Internet-Draft Probes Attribution February 2022
Vyncke, et al. Expires 21 August 2022 [Page]
Workgroup:
Operational Security Capabilities for IP Network Infrastructure
Internet-Draft:
draft-vyncke-opsec-probe-attribution-00
Published:
Intended Status:
Informational
Expires:
Authors:
E. Vyncke
Cisco
B. Donnet
Université de Liège
J. Iurman
Université de Liège

Attribution of Internet Probes

Abstract

Active measurements at Internet-scale can target either collaborating parties or non-collaborating ones. This is similar scan and could be perceived as aggressive. This document proposes a couple of simple techniques allowing any party or organization to understand what this unsolicited packet is, what is its purpose, and more importantly who to contact.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://evyncke.github.io/opsec-probe-attribution/draft-vyncke-opsec-probe-attribution.html. Status information for this document may be found at https://datatracker.ietf.org/doc/draft-vyncke-opsec-probe-attribution/.

Discussion of this document takes place on the Operational Security Capabilities for IP Network Infrastructure Working Group mailing list (mailto:opsec@ietf.org), which is archived at https://mailarchive.ietf.org/arch/browse/opsec/.

Source for this draft and an issue tracker can be found at https://github.com/evyncke/opsec-probe-attribution.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 August 2022.

1. Introduction

Active measurements at Internet-scale can target either collaborating parties or non-collaborating ones. Such measurements include [LARGE_SCALE] and [RFC7872].

Sending unsolicited probes should obviously be done at a rate low enough to avoid wasting other parties resources. But even at a low rate, those probes could trigger an alarm that will request some investigation by either the party receiving the probe (i.e., when the probe destination address is one address assigned to the receiving party) or by a third party having some devices where those probes are transiting (e.g., an Internet transit router).

This document suggests a couple of simple techniques allowing any party or organization to understand:

  • what this unsolicited packet is,
  • what is its purpose,
  • and more significantly who to contact for further information or stop the probing.

Note: it is expected that only good-willing researchers will use these techniques.

2. Probe / Measurement Description

2.1. Probe Description URI

This document defines a "probe description URI" as a URI pointing to:

  • "Probe Description", see Section 2.2, e.g., "https://example.net/measurement.txt";
  • an email address, e.g., "mailto:eric@example.net";
  • a phone number to call, e.g., "tel:+1-201-555-0123".

2.2. Probe Description Text

Similarly, as in [I-D.draft-foudil-securitytxt], when a node probes other nodes over the Internet, it should create a text file following the syntax described in section 3 of [I-D.draft-foudil-securitytxt] and should have the following fields:

  • contact;
  • expires;
  • preferred-languages.

Plus, another one "description" which is a URI pointing a document describing the measurement.

3. In-band Probe Attribution

When the desired measurement allows for it, one "probe description URI" should be included in the payload of all probes sent. This could be:

  • for a [RFC4443] ICMPv6 echo request: in the optional data (see section 4.1 of [RFC443]);
  • for a [RFC792] ICMPv4 echo request: in the optional data;
  • for a [RFC768] UDP datagram: in the data part;
  • for a [RFC793] TCP packet with the SYN flag: data is allowed in TCP packets with the SYN flag per section 3.4 of [RFC793] (2nd paragraph);
  • for a [RFC8200] IPv6 packet with either hop-by-hop or destination options headers, in the PadN option. Note that, per the informational [RFC4942] section 2.1.9.5, it is suggested that PadN option should only contain 0x0 and be smaller than 8 octets, so the proposed insertion of the URI in PadN option could have influence on the measurement itself;
  • etc.

The URI should start at the first octet of the payload and should be terminated by an octet of 0x0, i.e., it must be null terminated.

Note: using the above technique produces a valid and legit packet for all the nodes forwarding and receiving the probe. The node receiving the probe may or may not process the received packet, but this should cause no harm if the probing rate is very low as compared to the network bandwidth and to the processing capacity of all the nodes.

4. Out-of-band Probe Attribution

When it is not possible to include the "probe description URI" in the probe, then a specific URI must be constructed based on the source address of the probe packet following [RFC8615], e.g., for a probe source address of 2001:db8::dead, the following URI are constructed:

  • if the reverse DNS record for 2001:db8::dead exists, e.g., "example.net", then the URI is "https://example.net/.well-known/probing.txt" ;
  • else (or in addition), the URI is "https://[2001:db8::dead]/.well-known/probing.txt". Of course, there will be a certificate verification issue.

