Network Working Group                                  S. Josefsson, Ed.
Internet-Draft                                         November 12, 2005
Obsoletes: 3548 (if approved)
Expires: May 16, 2006


             The Base16, Base32, and Base64 Data Encodings
                     draft-josefsson-rfc3548bis-00

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on May 16, 2006.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Keywords

   Base Encoding, Base64, Base32, Base16, Hex.

Abstract

   This document describes the commonly used base 64, base 32, and base
   16 encoding schemes.  It also discusses the use of line-feeds in
   encoded data, use of padding in encoded data, use of non-alphabet
   characters in encoded data, and use of different encoding alphabets.



Josefsson, Ed.            Expires May 16, 2006                  [Page 1]


Internet-Draft              Base-N encodings               November 2005


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Implementation discrepancies . . . . . . . . . . . . . . . . .  3
     2.1.  Line feeds in encoded data . . . . . . . . . . . . . . . .  3
     2.2.  Padding of encoded data  . . . . . . . . . . . . . . . . .  4
     2.3.  Interpretation of non-alphabet characters in encoded
           data . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
     2.4.  Choosing the alphabet  . . . . . . . . . . . . . . . . . .  4
   3.  Base 64 Encoding . . . . . . . . . . . . . . . . . . . . . . .  5
   4.  Base 64 Encoding with URL and Filename Safe Alphabet . . . . .  7
   5.  Base 32 Encoding . . . . . . . . . . . . . . . . . . . . . . .  7
   6.  Base 32 Encoding with Extended Hex Alphabet  . . . . . . . . .  9
   7.  Base 16 Encoding . . . . . . . . . . . . . . . . . . . . . . . 10
   8.  Illustrations and examples . . . . . . . . . . . . . . . . . . 11
   9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
   10. Changes since RFC 3548 . . . . . . . . . . . . . . . . . . . . 13
   11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 13
   12. Copying conditions . . . . . . . . . . . . . . . . . . . . . . 13
   13. References . . . . . . . . . . . . . . . . . . . . . . . . . . 14
     13.1. Normative References . . . . . . . . . . . . . . . . . . . 14
     13.2. Informative References . . . . . . . . . . . . . . . . . . 14
   Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 15
   Intellectual Property and Copyright Statements . . . . . . . . . . 16



























Josefsson, Ed.            Expires May 16, 2006                  [Page 2]


Internet-Draft              Base-N encodings               November 2005


1.  Introduction

   Base encoding of data is used in many situations to store or transfer
   data in environments that, perhaps for legacy reasons, are restricted
   to only US-ASCII [2] data.  Base encoding can also be used in new
   applications that do not have legacy restrictions, simply because it
   makes it possible to manipulate objects with text editors.

   In the past, different applications have had different requirements
   and thus sometimes implemented base encodings in slightly different
   ways.  Today, protocol specifications sometimes use base encodings in
   general, and "base64" in particular, without a precise description or
   reference.  MIME [4] is often used as a reference for base64 without
   considering the consequences for line-wrapping or non-alphabet
   characters.  The purpose of this specification is to establish common
   alphabet and encoding considerations.  This will hopefully reduce
   ambiguity in other documents, leading to better interoperability.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [1].


2.  Implementation discrepancies

   Here we discuss the discrepancies between base encoding
   implementations in the past, and where appropriate, mandate a
   specific recommended behavior for the future.

2.1.  Line feeds in encoded data

   MIME [4] is often used as a reference for base 64 encoding.  However,
   MIME does not define "base 64" per se, but rather a "base 64 Content-
   Transfer-Encoding" for use within MIME.  As such, MIME enforces a
   limit on line length of base 64 encoded data to 76 characters.  MIME
   inherits the encoding from PEM [3] stating it is "virtually
   identical", however PEM uses a line length of 64 characters.  The
   MIME and PEM limits are both due to limits within SMTP.

