Next Steps in Signaling                                   H. Schulzrinne
Internet-Draft                                               Columbia U.
Intended status: Standards Track                              R. Hancock
Expires: October 4, 2007                                     Siemens/RMR
                                                           April 2, 2007

              GIST: General Internet Signalling Transport

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at

   The list of Internet-Draft Shadow Directories can be accessed at

   This Internet-Draft will expire on October 4, 2007.

Copyright Notice

   Copyright (C) The IETF Trust (2007).

Schulzrinne & Hancock    Expires October 4, 2007                [Page 1]

Internet-Draft                    GIST                        April 2007


   This document specifies protocol stacks for the routing and transport
   of per-flow signalling messages along the path taken by that flow
   through the network.  The design uses existing transport and security
   protocols under a common messaging layer, the General Internet
   Signalling Transport (GIST), which provides a common service for
   diverse signalling applications.  GIST does not handle signalling
   application state itself, but manages its own internal state and the
   configuration of the underlying transport and security protocols to
   enable the transfer of messages in both directions along the flow
   path.  The combination of GIST and the lower layer transport and
   security protocols provides a solution for the base protocol
   component of the "Next Steps in Signalling" framework.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Requirements Notation and Terminology . . . . . . . . . . . .   6
   3.  Design Overview . . . . . . . . . . . . . . . . . . . . . . .   9
     3.1.  Overall Design Approach . . . . . . . . . . . . . . . . .   9
     3.2.  Modes and Messaging Associations  . . . . . . . . . . . .  10
     3.3.  Message Routing Methods . . . . . . . . . . . . . . . . .  12
     3.4.  GIST Messages . . . . . . . . . . . . . . . . . . . . . .  14
     3.5.  GIST Peering Relationships  . . . . . . . . . . . . . . .  15
     3.6.  Effect on Internet Transparency . . . . . . . . . . . . .  15
     3.7.  Signalling Sessions . . . . . . . . . . . . . . . . . . .  16
     3.8.  Signalling Applications and NSLPIDs . . . . . . . . . . .  17
     3.9.  GIST Security Services  . . . . . . . . . . . . . . . . .  17
     3.10. Example of Operation  . . . . . . . . . . . . . . . . . .  18
   4.  GIST Processing Overview  . . . . . . . . . . . . . . . . . .  22
     4.1.  GIST Service Interface  . . . . . . . . . . . . . . . . .  22
     4.2.  GIST State  . . . . . . . . . . . . . . . . . . . . . . .  24
     4.3.  Basic GIST Message Processing . . . . . . . . . . . . . .  26
     4.4.  Routing State and Messaging Association Maintenance . . .  34
   5.  Message Formats and Transport . . . . . . . . . . . . . . . .  47
     5.1.  GIST Messages . . . . . . . . . . . . . . . . . . . . . .  47
     5.2.  Information Elements  . . . . . . . . . . . . . . . . . .  49
     5.3.  D-mode Transport  . . . . . . . . . . . . . . . . . . . .  53
     5.4.  C-mode Transport  . . . . . . . . . . . . . . . . . . . .  59
     5.5.  Message Type/Encapsulation Relationships  . . . . . . . .  59
     5.6.  Error Message Processing  . . . . . . . . . . . . . . . .  60
     5.7.  Messaging Association Setup . . . . . . . . . . . . . . .  61
     5.8.  Specific Message Routing Methods  . . . . . . . . . . . .  65
   6.  Formal Protocol Specification . . . . . . . . . . . . . . . .  71
     6.1.  Node Processing . . . . . . . . . . . . . . . . . . . . .  73
     6.2.  Query Node Processing . . . . . . . . . . . . . . . . . .  74

Schulzrinne & Hancock    Expires October 4, 2007                [Page 2]

Internet-Draft                    GIST                        April 2007

     6.3.  Responder Node Processing . . . . . . . . . . . . . . . .  77
     6.4.  Messaging Association Processing  . . . . . . . . . . . .  80
   7.  Additional Protocol Features  . . . . . . . . . . . . . . . .  84
     7.1.  Route Changes and Local Repair  . . . . . . . . . . . . .  84
     7.2.  NAT Traversal . . . . . . . . . . . . . . . . . . . . . .  91
     7.3.  Interaction with IP Tunnelling  . . . . . . . . . . . . .  96
     7.4.  IPv4-IPv6 Transition and Interworking . . . . . . . . . .  97
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  99
     8.1.  Message Confidentiality and Integrity . . . . . . . . . .  99
     8.2.  Peer Node Authentication  . . . . . . . . . . . . . . . . 100
     8.3.  Routing State Integrity . . . . . . . . . . . . . . . . . 100
     8.4.  Denial of Service Prevention and Overload Protection  . . 102
     8.5.  Requirements on Cookie Mechanisms . . . . . . . . . . . . 104
     8.6.  Security Protocol Selection Policy  . . . . . . . . . . . 105
     8.7.  Residual Threats  . . . . . . . . . . . . . . . . . . . . 106
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . 108
   10. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . 113
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . . 114
     11.1. Normative References  . . . . . . . . . . . . . . . . . . 114
     11.2. Informative References  . . . . . . . . . . . . . . . . . 115
   Appendix A.  Bit-Level Formats and Error Messages . . . . . . . . 118
     A.1.  The GIST Common Header  . . . . . . . . . . . . . . . . . 118
     A.2.  General Object Format . . . . . . . . . . . . . . . . . . 119
     A.3.  GIST TLV Objects  . . . . . . . . . . . . . . . . . . . . 120
     A.4.  Errors  . . . . . . . . . . . . . . . . . . . . . . . . . 129
   Appendix B.  API between GIST and Signalling Applications . . . . 138
     B.1.  SendMessage . . . . . . . . . . . . . . . . . . . . . . . 138
     B.2.  RecvMessage . . . . . . . . . . . . . . . . . . . . . . . 140
     B.3.  MessageStatus . . . . . . . . . . . . . . . . . . . . . . 141
     B.4.  NetworkNotification . . . . . . . . . . . . . . . . . . . 142
     B.5.  SetStateLifetime  . . . . . . . . . . . . . . . . . . . . 143
     B.6.  InvalidateRoutingState  . . . . . . . . . . . . . . . . . 143
   Appendix C.  Deployment Issues with Router Alert Options  . . . . 145
   Appendix D.  Example Routing State Table and Handshake  . . . . . 148
   Appendix E.  Change History . . . . . . . . . . . . . . . . . . . 150
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . . 176
   Intellectual Property and Copyright Statements  . . . . . . . . . 177

Schulzrinne & Hancock    Expires October 4, 2007                [Page 3]

Internet-Draft                    GIST                        April 2007

1.  Introduction

   Signalling involves the manipulation of state held in network
   elements.  'Manipulation' could mean setting up, modifying and
   tearing down state; or it could simply mean the monitoring of state
   which is managed by other mechanisms.

   This specification concentrates mainly on path-coupled signalling,
   controlling resources on network elements which are located on the
   path taken by a particular data flow, possibly including but not
   limited to the flow endpoints.  Indeed, there are almost always more
   than two participants in a path-coupled signalling session, although
   there is no need for every node on the path to participate.  Path-
   coupled signalling thus excludes end-to-end higher-layer application
   signalling.  In the context of path-coupled signalling, examples of
   state management include network resource reservation, firewall
   configuration, and state used in active networking; examples of state
   monitoring are the discovery of instantaneous path properties, such
   as available bandwidth or cumulative queuing delay.  Each of these
   different uses of signalling is referred to as a signalling
   application.  GIST path-coupled signalling does not directly support
   multicast flows but could be extended to do so, especially in
   environments where the multicast replication points can be made GIST-
   capable.  GIST can also be extended to cover other types of
   signalling pattern, not related to any end-to-end flow in the
   network, in which case the distinction between GIST and end-to-end
   higher-layer signalling will be drawn differently or not at all.

   Every signalling application requires a set of state management
   rules, as well as protocol support to exchange messages along the
   data path.  Several aspects of this protocol support are common to
   all or a large number of signalling applications, and hence can be
   developed as a common protocol.  The NSIS framework given in [30]
   provides a rationale for a function split between the common and
   application specific protocols, and gives outline requirements for
   the former, the 'NSIS Transport Layer Protocol' (NTLP).  The
   application specific protocols are referred to as 'NSIS Signalling
   Layer Protocols' (NSLPs), and are defined in separate documents.  The
   NSIS framework [30], and the accompanying threats document [31],
   provide important background information to this specification,
   including information on how GIST is expected to be used in various
   network types and what role it is expected to perform.

   This specification provides a concrete solution for the NTLP.  It is
   based on the use of existing transport and security protocols under a
   common messaging layer, the General Internet Signalling Transport
   (GIST).  GIST does not handle signalling application state itself; in
   that crucial respect, it differs from application signalling

Schulzrinne & Hancock    Expires October 4, 2007                [Page 4]

Internet-Draft                    GIST                        April 2007

   protocols such as SIP, RTSP, and the control component of FTP.
   Instead, GIST manages its own internal state and the configuration of
   the underlying transport and security protocols to ensure the
   transfer of signalling messages on behalf of signalling applications
   in both directions along the flow path.

   The structure of this specification is as follows.  Section 2 defines
   terminology, and Section 3 gives an informal overview of the protocol
   design principles and operation.  The normative specification is
   contained mainly in Section 4 to Section 8.  Section 4 describes the
   message sequences and Section 5 their format and contents.  Note that
   the detailed bit formats are given in Appendix A.  The protocol
   operation is captured in the form of state machine language in
   Section 6.  Section 7 describes some more advanced protocol features
   and security considerations are contained in Section 8.  In addition,
   Appendix B describes an abstract API for the service which GIST
   provides to signalling applications, and Appendix D provides an
   example message flow.  Parts of the GIST design depend on the use of
   packets with IP options to probe the network, which leads to
   migration issues in networks with non-GIST nodes, especially in the
   case of IPv4, and these are discussed in Appendix C.

   Because of the layered structure of the NSIS protocol suite, protocol
   extensions to cover a new signalling requirement could be carried out
   either within GIST, or within the signalling application layer, or
   both.  General guidelines on how to extend different layers of the
   protocol suite, and in particular when and how it is appropriate to
   extend GIST, are contained in a separate document, [14].  In this
   document, Section 9 gives the formal IANA considerations for the
   registries already defined by the GIST specification.

Schulzrinne & Hancock    Expires October 4, 2007                [Page 5]

Internet-Draft                    GIST                        April 2007

2.  Requirements Notation and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   document are to be interpreted as described in RFC 2119 [4].  In
   addition, the security specifications in Section 5.7.3 use the
   terminology MUST- and SHOULD+ from [5].

