will be consumed by the
PORTAL that will stop its solving process after a given timeout.
Malicious RFIDs can also perform DoS attacks. However upon detection,
they could be discarded by their associated reader.
The I1-T packet includes no security feature. It may be forged by any
entity.
The R1-T packet includes no security feature. It may be forged by any
entity. A rogue portal SHOULD NOT expect to retrieve the HIP-RFID
identity thanks to cryptographic weaknesses of the f equation.
Nerveless hardware or software implementation of the HIP-RFID
protocol MUST be aware that the R1-T packet MUST be carefully parsed
and checked.
The I2-T packet includes a pseudo unique value r2, the f equation and
is MACed. The MAC field proves this packet integrity and optionally
the whole dialog integrity (dealing with I1-T, R1-T and I2-T).
Although HIP-T-TRANSFORMs detailed in this document only deal with
I2-T integrity, other transforms MAY use different schemes.
The two main classes of the f(r1,r2,EPC-Code) equation are bijections
(such as cipher algorithms) and surjections (such as digest
procedures). In the first case the solution (EPC-Code) is unique; its
correctness is checked via the keyed MAC. In the second case there
are multiples solutions, with very low probability of collisions; the
correctness of the highly probable solution is checked by the keyed
MAC.
7. IANA Considerations
This draft does not require any action from IANA.
Urien Expires October 2013 [Page 23]
HIP support for RFIDs April 2013
8 References
8.1 Normative references
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[HIP] R. Moskowitz, P. Nikander, P. Jokela, T. Henderson, Host
Identity Protocol, RFC 5201, April 2008.
8.2 Informative references
[EPC] Brock, D.L, The Electronic Product Code (EPC), A Naming Scheme
for Physical Objects, MIT AUTO-ID CENTER, 2001.
[PML] Brock, D.L - The Physical Markup Language, MIT AUTO-ID CENTER,
2001.
[EPCGLOBAL] EPCglobal, EPC Radio Frequency Identity Protocols Class 1
1516 Generation 2 UHF RFID Protocol for Communications at 860 MHz-960
MHz Version 1517 1.0.9, EPCglobal Standard, January 2005.
[NIST-800-108] NIST Special Publication 800-108, Recommendation for
Key Derivation Using Pseudorandom Functions.
[SEC] S. Weis, S. Sarma, R. Rivest and D. Engels. "Security and
privacy aspects of low-cost radio frequency identification systems"
In D. Hutter, G. Muller, W. Stephan and M. Ullman, editors,
International Conference on Security in Pervasive Computing - SPC
2003, volume 2802 of Lecture Notes in computer Science, pages 454-
469. Springer-Verlag, 2003.
[HIP-TAG-EXP] Pascal Urien, Simon Elrharbi, Dorice Nyamy, Herve
Chabanne, Thomas Icart, Francois Lecocq, Cyrille Pepin, Khalifa
Toumi, Mathieu Bouet, Guy Pujolle, Patrice Krzanik, Jean-Ferdinand
Susini, "HIP-Tags architecture implementation for the Internet of
Things", AH-ICI 2009. First Asian Himalayas International Conference
on Internet, 3-5 Nov. 2009.
[BLIND] Dacheng Zhang, Miika Komu, "An Extension of HIP Base Exchange
to Support Identity Privacy", draft-zhang-hip-privacy-protection-00,
work in progress, March 2010.
9 Annex I
This annex provides a sample code, for NFC RFIDs working at 13.56 Mhz
and implementing a Java Virtual Machine.
Urien Expires October 2013 [Page 24]
HIP support for RFIDs April 2013
9.1 Binary Interface with HIP RFIDs
According to the ISO 7816 standards, embedded RFID applications are
identified by an AID attribute (Application IDentifier) whose size
ranges between 5 and 16 bytes.
Commands exchanged between RFIDs and readers are named APDUs and are
associated with a short prefix, whose size is usually 5 bytes
referred as CLA, INS, P1, P2, P3.