   Implementations MUST NOT add line feeds to base encoded data unless
   the specification referring to this document explicitly directs base
   encoders to add line feeds after a specific number of characters.









Josefsson, Ed.            Expires May 16, 2006                  [Page 3]


Internet-Draft              Base-N encodings               November 2005


2.2.  Padding of encoded data

   In some circumstances, the use of padding ("=") in base encoded data
   is not required nor used.  In the general case, when assumptions on
   size of transported data cannot be made, padding is required to yield
   correct decoded data.

   Implementations MUST include appropriate pad characters at the end of
   encoded data unless the specification referring to this document
   explicitly states otherwise.

2.3.  Interpretation of non-alphabet characters in encoded data

   Base encodings use a specific, reduced, alphabet to encode binary
   data.  Non alphabet characters could exist within base encoded data,
   caused by data corruption or by design.  Non alphabet characters may
   be exploited as a "covert channel", where non-protocol data can be
   sent for nefarious purposes.  Non alphabet characters might also be
   sent in order to exploit implementation errors leading to, e.g.,
   buffer overflow attacks.

   Implementations MUST reject the encoding if it contains characters
   outside the base alphabet when interpreting base encoded data, unless
   the specification referring to this document explicitly states
   otherwise.  Such specifications may, as MIME does, instead state that
   characters outside the base encoding alphabet should simply be
   ignored when interpreting data ("be liberal in what you accept").
   Note that this means that any CRLF constitute "non alphabet
   characters" and are ignored.  Furthermore, such specifications may
   consider the pad character, "=", as not part of the base alphabet
   until the end of the string.  If more than the allowed number of pad
   characters are found at the end of the string, e.g., a base 64 string
   terminated with "===", the excess pad characters could be ignored.

2.4.  Choosing the alphabet

   Different applications have different requirements on the characters
   in the alphabet.  Here are a few requirements that determine which
   alphabet should be used:

   o  Handled by humans.  Characters "0", "O" are easily interchanged,
      as well "1", "l" and "I".  In the base32 alphabet below, where 0
      (zero) and 1 (one) is not present, a decoder may interpret 0 as O,
      and 1 as I or L depending on case.  (However, by default it should
      not, see previous section.)






Josefsson, Ed.            Expires May 16, 2006                  [Page 4]


Internet-Draft              Base-N encodings               November 2005


   o  Encoded into structures that place other requirements.  For base
      16 and base 32, this determines the use of upper- or lowercase
      alphabets.  For base 64, the non-alphanumeric characters (in
      particular "/") may be problematic in file names and URLs.

   o  Used as identifiers.  Certain characters, notably "+" and "/" in
      the base 64 alphabet, are treated as word-breaks by legacy text
      search/index tools.

   There is no universally accepted alphabet that fulfills all the
   requirements.  For an example of a highly specialized variant, see
   IMAP [8].  In this document, we document and name some currently used
   alphabets.


3.  Base 64 Encoding

   The following description of base 64 is due to [3], [4], [5] and [6].

   The Base 64 encoding is designed to represent arbitrary sequences of
   octets in a form that requires case sensitivity but need not be
   humanly readable.

   A 65-character subset of US-ASCII is used, enabling 6 bits to be
   represented per printable character.  (The extra 65th character, "=",
   is used to signify a special processing function.)

   The encoding process represents 24-bit groups of input bits as output
   strings of 4 encoded characters.  Proceeding from left to right, a
   24-bit input group is formed by concatenating 3 8-bit input groups.
   These 24 bits are then treated as 4 concatenated 6-bit groups, each
   of which is translated into a single digit in the base 64 alphabet.

   Each 6-bit group is used as an index into an array of 64 printable
   characters.  The character referenced by the index is placed in the
   output string.