   The terminology used in this specification is defined in this
   section.  The basic entities relevant at the GIST level are shown in
   Figure 1.  In particular, this diagram distinguishes the different
   address types as being associated with a flow (end-to-end addresses)
   or signalling (addresses of adjacent signalling peers).

   Source                 GIST (adjacent) peer nodes         Destination

   IP address              IP addresses = Signalling         IP address
   = Flow                Source/Destination Addresses        = Flow
   Source             (depending on signalling direction)    Destination
   Address                  |                   |            Address
                            V                   V
   +--------+           +------+  Data Flow  +------+         +--------+
   |  Flow  |-----------|------|-------------|------|-------->|  Flow  |
   | Sender |           |      |             |      |         |Receiver|
   +--------+           | GIST |============>| GIST |         +--------+
                        | Node |<============| Node |
                        +------+  Signalling  +------+
                          GN1       Flow       GN2

                  >>>>>>>>>>>>>>>>>  =  Downstream direction
                  <<<<<<<<<<<<<<<<<  =  Upstream direction

                        Figure 1: Basic Terminology

   [Data] Flow:  A set of packets identified by some fixed combination
      of header fields.  Flows are unidirectional; a bidirectional
      communication is considered a pair of unidirectional flows.

   Session:  A single application layer flow of information for which
      some state information is to be manipulated or monitored.  See
      Section 3.7 for further detailed discussion.

   Session Identifier (SID):  An identifier for a session; the syntax is
      a 128 bit opaque value.

Schulzrinne & Hancock    Expires October 4, 2007                [Page 6]

Internet-Draft                    GIST                        April 2007

   [Flow] Sender:  The node in the network which is the source of the
      packets in a flow.  A sender could be a host, or a router if for
      example the flow is actually an aggregate.

   [Flow] Receiver:  The node in the network which is the sink for the
      packets in a flow.

   Downstream:  In the same direction as the data flow.

   Upstream:  In the opposite direction to the data flow.

   GIST Node:  Any node along the data path supporting GIST, regardless
      of what signalling applications it supports.

   [Adjacent] Peer:  The next node along the signalling path, in the
      upstream or downstream direction, with which a GIST node
      explicitly interacts.

   Querying Node:  The GIST node that initiates the handshake process to
      discover the adjacent peer.

   Responding Node:  The GIST node that responds to the handshake,
      becoming the adjacent peer to the Querying node.

   Datagram Mode (D-mode):  A mode of sending GIST messages between
      nodes without using any transport layer state or security
      protection.  Datagram mode uses UDP encapsulation, with source and
      destination IP addresses derived either from the flow definition
      or previously discovered adjacency information.

   Connection Mode (C-mode):  A mode of sending GIST messages directly
      between nodes using point-to-point messaging associations (see
      below).  Connection mode allows the re-use of existing transport
      and security protocols where such functionality is required.

   Messaging Association (MA):  A single connection between two
      explicitly identified GIST adjacent peers, i.e. between a given
      signalling source and destination address.  A messaging
      association may use a specific transport protocol and known ports.
      If security protection is required, it may use a specific network
      layer security association, or use a transport layer security
      association internally.  A messaging association is bidirectional:
      signalling messages can be sent over it in either direction,
      referring to flows of either direction.

Schulzrinne & Hancock    Expires October 4, 2007                [Page 7]

Internet-Draft                    GIST                        April 2007

   [Message] Routing:  Message routing describes the process of
      determining which is the next GIST peer along the signalling path.
      For signalling along a flow path, the message routing carried out
      by GIST is built on top of normal IP routing.  In this document,
      the term 'routing' generally refers to GIST message routing unless
      otherwise qualified.

   Message Routing Method (MRM):  There can be different algorithms for
      discovering the route that signalling messages should take.  These
      are referred to as message routing methods, and GIST supports
      alternatives within a common protocol framework.  See Section 3.3.

   Message Routing Information (MRI):  The set of data item values which
      is used to route a signalling message according to a particular
      MRM; for example, for routing along a flow path, the MRI includes
      flow source and destination addresses, protocol and port numbers.
      See Section 3.3.

   Router Alert Option (RAO):  An option that can be included in IP v4
      and v6 headers to assist in the packet interception process; see
      [3] and [8].

   Transfer Attributes:  A description of the requirements which a
      signalling application has for the delivery of a particular
      message; for example, whether the message should be delivered
      reliably.  See Section 4.1.2.

Schulzrinne & Hancock    Expires October 4, 2007                [Page 8]

Internet-Draft                    GIST                        April 2007

3.  Design Overview

3.1.  Overall Design Approach

   The generic requirements identified in the NSIS framework [30] for
   transport of signalling messages are essentially two-fold:

   Routing:  Determine how to reach the adjacent signalling node along
      each direction of the data path (the GIST peer), and if necessary
      explicitly establish addressing and identity information about
      that peer;

   Transport:  Deliver the signalling information to that peer.

   To meet the routing requirement, one possibility is for the node to
   use local routing state information to determine the identity of the
   GIST peer explicitly.  GIST defines a three-way handshake which
   probes the network to set up the necessary routing state between
   adjacent peers, during which signalling applications can also
   exchange data.  Once the routing decision has been made, the node has
   to select a mechanism for transport of the message to the peer.  GIST
   divides the transport problems into two categories, the easy and the
   difficult.  It handles the easy cases internally, and uses well-
   understood transport protocols for the harder cases.  Here, with
   details discussed later, "easy" messages are those that are sized
   well below the lowest maximum transmission unit (MTU) along a path,
   are infrequent enough not to cause concerns about congestion and flow
   control, and do not need security protection or guaranteed delivery.

   In [30] all of these routing and transport requirements are assigned
   to a single notional protocol, the NSIS Transport Layer Protocol
   (NTLP).  The strategy of splitting the transport problem leads to a
   layered structure for the NTLP, of a specialised GIST messaging layer
   running over standard transport and security protocols.  The basic
   concept is shown in Figure 2.  Note that not every combination of
   transport and security protocols implied by the figure is actually
   possible for use in GIST; the actual combinations allowed by this
   specification are defined in Section 5.7.  The figure also shows GIST
   offering its services to upper layers at an abstract interface, the
   GIST API, further discussed in Section 4.1.

Schulzrinne & Hancock    Expires October 4, 2007                [Page 9]

Internet-Draft                    GIST                        April 2007

          ^^                      +-------------+
          ||                      |  Signalling |
         NSIS        +------------|Application 2|
       Signalling    | Signalling +-------------+
      Application    |Application 1|         |
         Level       +-------------+         |
          ||             |                   |
          VV             |                   |
                 ========|===================|=====  <-- GIST API
                         |                   |
          ^^       +------------------------------------------------+
          ||       |+-----------------------+      +--------------+ |
          ||       ||         GIST          |      | GIST State   | |
          ||       ||     Encapsulation     |<<<>>>| Maintenance  | |
          ||       |+-----------------------+      +--------------+ |
          ||       | GIST: Messaging Layer                          |
          ||       +------------------------------------------------+
         NSIS                 |       |       |       |
       Transport      ..........................................
         Level        . Transport Layer Security (TLS or DTLS) .
        (NTLP)        ..........................................
          ||                  |       |       |       |
          ||                +----+  +----+  +----+  +----+
          ||                |UDP |  |TCP |  |SCTP|  |DCCP| ... other
          ||                +----+  +----+  +----+  +----+     protocols
          ||                  |       |       |       |
          ||                .............................
          ||                .     IP Layer Security     .
          ||                .............................
          VV                  |       |       |       |
                              |       |       |       |
                   |                      IP                      |

      Figure 2: Protocol Stack Architecture for Signalling Transport

3.2.  Modes and Messaging Associations

   Internally, GIST has two modes of operation:

   Datagram mode (D-mode):  used for small, infrequent messages with
      modest delay constraints and no security requirements.  A special
      case of D-mode called Query-mode (Q-mode) is used when no routing
      state exists.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 10]

Internet-Draft                    GIST                        April 2007

   Connection mode (C-mode):  used for larger messages or where fast
      state setup in the face of packet loss is desirable, or where
      channel security is required.

   D-mode uses UDP, as a suitable NAT-friendly encapsulation which does
   not require per-message shared state to be maintained between the
   peers.  Long-term evolution of GIST is assumed to preserve the
   simplicity of the current D-mode design.  Extensions to the security
   or transport capabilities of D-mode can be provided equivalently by
   selecting a different protocol stack under the GIST messaging layer,
   which would then become another option within the overall C-mode
   framework.  This includes both the case of using existing protocols,
   and specific development of a message exchange and payload
   encapsulation to support GIST requirements.  Alternatively, if any
   necessary parameters (e.g. a shared secret for use in integrity or
   confidentiality protection) can be negotiated out-of-band, then the
   additional functions can be added directly to D-mode by adding an
   optional object to the message (see Appendix A.2.1).  Note that
   downgrade attacks on such approach would need to be prevented by
   policy at the destination node, similar to the situation discussed in
   Section 8.6.

   C-mode can in principle use any stream or message-oriented transport
   protocol; this specification defines TCP as the initial choice.  It
   can in principle employ specific network layer security associations,
   or an internal transport layer security association; this
   specification defines TLS as the initial choice.  When GIST messages
   are carried in C-mode, they are treated just like any other traffic
   by intermediate routers between the GIST peers.  Indeed, it would be
   impossible for intermediate routers to carry out any processing on
   the messages without terminating the transport and security protocols

   It is possible to mix these two modes along a path.  This allows, for
   example, the use of D-mode at the edges of the network and C-mode in
   the core of the network.  Such combinations may make operation more
   efficient for mobile endpoints, while allowing multiplexing of
   signalling messages across shared security associations and transport
   connections between core routers.  The setup for these protocols
   imposes an initialisation cost for the use of C-mode, but in the long
   term this cost can be shared over all signalling sessions between
   peers; once the transport layer state exists, retransmission
   algorithms can operate much more aggressively than would be possible
   in a pure D-mode design.

   It must be understood that the routing and transport decisions made
   by GIST are not independent.  If the message transfer has
   requirements that require C-mode, for example if the message is so

Schulzrinne & Hancock    Expires October 4, 2007               [Page 11]

Internet-Draft                    GIST                        April 2007

   large that fragmentation is required, this can only be used between
   explicitly identified nodes.  In such cases, GIST carries out the
   three-way handshake initially in D-mode to identify the peer and then
   sets up the necessary connections if they do not already exist.  It
   must also be understood that the signalling application does not make
   the D-mode/C-mode selection directly; rather, this decision is made
   by GIST on the basis of the message characteristics and the transfer
   attributes stated by the application.  The distinction is not visible
   at the GIST service interface.