In our sample we choose an arbitrary value for the AID
(11223344556601, in hexadecimal representation) and a unique command
CLA=00, INS=C2, P1=00, P2=00. The P3 byte is set to null in order to
trig the RFID (which resets its state machine and returns the I1
packet, or a non null value when it pushes the R1 packet.
9.3 Exchanged data
The reader selects the embedded HIP-RFID application.
>> 00 A4 04 00 07 11 22 33 44 55 66 01
<< 90 00
The reader trigs the first packet I1-T.
>> 00 C2 00 00 00
The RFID delivers the R1-T packet.
<< 3B 04 40 11 00 00 00 00 A3 12 9D 5E 28 16 67 4F FC 4F A8 08 4E 30
55 E8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 90 00
The reader forwards the R1-T packet to the HIP RFID.
>> 00 C2 00 00 58 3B 0A 41 11 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 A3 12 9D 5E 28 16 67 4F FC 4F A8 08 4E 30 55 E8
04 00 00 20 00 06 68 46 95 15 02 10 32 C2 B7 8D 13 E7 53 F6 25 0F 09
AD 7A BD 00 00 00 00 00 00 04 02 00 10 00 06 00 01 00 00 00 00 00 00
00 00
The RFID produces the I2-T packet.
<< 3B 13 40 11 00 00 00 00 A3 12 9D 5E 28 16 67 4F FC 4F A8 08 4E 30
55 E8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 02 00 10 00
06 00 01 00 00 00 00 00 00 00 00 04 00 00 20 00 06 71 3A DD 19 C4 CB
59 D4 AF D0 2B FD F9 7C 2F 8A D1 23 32 E0 00 00 00 00 00 00 04 04 00
20 00 06 70 DA C1 F7 0B CA 63 15 57 CB D7 AA 66 A9 FD 36 B4 1F DB E3
00 00 00 00 00 00 04 06 00 20 00 06 A6 A7 00 67 5D FD A9 2F 3E 5C 00
D6 B0 8A 55 A2 99 D8 86 79 00 00 00 00 00 00 90 00
Urien Expires October 2013 [Page 25]
HIP support for RFIDs April 2013
9.3 Javacard code sample
package hiprfid;
// Author Pascal Urien
import javacard.framework.*;
import javacard.security.* ;
public class rfid extends Applet
{
final static byte SELECT = (byte)0xA4 ;
final static byte INS-HIP = (byte)0xC2 ;
final static short R-T = (short)0x400 ;
final static short HIP-T-TRANSFORM = (short)0x402 ;
final static short F-T = (short)0x404 ;
final static short Signature-T = (short)0x406 ;
final static short ESP-Transform = (short)0x408 ;
final static short ESP-Info = (short)0x40A ;
final static short ALIGN = 8;
final static short len-r2 =(short)20;
final byte[] algo1 = {(byte)0x00,(byte)0x01,(byte)0x00,(byte)0x00 };
final byte[] ct1 = {
(byte)0x00,(byte)0x00,(byte)0x00,(byte)0x01,
(byte)'T',(byte)'y', (byte)'p',(byte)'e',
(byte)' ',(byte)'0',(byte)'0',(byte)'0',(byte)'1',
(byte)' ',(byte)'k',(byte)'e',(byte)'y' };
final byte[] ct2 = {
(byte)0x00,(byte)0x00,(byte)0x00,(byte)0x02,
(byte)'T',(byte)'y',(byte)'p',(byte)'e',
(byte)' ',(byte)'0',(byte)'0',(byte)'0',(byte)'1',
(byte)' ',(byte)'k',(byte)'e',(byte)'y' };
MessageDigest sha1=null ;
RandomData rnd=null;
byte[] DB =null;
final static short DBSIZE=(short)200;
final static short off-myHIT = (short)0 ;
final static short off-rHIT = (short)16 ;
final static short off-R1 = (short)32 ;
final static short off-R2 = (short)64 ;