Josefsson, Ed.            Expires May 16, 2006                  [Page 5]


Internet-Draft              Base-N encodings               November 2005


                         Table 1: The Base 64 Alphabet

         Value Encoding  Value Encoding  Value Encoding  Value Encoding
             0 A            17 R            34 i            51 z
             1 B            18 S            35 j            52 0
             2 C            19 T            36 k            53 1
             3 D            20 U            37 l            54 2
             4 E            21 V            38 m            55 3
             5 F            22 W            39 n            56 4
             6 G            23 X            40 o            57 5
             7 H            24 Y            41 p            58 6
             8 I            25 Z            42 q            59 7
             9 J            26 a            43 r            60 8
            10 K            27 b            44 s            61 9
            11 L            28 c            45 t            62 +
            12 M            29 d            46 u            63 /
            13 N            30 e            47 v
            14 O            31 f            48 w         (pad) =
            15 P            32 g            49 x
            16 Q            33 h            50 y

   Special processing is performed if fewer than 24 bits are available
   at the end of the data being encoded.  A full encoding quantum is
   always completed at the end of a quantity.  When fewer than 24 input
   bits are available in an input group, zero bits are added (on the
   right) to form an integral number of 6-bit groups.  Padding at the
   end of the data is performed using the '=' character.  Since all base
   64 input is an integral number of octets, only the following cases
   can arise:

   (1) the final quantum of encoding input is an integral multiple of 24
   bits; here, the final unit of encoded output will be an integral
   multiple of 4 characters with no "=" padding,

   (2) the final quantum of encoding input is exactly 8 bits; here, the
   final unit of encoded output will be two characters followed by two
   "=" padding characters, or

   (3) the final quantum of encoding input is exactly 16 bits; here, the
   final unit of encoded output will be three characters followed by one
   "=" padding character.










Josefsson, Ed.            Expires May 16, 2006                  [Page 6]


Internet-Draft              Base-N encodings               November 2005


4.  Base 64 Encoding with URL and Filename Safe Alphabet

   The Base 64 encoding with an URL and filename safe alphabet has been
   used in [10].

   An alternative alphabet has been suggested that used "~" as the 63rd
   character.  Since the "~" character has special meaning in some file
   system environments, the encoding described in this section is
   recommended instead.

   This encoding should not be regarded as the same as the "base64"
   encoding, and should not be referred to as only "base64".  Unless
   made clear, "base64" refer to the base 64 in the previous section.

   This encoding is technically identical to the previous one, except
   for the 62:nd and 63:rd alphabet character, as indicated in table 2.

             Table 2: The "URL and Filename safe" Base 64 Alphabet

         Value Encoding  Value Encoding  Value Encoding  Value Encoding
             0 A            17 R            34 i            51 z
             1 B            18 S            35 j            52 0
             2 C            19 T            36 k            53 1
             3 D            20 U            37 l            54 2
             4 E            21 V            38 m            55 3
             5 F            22 W            39 n            56 4
             6 G            23 X            40 o            57 5
             7 H            24 Y            41 p            58 6
             8 I            25 Z            42 q            59 7
             9 J            26 a            43 r            60 8
            10 K            27 b            44 s            61 9
            11 L            28 c            45 t            62 -
            12 M            29 d            46 u           (minus)
            13 N            30 e            47 v            63 _
            14 O            31 f            48 w           (understrike)
            15 P            32 g            49 x
            16 Q            33 h            50 y            (pad) =


5.  Base 32 Encoding

   The following description of base 32 is due to [9] (with
   corrections).

   The Base 32 encoding is designed to represent arbitrary sequences of
   octets in a form that needs to be case insensitive but need not be
   humanly readable.




Josefsson, Ed.            Expires May 16, 2006                  [Page 7]


Internet-Draft              Base-N encodings               November 2005


   A 33-character subset of US-ASCII is used, enabling 5 bits to be
   represented per printable character.  (The extra 33rd character, "=",
   is used to signify a special processing function.)