   In general, the state associated with C-mode messaging to a
   particular peer (signalling destination address, protocol and port
   numbers, internal protocol configuration and state information) is
   referred to as a messaging association (MA).  MAs are totally
   internal to GIST (they are not visible to signalling applications).
   Although GIST may be using an MA to deliver messages about a
   particular flow, there is no direct correspondence between them: the
   GIST message routing algorithms consider each message in turn and
   select an appropriate MA to transport it.  There may be any number of
   MAs between two GIST peers although the usual case is zero or one,
   and they are set up and torn down by management actions within GIST

3.3.  Message Routing Methods

   The baseline message routing functionality in GIST is that signalling
   messages follow a route defined by an existing flow in the network,
   visiting a subset of the nodes through which it passes.  This is the
   appropriate behaviour for application scenarios where the purpose of
   the signalling is to manipulate resources for that flow.  However,
   there are scenarios for which other behaviours are applicable.  Two
   examples are:

   Predictive Routing:  Here, the intent is to signal along a path that
      the data flow may follow in the future.  Possible cases are pre-
      installation of state on the backup path that would be used in the
      event of a link failure, and predictive installation of state on
      the path that will be used after a mobile node handover.

   NAT Address Reservations:  This applies to the case where a node
      behind a NAT wishes to reserve an address at which it can be
      reached by a sender on the other side.  This requires a message to
      be sent outbound from what will be the flow receiver although no
      reverse routing state for the flow yet exists.

   Most of the details of GIST operation are independent of which is
   being used.  Therefore, the GIST design encapsulates the routing-
   dependent details as a message routing method (MRM), and allows

Schulzrinne & Hancock    Expires October 4, 2007               [Page 12]

Internet-Draft                    GIST                        April 2007

   multiple MRMs to be defined.  This specification defines the path-
   coupled MRM, corresponding to the baseline functionality described
   above, and a second MRM for the NAT Address Reservation case.  The
   detailed specifications are given in Section 5.8.

   The content of a MRM definition is as follows, using the path-coupled
   MRM as an example:

   o  The format of the information that describes the path that the
      signalling should take, the Message Routing Information (MRI).
      For the path-coupled MRM, this is just the Flow Identifier (see
      Section and some additional control information.
      Specifically, the MRI always includes a flag to distinguish
      between the two directions that signalling messages can take,
      denoted 'upstream' and 'downstream'.

   o  A specification of the IP-level encapsulation of the messages
      which probe the network to discover the adjacent peers.  A
      downstream encapsulation must be defined; an upstream
      encapsulation is optional.  For the path-coupled MRM, this
      information is given in Section and Section
      Current MRMs rely on the interception of probe messages in the
      data plane, but other mechanisms are also possible within the
      overall GIST design and would be appropriate for other types of
      signalling pattern.

   o  A specification of what validation checks GIST should apply to the
      probe messages, for example to protect against IP address spoofing
      attacks.  The checks may be dependent on the direction (upstream
      or downstream) of the message.  For the path-coupled MRM, the
      downstream validity check is basically a form of ingress
      filtering, also discussed in Section

   o  The mechanism(s) available for route change detection, i.e. any
      change in the neighbour relationships that the MRM discovers.  The
      default case for any MRM is soft-state refresh, but additional
      supporting techniques may be possible; see Section 7.1.2.

   In addition, it should be noted that NAT traversal may require
   translation of fields in the MRI object carried in GIST messages (see
   Section 7.2.2).  The generic MRI format includes a flag that must be
   given as part of the MRM definition, to indicate if some kind of
   translation is necessary.  Development of a new MRM therefore
   includes updates to the GIST specification, and may include updates
   to specifications of NAT behaviour.  These updates may be done in
   separate documents as is the case for NAT traversal for the MRMs of
   the base GIST specification, as described in Section 7.2.3 and [42].

Schulzrinne & Hancock    Expires October 4, 2007               [Page 13]

Internet-Draft                    GIST                        April 2007

   The MRI is passed explicitly between signalling applications and
   GIST; therefore, signalling application specifications must define
   which MRMs they require.  Signalling applications may use fields in
   the MRI in their packet classifiers; if they use additional
   information for packet classification, this would be carried at the
   NSLP level and so would be invisible to GIST.  Any node hosting a
   particular signalling application needs to use a GIST implementation
   that supports the corresponding MRMs.  The GIST processing rules
   allow nodes not hosting the signalling application to ignore messages
   for it at the GIST level, so it does not matter if these nodes
   support the MRM or not.

3.4.  GIST Messages

   GIST has six message types: Query, Response, Confirm, Data, Error,
   and MA-Hello.  Apart from the invocation of the messaging association
   protocols used by C-mode, all GIST communication consists of these
   messages.  In addition, all signalling application data is carried as
   additional payloads in these messages, alongside the GIST

   The Query, Response and Confirm messages implement the handshake that
   GIST uses to set up routing state and messaging associations.  The
   handshake is initiated from the Querying node towards the Responding
   node.  The first message is the Query, which is encapsulated in a
   special way depending on the message routing method, in order to
   probe the network infrastructure so that the correct peer will
   intercept it and become the Responding node.  A Query always triggers
   a Response in the reverse direction as the second message of the
   handshake.  As part of the defence against denial of service attacks,
   the Responding node can delay state installation until a return
   routability check, and require the Querying node to complete the
   handshake with the Confirm message.  All of these three messages can
   optionally carry signalling application data.  The handshake is fully
   described in Section 4.4.1.

   The Data message is used purely to encapsulate and deliver signalling
   application data.  Usually it is sent using pre-established routing
   state.  However, if there are no security or transport requirements
   and no need for persistent reverse routing state, it can also be sent
   in the same way as the Query.  Finally, Error messages are used to
   indicate error conditions at the GIST level, and the MA-Hello message
   can be used as a diagnostic and keepalive for the messaging
   association protocols.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 14]

Internet-Draft                    GIST                        April 2007

3.5.  GIST Peering Relationships

   Peering is the process whereby two GIST nodes create message routing
   state which point to each other.

   A peering relationship can only be created by a GIST handshake.
   Nodes become peers when one issues a Query and gets a Response from
   another.  Issuing the initial Query is a result of an NSLP request on
   that node, and the Query itself is formatted according to the rules
   of the message routing method.  For current MRMs, the identity of the
   Responding node is not known explicitly at the time the Query is
   sent; instead, the message is examined by nodes along the path until
   one decides to send a Response, thereby becoming the peer.  If the
   node hosts the NSLP, local GIST and signalling application policy
   determine whether to peer; the details are given in Section 4.3.2.
   Nodes not hosting the NSLP forward the Query transparently
   (Section 4.3.4).

   An exisiting peering relationship can only be changed by a new GIST
   handshake; in other words, it can only change when routing state is
   refreshed.  On a refresh, if any of the factors in the original
   peering process have changed, the peering relationship can also
   change.  As well as network level rerouting, changes could include
   modifications in NSIS signalling functions deployed at a node, or
   alterations to signalling application policy.  A change could cause
   an existing node to drop out of the signalling path, or a new node to
   become part of it.  All these possibilities are handled as rerouting
   events by GIST; further details of the process are described in
   Section 7.1.

3.6.  Effect on Internet Transparency

   GIST relies on routers inside the network to intercept and process
   packets which would normally be transmitted end-to-end.  This
   processing may be non-transparent: messages may be forwarded with
   modifications, or not forwarded at all.  This interception applies
   only to the encapsulation used for messages which initially probe the
   network, for example along a flow path; all other GIST messages are
   handled only by the nodes to which they are directly addressed, i.e.
   as normal Internet traffic.

   Because this interception potentially breaks Internet transparency
   for packets which are nothing to do with GIST, the encapsulation used
   by GIST in this case (called Query-mode or Q-mode) has several
   features to avoid accidental collisions with other traffic:

   o  Q-mode messages are always sent as UDP traffic, and to a specific
      well-known port allocated by IANA.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 15]

Internet-Draft                    GIST                        April 2007

   o  All GIST messages sent as UDP have a magic number as the first 32-
      bit word of the datagram payload.

   Even if a node intercepts a packet as potentially a GIST message,
   unless it passes both these checks it will be ignored at the GIST
   level and forwarded transparently.  Further discussion of the
   reception process is in Section 4.3.1 and the encapsulation in
   Section 5.3.

3.7.  Signalling Sessions

   GIST requires signalling applications to associate each of their
   messages with a signalling session.  Informally, given an application
   layer exchange of information for which some network control state
   information is to be manipulated or monitored, the corresponding
   signalling messages should be associated with the same session.
   Signalling applications provide the session identifier (SID) whenever
   they wish to send a message, and GIST reports the SID when a message
   is received; on messages forwarded at the GIST level, the SID is
   preserved unchanged.  Usually, NSLPs will preserve the SID value
   along the entire signalling path, but this is not enforced by or even
   visible to GIST, which only sees the scope of the SID as the single
   hop between adjacent NSLP peers.

   Most GIST processing and state information is related to the flow
   (defined by the MRI, see above) and signalling application (given by
   the NSLP identifier, see below).  There are several possible
   relationships between flows and sessions, for example:

   o  The simplest case is that all signalling messages for the same
      flow have the same SID.

   o  Messages for more than one flow may use the same SID, for example
      because one flow is replacing another in a mobility or multihoming

   o  A single flow may have messages for different SIDs, for example
      from independently operating signalling applications.

   Because of this range of options, GIST does not perform any
   validation on how signalling applications map between flows and
   sessions, nor does it perform any direct validation on the properties
   of the SID itself, such as any enforcement of uniqueness.  GIST only
   defines the syntax of the SID as an opaque 128-bit identifier.

   The SID assignment has the following impact on GIST processing:

Schulzrinne & Hancock    Expires October 4, 2007               [Page 16]

Internet-Draft                    GIST                        April 2007

   o  Messages with the same SID that are to be delivered reliably
      between the same GIST peers are delivered in order.

   o  All other messages are handled independently.

   o  GIST identifies routing state (upstream and downstream peer) by
      the triplet (MRI, NSLP, SID).

   Strictly speaking, the routing state should not depend on the SID.
   However, if the routing state is keyed only by (MRI, NSLP), there is
   a trivial denial of service attack (see Section 8.3) where a
   malicious off-path node asserts that it is the peer for a particular
   flow.  Such an attack would not redirect the traffic but would
   reroute the signalling.  Instead, the routing state is also
   segregated between different SIDs, which means that the attacking
   node can only disrupt a signalling session if it can guess the
   corresponding SID.  Normative rules on the selection of SIDs are
   given in Section 4.1.3.

3.8.  Signalling Applications and NSLPIDs

   The functionality for signalling applications is supported by NSIS
   signalling layer protocols (NSLPs).  Each NSLP is identified by a 16
   bit NSLP identifier (NSLPID), assigned by IANA (Section 9).  A single
   signalling application, such as resource reservation, may define a
   family of NSLPs to implement its functionality, for example to carry
   out signalling operations at different levels in a hierarchy (cf.
   [23]).  However, the interactions between the different NSLPs (for
   example, to relate aggregation levels or aggregation region
   boundaries in the resource management case) are handled at the
   signalling application level; the NSLPID is the only information
   visible to GIST about the signalling application being used.