final static short off-kaut = (short)96 ;
final static short off-k = (short)128 ;
final static short off-FT = (short)160 ;
Urien Expires October 2013 [Page 26]
HIP support for RFIDs April 2013
final byte[] HEADER= {
(byte)0x3b,(byte)0x04,(byte)0x40,(byte)0x11,
(byte)0x00,(byte)0x00,(byte)0x00,(byte)0x00 };
final byte[] MyEPCCODE = {
(byte)0x01,(byte)0x23,(byte)0x45,(byte)0x67,(byte)0x89,
(byte)0xab,(byte)0xcd,(byte)0xef,(byte)0xcd,(byte)0xab };
public void init(){
try { sha1=MessageDigest.getInstance(MessageDigest.ALG-SHA,false);}
catch (CryptoException e){sha1=null;}
try { rnd = RandomData.getInstance(RandomData.ALG-SECURE-RANDOM);}
catch (CryptoException e){rnd=null;}
DB = JCSystem.makeTransientByteArray(DBSIZE,
JCSystem.CLEAR-ON-DESELECT);
}
public short GetAttOffset(byte[] pkt, short off, short len,short att)
{ boolean more=true;
short type=(short)0;
short tl=(short)0;
if (len <= (short)40) return (short)-1 ;
while (more)
{ type = Util.getShort(pkt,off) ;
tl = Util.getShort(pkt,(short)(off+2));
if (type == att) return off ;
off =(short)(off+tl) ;
if (off >= (short)(off+len))more=false;
}
return -1;
}
public static short GetPadLength(short size)
{
if ( (short)(size % ALIGN) == (short)0) return (short)0;
return (short)(ALIGN - size % ALIGN );
}
public static short Set_Att(short att, byte[] ref-att, short off-att,
short len-att, byte[] pkt, short off)
{
short tl = (short) (len-att + 6) ;
Urien Expires October 2013 [Page 27]
HIP support for RFIDs April 2013
short tp = GetPadLength(tl) ;
tl= (short) (tp+tl);
Util.setShort(pkt,off,att) ;
Util.setShort(pkt,(short)(off+2),tl);
Util.setShort(pkt,(short)(off+4),tp);
if (ref_att != null)
Util.arrayCopy(ref-att,off-att,pkt,(short)(off+6),len-att);
else
Util.arrayFillNonAtomic(pkt,(short)(off+6),len-att,(byte)0);
if (tp != (short)0)
Util.arrayFillNonAtomic(pkt,(short)(off+6+len-att),tp,(byte)0);
return tl ;
}
public void process(APDU apdu) throws ISOException
{
short len=(short)0, readCount=(short)0;
short off=(short)0,pad=(short)0,len-r1=(short)0;
short size=(short)0;
byte[] buffer = apdu.getBuffer() ; // CLA INS P1 P2 P3
byte cla = buffer[ISO7816.OFFSET_CLA];
byte ins = buffer[ISO7816.OFFSET_INS];
byte P1 = buffer[ISO7816.OFFSET_P1] ;
byte P2 = buffer[ISO7816.OFFSET_P2] ;
byte P3 = buffer[ISO7816.OFFSET_LC] ;
switch (ins)
{
case SELECT:
size = apdu.setIncomingAndReceive();
return;
case INS_HIP:
if (P3 == (byte)0)
{
rnd.generateData(DB,off_myHIT,(short)16);
Util.arrayCopy(HEADER,(short)0,buffer,(short)0,(short)8);
Util.arrayCopy(DB,off-myHIT,buffer,(short)8,(short)16) ;
Util.arrayFillNonAtomic(DB,(short)24,(short)16,(byte)0) ;
apdu.setOutgoingAndSend((short)0,(short)40) ;
break;
}
Urien Expires October 2013 [Page 28]
HIP support for RFIDs April 2013
else
{
size = apdu.setIncomingAndReceive();
len = Util.makeShort((byte)0,buffer[6]);
len = (short)(len << 3);
len = (short)(len+(short)8) ;