   The encoding process represents 40-bit groups of input bits as output
   strings of 8 encoded characters.  Proceeding from left to right, a
   40-bit input group is formed by concatenating 5 8bit input groups.
   These 40 bits are then treated as 8 concatenated 5-bit groups, each
   of which is translated into a single digit in the base 32 alphabet.
   When encoding a bit stream via the base 32 encoding, the bit stream
   must be presumed to be ordered with the most-significant-bit first.
   That is, the first bit in the stream will be the high-order bit in
   the first 8bit byte, and the eighth bit will be the low-order bit in
   the first 8bit byte, and so on.

   Each 5-bit group is used as an index into an array of 32 printable
   characters.  The character referenced by the index is placed in the
   output string.  These characters, identified in Table 3, below, are
   selected from US-ASCII digits and uppercase letters.

                      Table 3: The Base 32 Alphabet

         Value Encoding  Value Encoding  Value Encoding  Value Encoding
             0 A             9 J            18 S            27 3
             1 B            10 K            19 T            28 4
             2 C            11 L            20 U            29 5
             3 D            12 M            21 V            30 6
             4 E            13 N            22 W            31 7
             5 F            14 O            23 X
             6 G            15 P            24 Y         (pad) =
             7 H            16 Q            25 Z
             8 I            17 R            26 2


   Special processing is performed if fewer than 40 bits are available
   at the end of the data being encoded.  A full encoding quantum is
   always completed at the end of a body.  When fewer than 40 input bits
   are available in an input group, zero bits are added (on the right)
   to form an integral number of 5-bit groups.  Padding at the end of
   the data is performed using the "=" character.  Since all base 32
   input is an integral number of octets, only the following cases can
   arise:

   (1) the final quantum of encoding input is an integral multiple of 40
   bits; here, the final unit of encoded output will be an integral
   multiple of 8 characters with no "=" padding,

   (2) the final quantum of encoding input is exactly 8 bits; here, the



Josefsson, Ed.            Expires May 16, 2006                  [Page 8]


Internet-Draft              Base-N encodings               November 2005


   final unit of encoded output will be two characters followed by six
   "=" padding characters,

   (3) the final quantum of encoding input is exactly 16 bits; here, the
   final unit of encoded output will be four characters followed by four
   "=" padding characters,

   (4) the final quantum of encoding input is exactly 24 bits; here, the
   final unit of encoded output will be five characters followed by
   three "=" padding characters, or

   (5) the final quantum of encoding input is exactly 32 bits; here, the
   final unit of encoded output will be seven characters followed by one
   "=" padding character.


6.  Base 32 Encoding with Extended Hex Alphabet

   The following description of base 32 is due to [7].  This encoding
   should not be regarded as the same as the "base32" encoding, and
   should not be referred to as only "base32".

   One property with this alphabet, that the base64 and base32 alphabet
   lack, is that encoded data maintain its sort order when the encoded
   data is compared bit-wise.

   This encoding is identical to the previous one, except for the
   alphabet.  The new alphabet is found in table 4.

                     Table 4: The "Extended Hex" Base 32 Alphabet

         Value Encoding  Value Encoding  Value Encoding  Value Encoding
             0 0             9 9            18 I            27 R
             1 1            10 A            19 J            28 S
             2 2            11 B            20 K            29 T
             3 3            12 C            21 L            30 U
             4 4            13 D            22 M            31 V
             5 5            14 E            23 N
             6 6            15 F            24 O         (pad) =
             7 7            16 G            25 P
             8 8            17 H            26 Q










Josefsson, Ed.            Expires May 16, 2006                  [Page 9]


Internet-Draft              Base-N encodings               November 2005


7.  Base 16 Encoding

   The following description is original but analogous to previous
   descriptions.  Essentially, Base 16 encoding is the standard case
   insensitive hex encoding, and may be referred to as "base16" or
   "hex".

   A 16-character subset of US-ASCII is used, enabling 4 bits to be
   represented per printable character.

   The encoding process represents 8-bit groups (octets) of input bits
   as output strings of 2 encoded characters.  Proceeding from left to
   right, a 8-bit input is taken from the input data.  These 8 bits are
   then treated as 2 concatenated 4-bit groups, each of which is
   translated into a single digit in the base 16 alphabet.