3.9.  GIST Security Services

   GIST has two distinct security goals:

   o  to protect GIST state from corruption, and to protect the nodes on
      which it runs from resource exhaustion attacks; and

   o  to provide secure transport for NSLP messages to the signalling

   The protocol mechanisms to achieve the first goal are mainly internal
   to GIST.  They include a cookie exchange and return routability check
   to protect the handshake which sets up routing state, and a random
   SID is also used to prevent off-path session hijacking by SID
   guessing.  Further details are given in Section 4.1.3 and

Schulzrinne & Hancock    Expires October 4, 2007               [Page 17]

Internet-Draft                    GIST                        April 2007

   Section 4.4.1, and the overall security aspects are discussed in
   Section 8.

   A second level of protection is provided by the use of a channel
   security protocol in messaging associations (i.e. within C-mode).
   This mechanism serves two purposes: to protect against on-path
   attacks on GIST, and to provide a secure channel for NSLP messages.
   For the mechanism to be effective, it must be able to provide the
   following functions:

   o  mutual authentication of the GIST peer nodes;

   o  ability to verify the authenticated identity against a database of
      nodes authorised to take part in GIST signalling;

   o  confidentiality and integrity protection for NSLP data, and
      provision of the authenticated identities used to the signalling

   The authorised peer database is described in more detail in
   Section 4.4.2, including the types of entries that it can contain and
   the authorisation checking algorithm that is used.  The only channel
   security protocol defined by this specification is a basic use of
   TLS, and Section 5.7.3 defines the TLS-specific aspects of how these
   functions (for example, authentication and identity comparison) are
   integrated with the rest of GIST operation.  At a high level, there
   are several alternative protocols with similar functionality, and the
   handshake (Section 4.4.1) provides a mechanism within GIST to select
   between them.  However, they differ in their identity schemes and
   authentication methods and dependencies on infrastructure support for
   the authentication process, and any GIST extension to incorporate
   them would need to define the details of the corresponding
   interactions with GIST operation.

3.10.  Example of Operation

   This section presents an example of GIST usage in a relatively simple
   (in particular, NAT-free) signalling scenario, to illustrate its main

   Consider the case of an RSVP-like signalling application which makes
   receiver-based resource reservations for a single unicast flow.  In
   general, signalling can take place along the entire end-to-end path
   (between flow source and destination), but the role of GIST is only
   to transfer signalling messages over a single segment of the path,
   between neighbouring resource-capable nodes.  Basic GIST operation is
   the same, whether it involves the endpoints or only interior nodes:
   in either case, GIST is triggered by a request from a local

Schulzrinne & Hancock    Expires October 4, 2007               [Page 18]

Internet-Draft                    GIST                        April 2007

   signalling application.  The example here describes how GIST
   transfers messages between two adjacent peers along the path, GN1 and
   GN2 (see Figure 1 in Section 2).  We take up the story at the point
   where a message is being processed above the GIST layer by the
   signalling application in GN1.

   1.  The signalling application in GN1 determines that this message is
       a simple description of resources that would be appropriate for
       the flow.  It determines that it has no special security or
       transport requirements for the message, but simply that it should
       be transferred to the next downstream signalling application peer
       on the path that the flow will take.

   2.  The message payload is passed to the GIST layer in GN1, along
       with a definition of the flow and description of the message
       transfer attributes (in this case, requesting no reliable
       transmission or channel security protection).  GIST determines
       that this particular message does not require fragmentation and
       that it has no knowledge of the next peer for this flow and
       signalling application; however, it also determines that this
       application is likely to require secured upstream and downstream
       transport of large messages in the future.  This determination is
       a function of node-local policy interactions between GIST and the
       signalling application.

   3.  GN1 therefore constructs a GIST Query carrying the NSLP payload,
       and additional payloads at the GIST level which will be used to
       initiate a messaging association.  The Query is encapsulated in a
       UDP datagram and injected into the network.  At the IP level, the
       destination address is the flow receiver, and an IP Router Alert
       Option (RAO) is also included.

   4.  The Query passes through the network towards the flow receiver,
       and is seen by each router in turn.  GIST-unaware routers will
       not recognise the RAO value and will forward the message
       unchanged; GIST-aware routers which do not support the NSLP in
       question will also forward the message basically unchanged,
       although they may need to process more of the message to decide

   5.  The message is intercepted at GN2.  The GIST layer identifies the
       message as relevant to a local signalling application, and passes
       the NSLP payload and flow description upwards to it.  This
       signalling application in GN2 indicates to GIST that it will peer
       with GN1 and so GIST should proceed to set up any routing state.
       In addition, the signalling application continues to process the
       message as in GN1 (compare step 1), passing the message back down
       to GIST so that it is sent further downstream, and this will

Schulzrinne & Hancock    Expires October 4, 2007               [Page 19]

Internet-Draft                    GIST                        April 2007

       eventually result in the message reaching the flow receiver.
       GIST itself operates hop-by-hop, and the signalling application
       joins these hops together to manage the end-to-end signalling

   6.  In parallel, the GIST instance in GN2 now knows that it should
       maintain routing state and a messaging association for future
       signalling with GN1.  This is recognised because the message is a
       Query, and because the local signalling application has indicated
       that it will peer with GN1.  There are two possible cases for
       sending back the necessary GIST Response:

       6.A - Association Exists:  GN1 and GN2 already have an
          appropriate MA.  GN2 simply records the identity of GN1 as its
          upstream peer for that flow and NSLP, and sends a Response
          back to GN1 over the MA identifying itself as the peer for
          this flow.

       6.B - No Association:  GN2 sends the Response in D-mode directly
          to GN1, identifying itself and agreeing to the messaging
          association setup.  The protocol exchanges needed to complete
          this will proceed in parallel with the following stages.

       In each case, the result is that GN1 and GN2 are now in a peering
       relationship for the flow.

   7.  Eventually, another NSLP message works its way upstream from the
       receiver to GN2.  This message contains a description of the
       actual resources requested, along with authorisation and other
       security information.  The signalling application in GN2 passes
       this payload to the GIST level, along with the flow definition
       and transfer attributes; in this case, it could request reliable
       transmission and use of a secure channel for integrity
       protection.  (Other combinations of attributes are possible).

   8.  The GIST layer in GN2 identifies the upstream peer for this flow
       and NSLP as GN1, and determines that it has an MA with the
       appropriate properties.  The message is queued on the MA for
       transmission; this may incur some delay if the procedures begun
       in step 6.B have not yet completed.

   Further messages can be passed in each direction in the same way.
   The GIST layer in each node can in parallel carry out maintenance
   operations such as route change detection (see Section 7.1).

   It should be understood that several of these details of GIST
   operations can be varied, either by local policy or according to
   signalling application requirements.  The authoritative details are

Schulzrinne & Hancock    Expires October 4, 2007               [Page 20]

Internet-Draft                    GIST                        April 2007

   contained in the remainder of this document.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 21]

Internet-Draft                    GIST                        April 2007

4.  GIST Processing Overview

   This section defines the basic structure and operation of GIST.
   Section 4.1 describes the way in which GIST interacts with local
   signalling applications in the form of an abstract service interface.
   Section 4.2 describes the per-flow and per-peer state that GIST
   maintains for the purpose of transferring messages.  Section 4.3
   describes how messages are processed in the case where any necessary
   messaging associations and routing state already exist; this includes
   the simple scenario of pure D-mode operation, where no messaging
   associations are necessary.  Finally, Section 4.4 describes how
   routing state and messaging associations are created and managed.

4.1.  GIST Service Interface

   This section describes the interaction between GIST and signalling
   applications in terms of an abstract service interface, including a
   definition of the attributes of the message transfer that GIST can
   offer.  The service interface presented here is non-normative and
   does not constrain actual implementations of any interface between
   GIST and signalling applications; the interface is provided to aid
   understanding of how GIST can be used.  However, requirements on SID
   selection and internal GIST behaviour to support message transfer
   semantics (such as in-order delivery) are stated normatively here.

   The same service interface is presented at every GIST node; however,
   applications may invoke it differently at different nodes, depending
   for example on local policy.  In addition, the service interface is
   defined independently of any specific transport protocol, or even the
   distinction between D-mode and C-mode.  The initial version of this
   specification defines how to support the service interface using a
   C-mode based on TCP; if additional protocol support is added, this
   will support the same interface and so the change will be invisible
   to applications, except as a possible performance improvement.  A
   more detailed description of this service interface is given in
   Appendix B.

4.1.1.  Message Handling

   Fundamentally, GIST provides a simple message-by-message transfer
   service for use by signalling applications: individual messages are
   sent, and individual messages are received.  At the service
   interface, the NSLP payload, which is opaque to GIST, is accompanied
   by control information expressing the application's requirements
   about how the message should be routed, and the application also
   provides the session identifier (SID), see Section 4.1.3.  Additional
   message transfer attributes control the specific transport and
   security properties that the signalling application desires.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 22]

Internet-Draft                    GIST                        April 2007

   The distinction between GIST D- and C-mode is not visible at the
   service interface.  In addition, the functionality to handle
   fragmentation and reassembly, bundling together of small messages for
   efficiency, and congestion control are not visible at the service
   interface; GIST will take whatever action is necessary based on the
   properties of the messages and local node state.

   A signalling application is free to choose the rate at which it
   processes inbound messages; an implementation MAY allow the
   application to block accepting messages from GIST.  In these
   circumstances, GIST MAY discard unreliably delivered messages, but
   for reliable messages MUST propagate flow-control condition back to
   the sender.  Therefore, applications must be aware that they may in
   turn be blocked from sending outbound messages themselves.

4.1.2.  Message Transfer Attributes

   Message transfer attributes are used to define certain performance
   and security-related aspects of message processing.  The attributes
   available are as follows:

   Reliability:  This attribute may be 'true' or 'false'.  When 'true',
      messages MUST be delivered to the signalling application in the
      peer exactly once or not at all; for messages with the same SID,
      the delivery MUST be in order.  If there is a chance that the
      message was not delivered, an error MUST be indicated to the local
      signalling application identifying the routing information for the
      message in question.  GIST implements reliability by using an
      appropriate transport protocol within a messaging association, so
      mechanisms for the detection of message loss depend on the
      protocol in question; for the current specification, the case of
      TCP is considered in Section 5.7.2.  When 'false', a message may
      be delivered, once, several times or not at all, with no error
      indications in any case.