if (len != size) ISOException.throwIt(ISO7816.SW-DATA-INVALID) ;
size = (short)(len-(short)40);
// HEADER 00...08
// HIT-S 08...24
// HIT-D 24...40
Util.arrayCopy(buffer,(short)13,DB,off_rHIT,(short)16);
off= GetAttOffset(buffer,(short)45,size,R-T);
if (off==(short)-1) ISOException.throwIt(ISO7816.SW-DATA-INVALID) ;
len = Util.getShort(buffer,(short)(off+2));
pad = Util.getShort(buffer,(short)(off+4));
len = (short)(len-pad-6);
len-r1=len;
Util.arrayCopy(buffer,(short)(off+6),DB,off-R1,len);
off= GetAttOffset(buffer,(short)45,size,HIP-T-TRANSFORM) ;
if (off==(short)-1) ISOException.throwIt(ISO7816.SW-DATA-INVALID) ;
len = Util.getShort(buffer,(short)(off+2));
pad = Util.getShort(buffer,(short)(off+4));
len = (short)(len-pad-6);
// algo=Util.getShort(buffer,(short)(off+6)
rnd.generateData(DB,(short)(off-R1+len-r1),len-r2); // r1 || r2
Util.arrayCopy(MyEPCCODE,(short)0,buffer,
(short)0,(short)MyEPCCODE.length);
hmac(DB,off_R1,(short)(len-r1 + len-r2),
buffer,(short)0,(short)MyEPCCODE.length,
sha1,
DB,off-k);
Util.arrayCopy(ct1,(short)0,buffer,(short)0,(short)ct1.length);
hmac(DB,off_k,(short)20,
buffer,(short)0,(short)ct1.length,
sha1,
DB, off-FT);
Util.arrayCopy(ct2,(short)0,buffer,(short)0,(short)ct2.length);
Urien Expires October 2013 [Page 29]
HIP support for RFIDs April 2013
hmac(DB,off-k,(short)20,
buffer,(short)0,(short)ct2.length,
sha1,
DB, off-kaut);
Util.arrayCopy(HEADER,(short)0,buffer,
(short)0,(short)HEADER.length);
Util.arrayCopy(DB,off-myHIT, buffer, (short)8,(short)16);
Util.arrayCopy(DB, off-rHIT, buffer,(short)24,(short)16);
off=(short)40;
len = Set-Att(HIP-T-TRANSFORM,algo1,
(short)0,(short)algo1.length,buffer,off);
off = (short)(off+len);
len = Set-Att(R-T,DB,(short)(off-R1+len-r1),len-r2,buffer,off);
off = (short)(off+len);
len = Set-Att(F-T,DB,off-FT,(short)20,buffer,off);
off = (short)(off+len);
len = Set-Att(Signature-T,null,(short)0,(short)20,buffer,off);
size= (short)(off+len);
buffer[1] = (byte) (size >>3);
hmac(DB,off-kaut,(short)20,
buffer,(short)0,size,
sha1,
buffer,(short)(off+6));
apdu.setOutgoingAndSend((short)0,size);
break;
}
default:
ISOException.throwIt(ISO7816.SW-INS-NOT-SUPPORTED);
}
}
protected rfid(byte[] bArray,short bOffset,byte bLength)
{init();
register();
}
public static void install( byte[] bArray, short bOffset, byte
bLength )
{
new rfid(bArray,bOffset,bLength);
}
Urien Expires October 2013 [Page 30]
HIP support for RFIDs April 2013
public boolean select()
{
return true;
}
public void deselect()
{
}
Author's Addresses
Pascal Urien
Telecom ParisTech
23 avenue d'italie, 75013 Paris, France
Email: Pascal.Urien@telecom-paristech.fr
Gyu Myoung Lee
Telecom SudParis
9 rue Charles Fourier, 91011 Evry, France
Email: gm.lee@it-sudparis.eu
Guy Pujolle
Laboratoire d'informatique de Paris 6 (LIP6)
4 place Jussieu
75005 Paris France
Email: Guy.Pujolle@lip6.fr
Urien Expires October 2013 [Page 31]