The constructed URI must be a reference to the "Probe description Text" (see Section 2.2).

5. Ethical Considerations

Executing some measurement experiences over the global Internet obviously require some ethical considerations when transit/destination non-solicited parties are involved.

This document proposes a common way to identity the source and the purpose of active probing in order to reduce the potential burden on the non-solicited parties.

But there are other considerations to be taken into account: from the payload content (e.g., is the encoding valid ?) to the transmission rate (see also [IPV6_TOPOLOGY] and [IPV4_TOPOLOGY] for some probing speed impacts). Those considerations are out of scope of this document.

6. Security Considerations

While it is expected that only good-willing researchers will use these techniques, they will simplify and shorten the time to identify a probing across the Internet.

As both proposed techniques rely on the IP source address, they are vulnerable to IP spoofing.

7. IANA Considerations

The "Well-Known URIs" registry should be updated with the following:

  • additional values (using the template from [RFC8615]):
  • URI suffix: probing.txt
  • Change controller: IETF
  • Specification document(s): this document
  • Status: permanent

8. References

8.1. Normative References

[I-D.draft-foudil-securitytxt]
Foudil, E. and Y. Shafranovich, "A File Format to Aid in Security Vulnerability Disclosure", Work in Progress, Internet-Draft, draft-foudil-securitytxt-12, , <https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-12>.
[RFC443]
McKenzie, A., "Traffic statistics (December 1972)", RFC 443, DOI 10.17487/RFC0443, , <https://www.rfc-editor.org/rfc/rfc443>.
[RFC4443]
Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", STD 89, RFC 4443, DOI 10.17487/RFC4443, , <https://www.rfc-editor.org/rfc/rfc4443>.
[RFC768]
Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI 10.17487/RFC0768, , <https://www.rfc-editor.org/rfc/rfc768>.
[RFC792]
Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, DOI 10.17487/RFC0792, , <https://www.rfc-editor.org/rfc/rfc792>.
[RFC793]
Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI 10.17487/RFC0793, , <https://www.rfc-editor.org/rfc/rfc793>.
[RFC8200]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, , <https://www.rfc-editor.org/rfc/rfc8200>.
[RFC8615]
Nottingham, M., "Well-Known Uniform Resource Identifiers (URIs)", RFC 8615, DOI 10.17487/RFC8615, , <https://www.rfc-editor.org/rfc/rfc8615>.

8.2. Informative References

[IPV4_TOPOLOGY]
Beverly, R., "Yarrp’ing the Internet Randomized High-Speed Active Topology Discovery", DOI 10.1145/2987443.2987479, , <http://www.cmand.org/papers/yarrp-imc16.pdf>.
[IPV6_TOPOLOGY]
Beverly, R., Durairajan, R., Plonka, D., and J.P. Rohrer, "In the IP of the Beholder Strategies for Active IPv6 Topology Discovery", DOI 10.1145/3278532.3278559, , <http://www.cmand.org/papers/beholder-imc18.pdf>.
[LARGE_SCALE]
Donnet, B., Raoult, P., Friedman, T., and M. Crovella, "Efficient Algorithms for Large-Scale Topology Discovery", DOI 10.1145/1071690.1064256, , <https://dl.acm.org/doi/pdf/10.1145/1071690.1064256>.
[RFC4942]
Davies, E., Krishnan, S., and P. Savola, "IPv6 Transition/Co-existence Security Considerations", RFC 4942, DOI 10.17487/RFC4942, , <https://www.rfc-editor.org/rfc/rfc4942>.
[RFC7872]
Gont, F., Linkova, J., Chown, T., and W. Liu, "Observations on the Dropping of Packets with IPv6 Extension Headers in the Real World", RFC 7872, DOI 10.17487/RFC7872, , <https://www.rfc-editor.org/rfc/rfc7872>.

Acknowledgments

The authors would like to thank Alain Fiocco, Mehdi Kouhen, and Mark Townsley for helpful discussions as well as Raphael Leas for an early implementation.

Authors' Addresses

Éric Vyncke
Cisco
De Kleetlaan 64
1831 Diegem
Belgium
Benoît Donnet
Université de Liège
Belgium
Justin Iurman
Université de Liège
Belgium