   Security:  This attribute defines the set of security properties that
      the signalling application requires for the message, including the
      type of protection required, and what authenticated identities
      should be used for the signalling source and destination.  This
      information maps onto the corresponding properties of the security
      associations established between the peers in C-mode.  Keying
      material for the security associations is established by the
      authentication mechanisms within the messaging association
      protocols themselves; see Section 8.2.  The attribute can be
      specified explicitly by the signalling application, or reported by
      GIST to the signalling application.  The latter can take place
      either on receiving a message, or just before sending a message
      but after configuring or selecting the messaging association to be

Schulzrinne & Hancock    Expires October 4, 2007               [Page 23]

Internet-Draft                    GIST                        April 2007

      used for it.

      This attribute can also be used to convey information about any
      address validation carried out by GIST, such as whether a return
      routability check has been carried out.  Further details are
      discussed in Appendix B.

   Local Processing:  An NSLP may provide hints to GIST to enable more
      efficient or appropriate processing.  For example, the NSLP may
      select a priority from a range of locally defined values to
      influence the sequence in which messages leave a node.  Any
      priority mechanism MUST respect the ordering requirements for
      reliable messages within a session, and priority values are not
      carried in the protocol or available at the signalling peer or
      intermediate nodes.  An NSLP may also indicate that upstream path
      routing state will not be needed for this flow, to inhibit the
      node requesting its downstream peer to create it; conversely, even
      if routing state exists, the NSLP may request that it is not used,
      which will lead to data being sent Q-mode encapsulated instead.

4.1.3.  SID Selection

   The fact that SIDs index routing state (see Section 4.2.1 below)
   means that there are requirements for how they are selected.
   Specifically, signalling applications MUST choose SIDs so that they
   are cryptographically random, and SHOULD NOT use several SIDs for the
   same flow, to avoid additional load from routing state maintenance.
   Guidance on secure randomness generation can be found in [32].

4.2.  GIST State

4.2.1.  Message Routing State

   For each flow, the GIST layer can maintain message routing state to
   manage the processing of outgoing messages.  This state is
   conceptually organised into a table with the following structure.
   Each row in the table corresponds to a unique combination of the
   following three items:

   Message Routing Information (MRI):  This defines the method to be
      used to route the message, the direction in which to send the
      message, and any associated addressing information; see
      Section 3.3.

   Session Identification (SID):  The signalling session with which this
      message should be associated; see Section 3.7.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 24]

Internet-Draft                    GIST                        April 2007

   NSLP Identification (NSLPID):  This is an IANA-assigned identifier
      associated with the NSLP which is generating messages for this
      flow; see Section 3.8.  The inclusion of this identifier allows
      the routing state to be different for different NSLPs.

   The information associated with a given {MRI,SID,NSLPID} triplet
   consists of the routing state to reach the peer in the direction
   given by the MRI.  For any flow there will usually be two entries in
   the table, one each for the upstream and downstream MRI.  The routing
   state includes information about the peer identity (see
   Section 4.4.3), and a UDP port number for D-mode, or a reference to
   one or more MAs for C-mode.  Entries in the routing state table are
   created by the GIST handshake, which is described in more detail in
   Section 4.4.

   It is also possible for the state information for either direction to
   be empty.  There are several possible cases:

   o  The signalling application has indicated that no messages will
      actually be sent in that direction.

   o  The node is the endpoint of the signalling path, for example
      because it is acting as a proxy, or because it has determined that
      there are no further signalling nodes in that direction.

   o  The node is using other techniques to send the message.  For
      example, it can send it in Q-mode and rely on the peer to
      intercept it.

   In addition, if the node is a flow endpoint, GIST will refuse to
   create routing state for the direction beyond the end of the flow
   (see Section 4.3.3).  Each entry in the routing state table has an
   associated validity timer indicating for how long it can be
   considered accurate.  When this timer expires, the entry MUST be
   purged if it has not been refreshed.  Installation and maintenance of
   routing state is described in more detail in Section 4.4.

4.2.2.  Peer-Peer Messaging Association State

   The per-flow message routing state is not the only state stored by
   GIST.  There is also the state required to manage the MAs.  Since
   these are not per-flow, they are stored separately from the routing
   state, including the following per-MA information:

   o  a queue of messages pending transmission while an MA is being

Schulzrinne & Hancock    Expires October 4, 2007               [Page 25]

Internet-Draft                    GIST                        April 2007

   o  the time since the peer re-stated its desire to keep the MA open
      (see Section 4.4.5).

   In addition, per-MA state is held in the messaging association
   protocols themselves.  However, the details of this state are not
   directly visible to GIST, and they do not affect the rest of the
   protocol description.

4.3.  Basic GIST Message Processing

   This section describes how signalling application messages are
   processed in the case where any necessary messaging associations and
   routing state are already in place.  The description is divided into
   several parts.  Firstly, message reception, local processing and
   message transmission are described for the case where the node hosts
   the NSLPID identified in the message.  Secondly, the case where the
   message is handled directly in the IP or GIST layer (because there is
   no matching signalling application on the node) is given.  An
   overview is given in Figure 3.  This section concentrates on the GIST
   level processing, with full details of IP and transport layer
   encapsulation in Section 5.3 and Section 5.4.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 26]

Internet-Draft                    GIST                        April 2007

       |        >>  Signalling Application Processing   >>       |
       |                                                         |
                ^                                       V
                ^             NSLP Payloads             V
                ^                                       V
       |                    >>    GIST    >>                     |
       |  ^           ^  ^     Processing      V  V           V  |
          x           N  Q                     Q  N           x
          x           N  Q>>>>>>>>>>>>>>>>>>>>>Q  N           x
          x           N  Q      Bypass at      Q  N           x
       +--x-----+  +--N--Q--+  GIST level   +--Q--N--+  +-----x--+
       | C-mode |  | D-mode |               | D-mode |  | C-mode |
       |Handling|  |Handling|               |Handling|  |Handling|
       +--x-----+  +--N--Q--+               +--Q--N--+  +-----x--+
          x          N   Q                     Q   N          x
          x    NNNNNN    Q>>>>>>>>>>>>>>>>>>>>>Q    NNNNNN    x
          x   N          Q      Bypass at      Q          N   x
       +--x--N--+  +-----Q--+  IP (router   +--Q-----+  +--N--x--+
       |IP Host |  |  RAO   |  alert) level |  RAO   |  |IP Host |
       |Handling|  |Handling|               |Handling|  |Handling|
       +--x--N--+  +-----Q--+               +--Q-----+  +--N--x--+
          x  N           Q                     Q           N  x
       +--x--N-----------Q--+               +--Q-----------N--x--+
       |      IP Layer      |               |      IP Layer      |
       |   (Receive Side)   |               |  (Transmit Side)   |
       +--x--N-----------Q--+               +--Q-----------N--x--+
          x  N           Q                     Q           N  x
          x  N           Q                     Q           N  x

        NNNNNNNNNNNNNN = Normal D-mode messages
        QQQQQQQQQQQQQQ = D-mode messages which are Q-mode encapsulated
        xxxxxxxxxxxxxx = C-mode messages
                   RAO = Router Alert Option

                Figure 3: Message Paths through a GIST Node

4.3.1.  Message Reception

   Messages can be received in C-mode or D-mode.

   Reception in C-mode is simple: incoming packets undergo the security
   and transport treatment associated with the MA, and the MA provides
   complete messages to the GIST layer for further processing.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 27]

Internet-Draft                    GIST                        April 2007

   Reception in D-mode depends on the message type.

   Normal encapsulation:  Normal messages arrive UDP-encapsulated and
      addressed directly to the receiving signalling node, at an address
      and port learned previously.  Each datagram contains a single
      message which is passed to the GIST layer for further processing,
      just as in the C-mode case.

   Q-mode encapsulation:  Where GIST is sending messages to be
      intercepted by the appropriate peer rather than directly addressed
      to it (in particular, Query messages), these are UDP encapsulated,
      and MAY include an IP router alert option (RAO) if required by the
      MRM.  Each signalling node can therefore see every such message,
      but unless the message exactly matches the Q-mode encapsulation
      rules (Section 5.3.2) it MUST be forwarded transparently at the IP
      level.  If it does match, the GIST MUST check the NSLPID in the
      common header.  The case where the NSLPID does not match a local
      signalling application at all is considered below in
      Section 4.3.4; otherwise, the message MUST be passed up to the
      GIST layer for further processing.

   Several different RAO values may be used by the NSIS protocol suite.
   GIST itself does not allocate any RAO values (for either IPv4 or
   IPv6); an assignment is made for each NSLP using MRMs that use the
   RAO in the Q-mode encapsulation.  The assignment rationale is
   discussed in [14].  The RAO value assigned for an NSLPID may be
   different for IPv4 and IPv6.  Note the different significance between
   the RAO and the NSLPID values: the meaning of a message (which
   signalling application it refers to, whether it should be processed
   at a node) is determined only from the NSLPID; the role of the RAO
   value is simply to allow nodes to pre-filter which IP datagrams are
   analysed to see if they might be Q-mode GIST messages.

   For all assignments associated with NSIS, the RAO specific processing
   is the same and is as defined by this specification, here and in
   Section 4.3.4 and Section 5.3.2.

   Immediately after reception, the GIST hop count is checked.  Any
   message with a GIST hop count of zero MUST be rejected with a "Hop
   Limit Exceeded" error message (Appendix A.4.4.2).  Otherwise, the
   GIST hop count MUST be decremented by one.

4.3.2.  Local Processing and Validation

   Once a message has been received, it is processed locally within the
   GIST layer.  Further processing depends on the message type and
   payloads carried; most of the GIST payloads are associated with
   internal state maintenance, and details are covered in Section 4.4.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 28]

Internet-Draft                    GIST                        April 2007

   This section concentrates on the interaction with the signalling
   application, in particular the decision to peer and how data is
   delivered to the NSLP.

   In the case of a Query, there is an interaction with the signalling
   application to determine which of two courses to follow.  The first
   option (peering) MUST be chosen if the node is the final destination
   of the Query message, or if the GIST hop count has reached zero.

   1.  The receiving signalling application wishes to become a
       signalling peer with the Querying node.  GIST MUST continue with
       the handshake process to set up message routing state, as
       described in Section 4.4.1.  The application MAY provide an NSLP
       payload for the same NSLPID, which GIST will transfer in the

   2.  The signalling application does not wish to set up state with the
       Querying node and become its peer.  This includes the case where
       a node wishes to avoid taking part in the signalling for overload
       protection reasons.  GIST MUST propagate the Query, similar to
       the case described in Section 4.3.4.  No message is sent back to
       the Querying node.  The application MAY provide an updated NSLP
       payload for the same NSLPID, which will be used in the Query
       forwarded by GIST.  Note that if the node which finally processes
       the Query returns an Error message, this will be sent directly
       back to the originating node, bypassing any forwarders.  For
       these diagnostics to be meaningful, any GIST node forwarding a
       Query MUST NOT modify it except in the NSLP payload; in
       particular, it MUST NOT modify any GIST payloads or their order.
       An implementation MAY choose to achieve this by retaining the
       original message, rather than reconstructing it from some parsed
       internal representation.