   Each 4-bit group is used as an index into an array of 16 printable
   characters.  The character referenced by the index is placed in the
   output string.

                      Table 5: The Base 16 Alphabet

         Value Encoding  Value Encoding  Value Encoding  Value Encoding
             0 0             4 4             8 8            12 C
             1 1             5 5             9 9            13 D
             2 2             6 6            10 A            14 E
             3 3             7 7            11 B            15 F

   Unlike base 32 and base 64, no special padding is necessary since a
   full code word is always available.





















Josefsson, Ed.            Expires May 16, 2006                 [Page 10]


Internet-Draft              Base-N encodings               November 2005


8.  Illustrations and examples

   To translate between binary and a base encoding, the input is stored
   in a structure and the output is extracted.  The case for base 64 is
   displayed in the following figure, borrowed from [5].

            +--first octet--+-second octet--+--third octet--+
            |7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|
            +-----------+---+-------+-------+---+-----------+
            |5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|
            +--1.index--+--2.index--+--3.index--+--4.index--+

   The case for base 32 is shown in the following figure, borrowed from
   [7].  Each successive character in a base-32 value represents 5
   successive bits of the underlying octet sequence.  Thus, each group
   of 8 characters represents a sequence of 5 octets (40 bits).

                        1          2          3
             01234567 89012345 67890123 45678901 23456789
            +--------+--------+--------+--------+--------+
            |< 1 >< 2| >< 3 ><|.4 >< 5.|>< 6 ><.|7 >< 8 >|
            +--------+--------+--------+--------+--------+
                                                    <===> 8th character
                                              <====> 7th character
                                         <===> 6th character
                                   <====> 5th character
                             <====> 4th character
                        <===> 3rd character
                  <====> 2nd character
             <===> 1st character

   The following example of Base64 data is from [5].



















Josefsson, Ed.            Expires May 16, 2006                 [Page 11]


Internet-Draft              Base-N encodings               November 2005


      Input data:  0x14fb9c03d97e
      Hex:     1   4    f   b    9   c     | 0   3    d   9    7   e
      8-bit:   00010100 11111011 10011100  | 00000011 11011001 11111110
      6-bit:   000101 001111 101110 011100 | 000000 111101 100111 111110
      Decimal: 5      15     46     28       0      61     39     62
      Output:  F      P      u      c        A      9      n      +

      Input data:  0x14fb9c03d9
      Hex:     1   4    f   b    9   c     | 0   3    d   9
      8-bit:   00010100 11111011 10011100  | 00000011 11011001
                                                      pad with 00
      6-bit:   000101 001111 101110 011100 | 000000 111101 100100
      Decimal: 5      15     46     28       0      61     36
                                                         pad with =
      Output:  F      P      u      c        A      9      k      =

      Input data:  0x14fb9c03
      Hex:     1   4    f   b    9   c     | 0   3
      8-bit:   00010100 11111011 10011100  | 00000011
                                             pad with 0000
      6-bit:   000101 001111 101110 011100 | 000000 110000
      Decimal: 5      15     46     28       0      48
                                                  pad with =      =
      Output:  F      P      u      c        A      w      =      =


9.  Security Considerations

   When implementing Base encoding and decoding, care should be taken
   not to introduce vulnerabilities to buffer overflow attacks, or other
   attacks on the implementation.  A decoder should not break on invalid
   input including, e.g., embedded NUL characters (ASCII 0).

   If non-alphabet characters are ignored, instead of causing rejection
   of the entire encoding (as recommended), a covert channel that can be
   used to "leak" information is made possible.  The implications of
   this should be understood in applications that do not follow the
   recommended practice.  Similarly, when the base 16 and base 32
   alphabets are handled case insensitively, alteration of case can be
   used to leak information.