   This interaction with the signalling application, including the
   generation or update of an NSLP payload, SHOULD take place
   synchronously as part of the Query processing.  In terms of the GIST
   service interface, this can be implemented by providing appropriate
   return values for the primitive that is triggered when such a message
   is received; see Appendix B.2 for further discussion.

   For all GIST message types other than Queries, if the message
   includes an NSLP payload, this MUST be delivered locally to the
   signalling application identified by the NSLPID.  The format of the
   payload is not constrained by GIST, and the content is not
   interpreted.  Delivery is subject to the following validation checks
   which MUST be applied in the sequence given:

Schulzrinne & Hancock    Expires October 4, 2007               [Page 29]

Internet-Draft                    GIST                        April 2007

   1.  if the message was explicitly routed (see Section 7.1.5) or is a
       Data message delivered without routing state (see Section 5.3.2),
       the payload is delivered but flagged to the receiving NSLP to
       indicate that routing state was not validated;

   2.  else, if the message arrived on an association which is not
       associated with the MRI/NSLPID/SID combination given in the
       message, the message MUST be rejected with an "Incorrectly
       Delivered Message" error message (Appendix A.4.4.4);

   3.  else, if there is no routing state for this MRI/SID/NSLPID the
       message MUST either be dropped or be rejected with a error
       message (see Section 4.4.6 for further details);

   4.  else, the payload is delivered as normal.

4.3.3.  Message Transmission

   Signalling applications can generate their messages for transmission,
   either asynchronously, or in reply to an input message, and GIST can
   also generate messages autonomously.  GIST MUST verify that it is not
   the direct destination of an outgoing message, and MUST reject such
   messages with an error indication to the signalling application.

   Signalling applications may specify a value to be used for the GIST
   hop count; otherwise, GIST selects a value itself.  GIST MUST reject
   messages for which the signalling application has specified a value
   of zero.  Although the GIST hop count is only intended to control
   message looping at the GIST level, the GIST API (Appendix B) provides
   the incoming hop count to the NSLPs, which can preserve it on
   outgoing messages as they are forwarded further along the path.  This
   provides a lightweight loop-control mechanism for NSLPs which do not
   define anything more sophisticated.  Note that the count will be
   decremented on forwarding through every GIST-aware node.  Initial
   values for the GIST hop count are an implementation matter; one
   suitable approach is to use the same algorithm as for IP TTL setting

   When a message is available for transmission, GIST uses internal
   policy and the stored routing state to determine how to handle it.
   The following processing applies equally to locally generated
   messages and messages forwarded from within the GIST or signalling
   application levels.  However, see Section 5.6 for special rules
   applying to the transmission of error messages by GIST.

   The main decision is whether the message must be sent in C-mode or
   D-mode.  Reasons for using C-mode are:

Schulzrinne & Hancock    Expires October 4, 2007               [Page 30]

Internet-Draft                    GIST                        April 2007

   o  message transfer attributes: for example, the signalling
      application has requested channel-secured delivery, or reliable

   o  message size: a message whose size (including the GIST header,
      GIST objects and any NSLP payload, and an allowance for the IP and
      transport layer encapsulation required by D-mode) exceeds a
      fragmentation-related threshold MUST be sent over C-mode, using a
      messaging association that supports fragmentation and reassembly
      internally.  The allowance for IP and transport layer
      encapsulation is 64 bytes.  The message size MUST NOT exceed the
      least of the following three quantities: the Path MTU to the next
      peer (if known), the first-hop MTU, and 576 bytes.  The same limit
      applies to IPv4 and IPv6.

   o  congestion control: D-mode SHOULD NOT be used for signalling where
      it is possible to set up routing state and use C-mode, unless the
      network can be engineered to guarantee capacity for D-mode traffic
      within the rate control limits imposed by GIST (see
      Section 5.3.3).

   In principle, as well as determining that some messaging association
   must be used, GIST MAY select between a set of alternatives, e.g. for
   load sharing or because different messaging associations provide
   different transport or security attributes.  For the case of reliable
   delivery, GIST MUST NOT distribute messages for the same session over
   multiple messaging associations in parallel, but MUST use a single
   association at any given time.  The case of moving over to a new
   association is covered in Section 4.4.5.

   If the use of a messaging association (i.e.  C-mode) is selected, the
   message is queued on the association found from the routing state
   table, and further output processing is carried out according to the
   details of the protocol stacks used.  If no appropriate association
   exists, the message is queued while one is created (see
   Section 4.4.1), which will trigger the exchange of additional GIST
   messages.  If no association can be created, this is an error
   condition, and should be indicated back to the local signalling

   If a messaging association is not required, the message is sent in
   D-mode.  The processing in this case depends on the message type and
   whether routing state exists or not.

   o  If the message is not a Query, and routing state exists, it is
      sent with the normal D-mode encapsulation directly to the address
      from the routing state table.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 31]

Internet-Draft                    GIST                        April 2007

   o  If the message is a Query, then it is sent in Q-mode as defined in
      (Section 5.3.2); the details depend on the message routing method.

   o  If no routing state exists, GIST can attempt to use Q-mode as in
      the Query case: either sending a Data message with the Q-mode
      encapsulation, or using the event as a trigger for routing state
      setup (see Section 4.4).  If this is not possible, e.g. because
      the encapsulation for the MRM is only defined for one message
      direction, then this is an error condition which is reported back
      to the local signalling application.

4.3.4.  Nodes not Hosting the NSLP

   A node may receive messages where it has no signalling application
   corresponding to the message NSLPID.  There are several possible
   cases depending mainly on the encapsulation:

   1.  A message contains an RAO value which is relevant to NSIS, but it
       does not exactly match the Q-mode encapsulation rules of
       Section 5.3.2.  The message MUST be transparently forwarded at
       the IP layer.

   2.  A Q-mode encapsulated message contains an RAO value which is
       relevant to NSIS but not to the specific node, but the IP layer
       is unable to recognise whether it needs to be passed to GIST for
       further processing or whether the packet should be forwarded just
       like a normal IP datagram.

   3.  A Q-mode encapsulated message contains an RAO value which is
       relevant to the node, but the specific signalling application for
       the NSLPID in the message is not processed there.

   4.  A directly addressed message (in D-mode or C-mode) is delivered
       to a node for which there is no corresponding signalling
       application.  With the current specification, this should not
       happen in normal operation.  While future versions might find a
       use for such a feature, currently this MUST cause an "Unknown
       NSLPID" error message, Appendix A.4.4.6.

   5.  A Q-mode encapsulated message arrives at the end-system which
       does not handle the signalling application.  This is possible in
       normal operation, and MUST be indicated to the sender with an
       "Endpoint Found" informational message (Appendix A.4.4.7).  The
       end-system includes the MRI and SID from the original message in
       the error message without interpreting them.

   6.  The node is GIST-aware NAT.  See Section 7.2.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 32]

Internet-Draft                    GIST                        April 2007

   In cases (2) and (3), the role of GIST is to forward the message
   essentially as though it were a normal IP datagram, and it will not
   become a peer to the node sending the message.  Forwarding with
   modified NSLP payloads is covered above in Section 4.3.2.  However, a
   GIST implementation MUST ensure that the IP-layer TTL field and GIST
   hop count are managed correctly to prevent message looping, and this
   should be done consistently independently of whether the processing
   takes place on the fast path or in GIST-specific code.  The rules are
   that in cases (2) and (3), the IP-layer TTL MUST be decremented just
   as if the message was a normal IP forwarded packet; in case (3) the
   GIST hop count MUST be decremented as in the case of normal input
   processing, which also applies to cases (4) and (5).

   A GIST node processing Q-mode encapsulated messages in this way
   SHOULD make the routing decision based on the full contents of the
   MRI and not only the IP destination address.  It MAY also apply a
   restricted set of sanity checks and under certain conditions return
   an error message rather than forward the message.  These conditions

   1.  The message is so large that it would be fragmented on downstream
       links, for example because the downstream MTU is abnormally small
       (less than 512 bytes).  The error "Message Too Large"
       (Appendix A.4.4.8) SHOULD be returned to the sender, which SHOULD
       begin messaging association setup.

   2.  The GIST hop count has reached zero.  The error "Hop Limit
       Exceeded" (Appendix A.4.4.2) SHOULD be returned to the sender,
       which MAY retry with a larger initial hop count.

   3.  The MRI represents a flow definition which is too general to be
       forwarded along a unique path (e.g. the destination address
       prefix is too short).  The error "MRI Validation Failure"
       (Appendix A.4.4.12) with subcode 0 ("MRI Too Wild") SHOULD be
       returned to the sender, which MAY retry with restricted MRIs,
       possibly starting additional signalling sessions to do so.  If
       the GIST node does not understand the MRM in question it MUST NOT
       apply this check, instead forwarding the message transparently.

   In the first two cases, only the common header of the GIST message is
   examined; in the third case, the MRI is also examined.  The rest of
   the message MUST NOT be inspected in any case.  Similar to the case
   of Section 4.3.2, the GIST payloads MUST NOT be modified or re-
   ordered; an implementation MAY choose to achieve this by retaining
   the original message, rather than reconstructing it from some parsed
   internal representation.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 33]

Internet-Draft                    GIST                        April 2007

4.4.  Routing State and Messaging Association Maintenance

   The main responsibility of GIST is to manage the routing state and
   messaging associations which are used in the message processing
   described above.  Routing state is installed and refreshed by GIST
   handshake messages.  Messaging associations are set up by the normal
   procedures of the transport and security protocols that comprise
   them, using peer IP addresses from the routing state.  Once a
   messaging association has been created, its refresh and expiration
   can be managed independently from the routing state.

   There are two different cases for state installation and refresh:

   1.  Where routing state is being discovered or a new association is
       to be established; and

   2.  Where a suitable association already exists, including the case
       where routing state for the flow is being refreshed.

   These cases are now considered in turn, followed by the case of
   background general management procedures.

4.4.1.  Routing State and Messaging Association Creation

   The complete sequence of possible messages for GIST state setup
   between adjacent peers is shown in Figure 4 and described in detail
   in the following text.  The figure informally summarises the contents
   of each message, including optional elements in square brackets.  An
   example is given in Appendix D.

   The initial message in any routing state maintenance operation is a
   Query, sent from the querying node and intercepted at the responding
   node.  This message has addressing and other identifiers appropriate
   for the flow and signalling application that state maintenance is
   being done for, addressing information about the node that generated
   the Query itself, and it MAY contain an NSLP payload.  It also
   includes a Query Cookie, and optionally capability information about
   messaging association protocol stacks.  The role of the cookies in
   this and subsequent messages is to protect against certain denial of
   service attacks and to correlate the various events in the message
   sequence (see Section 8.5 for further details).

   Provided that the signalling application has indicated that message
   routing state should be set up (see Section 4.3.2), reception of a
   Query MUST elicit a Response.  This is a normally encapsulated D-mode
   message with additional payloads.  It contains network layer
   information about the responding node, echoes the Query Cookie, and
   MAY contain an NSLP payload, possibly a reply to the NSLP payload in

Schulzrinne & Hancock    Expires October 4, 2007               [Page 34]

Internet-Draft                    GIST                        April 2007

   the initial message.  In case a messaging association was requested,
   it MUST also contain a Responder Cookie and its own capability
   information about messaging association protocol stacks.  Even if a
   messaging association is not requested, the Response MAY still
   include a Responder Cookie if the node's routing state setup policy
   requires it (see below).

Schulzrinne & Hancock    Expires October 4, 2007               [Page 35]

Internet-Draft                    GIST                        April 2007

            +----------+                     +----------+
            | Querying |                     |Responding|
            | Node(Q-N)|                     | Node(R-N)|
            +----------+                     +----------+
                       ---------------------->        .............
                       Router Alert Option            .  Routing  .
                       MRI/SID/NSLPID                 .   state   .
                       Q-N Network Layer Info         . installed .
                       Query Cookie                   .    at     .
                       [Q-N Stack-Proposal            . Responding.
                        Q-N Stack-Config-Data]        .    node   .
                       [NSLP Payload]                 .  (case 1) .
               .  The responder can use an existing .
               . messaging association if available .
               . from here onwards to short-circuit .
               .     messaging association setup    .

   .............       <----------------------
   .  Routing  .       MRI/SID/NSLPID
   .   state   .       R-N Network Layer Info
   . installed .       Query cookie
   .    at     .       [Responder Cookie
   .  Querying .        [R-N Stack-Proposal
   .   node    .         R-N Stack-Config-Data]]
   .............       [NSLP Payload]

                . If a messaging association needs .
                . to be created, it is set up here .
                .     and the Confirm uses it      .

                           Confirm                    .............
                     ---------------------->          .  Routing  .
                     MRI/SID/NSLPID                   .   state   .
                     Q-N Network Layer Info           . installed .
                     [Responder Cookie                .    at     .
                      [R-N Stack-Proposal             . Responding.
                       [Q-N Stack-Config-Data]]]      .    node   .
                     [NSLP Payload]                   .  (case 2) .

                 Figure 4: Message Sequence at State Setup

Schulzrinne & Hancock    Expires October 4, 2007               [Page 36]

Internet-Draft                    GIST                        April 2007

   Setup of a new messaging association begins when peer addressing
   information is available and a new messaging association is actually
   needed.  Any setup MUST take place immediately after the specific
   Query/Response exchange, because the addressing information used may
   have a limited lifetime, either because it depends on limited
   lifetime NAT bindings or because it refers to agile destination ports
   for the transport protocols.  The Stack-Proposal and Stack-
   Configuration-Data objects carried in the exchange carry capability
   information about what messaging association protocols can be used,
   and the processing of these objects is described in more detail in
   Section 5.7.  With the protocol options currently defined, setup of
   the messaging association always starts from the Querying node,
   although more flexible configurations are possible within the overall
   GIST design.  If the messaging association includes a channel
   security protocol, each GIST node MUST verify the authenticated
   identity of the peer against its authorised peer database, and if
   there is no match the messaging association MUST be torn down.  The
   database and authorisation check are described in more detail in
   Section 4.4.2 below.  Note that the verification can depend on what
   the MA is to be used for (e.g. for which flow), so this step may not
   be possible immediately after authentication has completed but some
   time later.

   Finally, after any necessary messaging association setup has
   completed, a Confirm MUST be sent if the Response requested it.  Once
   the Confirm has been sent, the Querying node assumes that routing
   state has been installed at the responder, and can send normal Data
   messages for the flow in question; recovery from a lost Confirm is
   discussed in Section 5.3.3.  If a messaging association is being
   used, the Confirm MUST be sent over it before any other messages for
   the same flow, and it echoes the Responder Cookie and Stack-Proposal
   from the Response.  The former is used to allow the receiver to
   validate the contents of the message (see Section 8.5), and the
   latter is to prevent certain bidding-down attacks on messaging
   association security (see Section 8.6).  This first Confirm on a new
   association MUST also contain a Stack-Configuration-Data object
   carrying an MA-Hold-Time value, which supersedes the value given in
   the original Query.  The association can be used in the upstream
   direction for the MRI and NSLPID carried in the Confirm, after the
   Confirm has been received.

   The querying node MUST install the responder address, derived from
   the R-Node Network Layer info, as routing state information after
   verifying the Query Cookie in the Response.  The responding node MAY
   install the querying address as peer state information at two points
   in time:

Schulzrinne & Hancock    Expires October 4, 2007               [Page 37]

Internet-Draft                    GIST                        April 2007

   Case 1:  after the receipt of the initial Query, or

   Case 2:  after a Confirm containing the Responder Cookie.

   The responding node SHOULD derive the peer address from the Q-Node
   Network Layer Info if this was decoded successfully.  Otherwise, it
   MAY be derived from the IP source address of the message if the
   common header flags this as being the signalling source address.  The
   precise constraints on when state information is installed are a
   matter of security policy considerations on prevention of denial-of-
   service attacks and state poisoning attacks, which are discussed
   further in Section 8.  Because the responding node MAY choose to
   delay state installation as in case (2), the Confirm must contain
   sufficient information to allow it to be processed in the same way as
   the original Query.  This places some special requirements on NAT
   traversal and cookie functionality, which are discussed in
   Section 7.2 and Section 8 respectively.

4.4.2.  GIST Peer Authorisation

   When two GIST nodes authenticate using a messaging association, both
   ends have to decide whether to accept the creation of the MA and
   whether to trust the information sent over it.  This can be seen as
   an authorisation decision:

   o  Authorised peers are trusted to install correct routing state
      about themselves and not, for example, to claim that they are on-
      path for a flow when they are not.

   o  Authorised peers are trusted to obey transport and application
      level flow control rules, and not to attempt to create overload

   o  Authorised peers are trusted not to send erroneous or malicious
      error messages, for example asserting that routing state has been
      lost when it has not.

   This specification models the decision as verification by the
   authorising node of the peer's identity against a local list of
   peers, the authorised peer database (APD).  The APD is a abstract
   construct, similar to the security policy database of IPsec [37].
   Implementations MAY provide the associated functionality in any way
   they choose.  This section defines only the requirements for APD
   administration and the consequences of successfully validating a
   peer's identity against it.

   The APD consists of a list of entries.  Each entry includes an
   identity, the namespace from which the identity comes (e.g.  DNS

Schulzrinne & Hancock    Expires October 4, 2007               [Page 38]

Internet-Draft                    GIST                        April 2007

   domains), the scope within which the entry is applicable, and whether
   authorisation is allowed or denied.  The following are example

   Peer Address Ownership:  The scope is the IP address at which the
      peer for this MRI should be; the APD entry denotes the identity as
      the owner of address.  If the authorising node can determine this
      address from local information (such as its own routing tables),
      matching this entry shows that the peer is the correct on-path
      node and so should be authorised.  The determination is simple if
      the peer is one IP hop downstream, since the IP address can be
      derived from the router's forwarding tables.  If the peer is more
      than one hop away or is upstream, the determination is harder but
      may still be possible in some circumstances.  The authorising node
      may be able to determine a (small) set of possible peer addresses,
      and accept that any of these could be the correct peer.

   End-System Subnet:  The scope is an address range within which the
      MRI source or destination lie; the APD entry denotes the identity
      as potentially being on-path between the authorising node and that
      address range.  There may be different source and destination
      scopes, to account for asymmetric routing.

   The same identity may appear in multiple entries, and the order of
   entries in the APD is significant.  When a messaging association is
   authenticated and associated with an MRI, the authorising node scans
   the APD to find the first entry where the identity matches that
   presented by the peer, and where the scope information matches the
   circumstances for which the MA is being set up.  The identity
   matching process itself depends on the messaging association protocol
   that carries out the authentication, and details for TLS are given in
   Section 5.7.3.  Whenever the full set of possible peers for a
   specific scope is known, deny entries SHOULD be added for the
   wildcard identity to reject signalling associations from unknown
   nodes.  The ability of the authorising node to reject inappropriate
   MAs depends directly on the granularity of the APD and the precision
   of the scope matching process.

   If authorisation is allowed, the MA can be used as normal; otherwise
   it MUST be torn down without further GIST exchanges, and any routing
   state associated with the MA MUST also be deleted.  An error
   condition MAY be logged locally.  When an APD entry is modified or
   deleted, the node MUST re-validate existing MAs and the routing state
   table against the revised contents of the APD.  This may result in
   MAs being torn down or routing state entries being deleted.  These
   changes SHOULD be indicated to local signalling applications via the
   NetworkNotification API call (Appendix B.4).

Schulzrinne & Hancock    Expires October 4, 2007               [Page 39]

Internet-Draft                    GIST                        April 2007

   This specification does not define how the APD is populated.  As a
   minimum, an implementation MUST provide an administrative interface
   through which entries can be added, modified, or deleted.  More
   sophisticated mechanisms are possible in some scenarios.  For
   example, the fact that a node is legitimately associated with a
   specific IP address could be established by direct embedding of the
   IP address as a particular identity type in a certificate, or by a
   mapping that address to another identifier type via an additional
   database lookup (such as relating IP addresses in to
   domain names).  An enterprise network operator could generate a list
   of all the identities of its border nodes as authorised to be on the
   signalling path to external destinations, and this could be
   distributed to all hosts inside the network.  Regardless of the
   technique, it MUST be ensured that the source data justify the
   authorisation decisions listed at the start of this section, and that
   the security of the chain of operations on which the APD entry
   depends cannot be compromised.

4.4.3.  Messaging Association Multiplexing

   It is a design goal of GIST that, as far as possible, a single
   messaging association should be used for multiple flows and sessions
   between two peers, rather than setting up a new MA for each.  This
   re-use of existing MAs is referred to as messaging association
   multiplexing.  Multiplexing ensures that the MA cost scales only with
   the number of peers, and avoids the latency of new MA setup where

   However, multiplexing requires the identification of an existing MA
   which matches the same routing state and desired properties that
   would be the result of a full handshake in D-mode, and this
   identification must be done as reliably and securely as continuing
   with the full procedure.  Note that this requirement is complicated
   by the fact that NATs may remap the node addresses in D-mode
   messages, and also interacts with the fact that some nodes may peer
   over multiple interfaces (and thus with different addresses).