   Base encoding visually hides otherwise easily recognized information,
   such as passwords, but does not provide any computational
   confidentiality.  This has been known to cause security incidents
   when, e.g., a user reports details of a network protocol exchange
   (perhaps to illustrate some other problem) and accidentally reveals
   the password because she is unaware that the base encoding does not
   protect the password.



Josefsson, Ed.            Expires May 16, 2006                 [Page 12]


Internet-Draft              Base-N encodings               November 2005


   Base encoding adds no entropy to the plaintext, but it does increase
   the amount of plaintext available and provides a signature for
   cryptanalysis in the form of a characteristic probability
   distribution.


10.  Changes since RFC 3548

   Added the "base32 extended hex alphabet", needed to preserve sort
   order of encoded data.

   Reference IMAP for the special Base64 encoding used there.

   Fix the example copied from RFC 2440.

   Add security consideration about providing a signature for
   cryptoanalysis.

   Typo fixes.


11.  Acknowledgements

   Several people offered comments and/or suggestions, including John E.
   Hadstate, Tony Hansen, Gordon Mohr, John Myers, Chris Newman and
   Andrew Sieber.  Text used in this document are based on earlier RFCs
   describing specific uses of various base encodings.  The author
   acknowledges the RSA Laboratories for supporting the work that led to
   this document.

   This revised version is based in parts on comments and/or suggestions
   made by Roy Arends, Per Hygum, Clement Kent, and Paul Kwiatkowski.


12.  Copying conditions

   Regarding the portion of this document that was written by Simon
   Josefsson ("the author", for the remainder of this section), the
   author makes no guarantees and is not responsible for any damage
   resulting from its use.  The author grants irrevocable permission to
   anyone to use, modify, and distribute it in any way that does not
   diminish the rights of anyone else to use, modify, and distribute it,
   provided that redistributed derivative works do not contain
   misleading author or version information.  Derivative works need not
   be licensed under similar terms.


13.  References



Josefsson, Ed.            Expires May 16, 2006                 [Page 13]


Internet-Draft              Base-N encodings               November 2005


13.1.  Normative References

   [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

13.2.  Informative References

   [2]   Cerf, V., "ASCII format for network interchange", RFC 20,
         October 1969.

   [3]   Linn, J., "Privacy Enhancement for Internet Electronic Mail:
         Part I: Message Encryption and Authentication Procedures",
         RFC 1421, February 1993.

   [4]   Freed, N. and N. Borenstein, "Multipurpose Internet Mail
         Extensions (MIME) Part One: Format of Internet Message Bodies",
         RFC 2045, November 1996.

   [5]   Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
         "OpenPGP Message Format", RFC 2440, November 1998.

   [6]   Eastlake, D., "Domain Name System Security Extensions",
         RFC 2535, March 1999.

   [7]   Klyne, G. and L. Masinter, "Identifying Composite Media
         Features", RFC 2938, September 2000.

   [8]   Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
         4rev1", RFC 3501, March 2003.

   [9]   Myers, J., "SASL GSSAPI mechanisms", Work in
         progress draft-ietf-cat-sasl-gssapi-01, May 2000.

   [10]  Wilcox-O'Hearn, B., "Post to P2P-hackers mailing list", World
         Wide Web http://zgp.org/pipermail/p2p-hackers/2001-September/
         000315.html, September 2001.















Josefsson, Ed.            Expires May 16, 2006                 [Page 14]


Internet-Draft              Base-N encodings               November 2005


Author's Address

   Simon Josefsson

   Email: simon@josefsson.org














































Josefsson, Ed.            Expires May 16, 2006                 [Page 15]


Internet-Draft              Base-N encodings               November 2005


Intellectual Property Statement

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.


Disclaimer of Validity

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


Copyright Statement

   Copyright (C) The Internet Society (2005).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78, and
   except as set forth therein, the authors retain all their rights.


Acknowledgment

   Funding for the RFC Editor function is currently provided by the
   Internet Society.




Josefsson, Ed.            Expires May 16, 2006                 [Page 16]