   MA multiplexing is controlled by the Network-Layer-Information (NLI)
   object, which is carried in Query, Response and Confirm messages.
   The NLI object includes:

   Peer-Identity:  For a given node, this is an interface independent
      value with opaque syntax.  It MUST be chosen so as to have a high
      probability of uniqueness across the set of all potential peers,
      and SHOULD be stable at least until the next node restart.  Note
      that there is no cryptographic protection of this identity;
      attempting to provide this would essentially duplicate the
      functionality in the messaging association security protocols.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 40]

Internet-Draft                    GIST                        April 2007

      For routers, the Router-ID [2], which is one of the router's IP
      addresses, MAY be used as one possible value for the Peer-
      Identity.  In scenarios with nested NATs, the Router-ID alone may
      not satisfy the uniqueness requirements, in which case it MAY be
      extended with additional tokens, either chosen randomly or
      administratively coordinated.

   Interface-Address:  This is an IP address through which the
      signalling node can be reached.  There may be several choices
      available for the Interface-Address, and further discussion of
      this is contained in Section 5.2.2.

   A messaging association is associated with the NLI object that was
   provided by the peer in the Query/Response/Confirm at the time the
   association was first set up.  There may be more than one MA for a
   given NLI object, for example with different security or transport

   MA multiplexing is achieved by matching the NLI provided in a new
   GIST message with one associated with an existing MA.  The message
   can be either a Query or Response, although the former is more

   o  If there is a perfect match to the NLI of an existing association,
      that association SHOULD be re-used, provided it meets the criteria
      on security and transport properties given at the end of
      Section 5.7.1.  This is indicated by sending the remaining
      messages in the handshake over that association.  This will lead
      to multiplexing on an association to the wrong node if signalling
      nodes have colliding Peer-Identities and one is reachable at the
      same Interface-Address as another.  This could be caused by an on-
      path attacker; on-path attacks are discussed further in
      Section 8.7.  When multiplexing is done, and the original MA
      authorisation was MRI-dependent, the verification steps of
      Section 4.4.2 MUST be repeated for the new flow.

   o  In all other cases, the full handshake MUST be executed in D-mode
      as usual.  There are in fact four possibilities:

      1.  Nothing matches: this is clearly a new peer.

      2.  Only the Peer-Identity matches: this may be either a new
          interface on an existing peer, or a changed address mapping
          behind a NAT.  These should be rare events, so the expense of
          a new association setup is acceptable.  Another possibility is
          one node using another node's Peer-Identity, for example as
          some kind of attack.  Because the Peer-Identity is used only
          for this multiplexing process, the only consequence this has

Schulzrinne & Hancock    Expires October 4, 2007               [Page 41]

Internet-Draft                    GIST                        April 2007

          is to require a new association setup, and this is considered
          in Section 8.4.

      3.  Only the Interface-Address matches: this is probably a new
          peer behind the same NAT as an existing one.  A new
          association setup is required.

      4.  The full NLI object matches: this is a degenerate case, where
          one node recognises an existing peer, but wishes to allow the
          option to set up a new association in any case, for example to
          create an association with different properties.

4.4.4.  Routing State Maintenance

   Each item of routing state expires after a lifetime which is
   negotiated during the Query/Response/Confirm handshake.  The Network
   Layer Info (NLI) object in the Query contains a proposal for the
   lifetime value, and the NLI in the Response contains the value the
   Responding node requires.  A default timer value of 30 seconds is
   RECOMMENDED.  Nodes which can exploit alternative, more powerful,
   route change detection methods such as those described in
   Section 7.1.2 MAY choose to use much longer times.  Nodes MAY use
   shorter times to provide more rapid change detection.  If the number
   of active routing state items corresponds to a rate of Queries that
   will stress the rate limits applied to D-mode traffic
   (Section 5.3.3), nodes MUST increase the timer for new items and on
   the refresh of existing ones.  A suitable value is twice the number
   of items divided by the rate limit in messages per second, which
   leaves a factor of two headroom for new routing state creation and
   Query retransmissions.

   The Querying node MUST ensure that a Query is received before this
   timer expires, if it believes that the signalling session is still
   active; otherwise, the Responding node MAY delete the state.  Receipt
   of the message at the Responding node will refresh peer addressing
   state for one direction, and receipt of a Response at the querying
   node will refresh it for the other.  There is no mechanism at the
   GIST level for explicit teardown of routing state.  However, GIST
   MUST NOT refresh routing state if a signalling session is known to be
   inactive, either because upstream state has expired, or because the
   signalling application has indicated via the GIST API (Appendix B.5)
   that the state is no longer required, because this would prevent
   correct state repair in the case of network rerouting at the IP

   This specification defines precisely only the time at which routing
   state expires; it does not define when refresh handshakes should be
   initiated.  Implementations MUST select timer settings which take at

Schulzrinne & Hancock    Expires October 4, 2007               [Page 42]

Internet-Draft                    GIST                        April 2007

   least the following into account:

   o  The transmission latency between source and destination;

   o  The need for retransmissions of Query messages;

   o  The need to avoid network synchronisation of control traffic (cf.

   In most cases, a reasonable policy is to initiate the routing state
   refresh when between 1/2 and 3/4 of the validity time has elapsed
   since the last successful refresh.  The actual moment MUST be chosen
   randomly within this interval to avoid synchronisation effects.

4.4.5.  Messaging Association Maintenance

   Unneeded MAs are torn down by GIST, using the teardown mechanisms of
   the underlying transport or security protocols if available, for
   example by simply closing a TCP connection.  The teardown can be
   initiated by either end.  Whether an MA is needed is a combination of
   two factors:

   o  local policy, which could take into account the cost of keeping
      the messaging association open, the level of past activity on the
      association, and the likelihood of future activity, e.g. if there
      is routing state still in place which might generate messages to
      use it.

   o  whether the peer still wants the MA to remain in place.  During MA
      setup, as part of the Stack-Configuration-Data, each node
      advertises its own MA-Hold-Time, which is the time for which it
      will retain an MA which is not carrying signalling traffic.  A
      node MUST NOT tear down an MA if it has received traffic from its
      peer over that period.  A peer which has generated no traffic but
      still wants the MA retained can use a special null message (MA-
      Hello) to indicate the fact.  A default value for MA-Hold-Time of
      30 seconds is RECOMMENDED.  Nodes MAY use shorter times to achieve
      more rapid peer failure detection, but need to take into account
      the load on the network created by the MA-Hello messages.  Nodes
      MAY use longer times, but need to take into account the cost of
      retaining idle MAs for extended periods.  Nodes MAY take
      signalling application behaviour (e.g.  NSLP refresh times) into
      account in choosing an appropriate value.

      Because the Responding node can choose not to create state until a
      Confirm, an abbreviated Stack-Configuration-Data object containing
      just this information MUST be repeated by the Querying node in the
      first Confirm sent on a new MA.  If the object is missing in the

Schulzrinne & Hancock    Expires October 4, 2007               [Page 43]

Internet-Draft                    GIST                        April 2007

      Confirm, an "Object Type Error" message (Appendix A.4.4.9) with
      subcode 2 ("Missing Object") MUST be returned.

   Messaging associations can always be set up on demand, and messaging
   association status is not made directly visible outside the GIST
   layer.  Therefore, even if GIST tears down and later re-establishes a
   messaging association, signalling applications cannot distinguish
   this from the case where the MA is kept permanently open.  To
   maintain the transport semantics described in Section 4.1, GIST MUST
   close transport connections carrying reliable messages gracefully or
   report an error condition, and MUST NOT open a new association to be
   used for given session and peer while messages on a previous
   association could still be outstanding.  GIST MAY use an MA-Hello
   request/reply exchange on an existing association to verify that
   messages sent on it have reached the peer.  GIST MAY use the same
   technique to test the liveness of the underlying MA protocols
   themselves at arbitrary times.

   This specification defines precisely only the time at which messaging
   associations expires; it does not define when keepalives should be
   initiated.  Implementations MUST select timer settings which take at
   least the following into account:

   o  The transmission latency between source and destination;

   o  The need for retransmissions within the messaging association

   o  The need to avoid network synchronisation of control traffic (cf.

   In most cases, a reasonable policy is to initiate the MA refresh when
   between 1/2 and 3/4 of the validity time has elapsed since the last
   successful refresh.  The actual moment MUST be chosen randomly within
   this interval to avoid synchronisation effects.

4.4.6.  Routing State Failures

   A GIST node can receive a message from a GIST peer, which can only be
   correctly processed in the context of some routing state, but where
   no corresponding routing state exists.  Cases where this can arise

   o  Where the message is random traffic from an attacker, or
      backscatter (replies to such traffic).

   o  Where routing state has been correctly installed but the peer has
      since lost it, for example because of aggressive timeout settings

Schulzrinne & Hancock    Expires October 4, 2007               [Page 44]

Internet-Draft                    GIST                        April 2007

      at the peer, or because the node has crashed and restarted.

   o  Where the routing state has never been correctly installed in the
      first place, but the sending node does not know this.  This can
      happen if the Confirm message of the handshake is lost.

   It is important for GIST to recover from such situations promptly
   where they represent genuine errors (node restarts, or lost messages
   which would not otherwise be retransmitted).  Note that only
   Response, Confirm, Error and Data messages ever require routing state
   to exist, and these are considered in turn:

   Response:  A Response can be received at a node which never sent (or
      has forgotten) the corresponding Query.  If the node wants routing
      state to exist, it will initiate it itself; a diagnostic error
      would not allow the sender of the Response to take any corrective
      action, and the diagnostic could itself be a form of backscatter.
      Therefore, an error message MUST NOT be generated, but the
      condition MAY be logged locally.

   Confirm:  For a Responding node which implements delayed state
      installation, this is normal behaviour, and routing state will be
      created provided the Confirm is validated.  Otherwise, this is a
      case of a non-existent or forgotten Response, and the node may not
      have sufficient information in the Confirm to create the correct
      state.  The requirement is to notify the Querying node so that it
      can recover the routing state.

   Data:  This arises when a node receives Data where routing state is
      required, but either it does not exist at all, or it has not been
      finalised (no Confirm message).  To avoid Data being black-holed,
      a notification must be sent to the peer.

   Error:  Some error messages can only be interpreted in the context of
      routing state.  However, the only error messages which require a
      reply within the protocol are routing state error messages
      themselves.  Therefore, this case should be treated the same as a
      Response: an error message MUST NOT be generated, but the
      condition MAY be logged locally.

   For the case of Confirm or Data messages, if the state is required
   but does not exist, the node MUST reject the incoming message with a
   "No Routing State" error message (Appendix A.4.4.5).  There are then
   three cases at the receiver of the error message:

Schulzrinne & Hancock    Expires October 4, 2007               [Page 45]

Internet-Draft                    GIST                        April 2007

   No routing state:  The condition MAY be logged but a reply MUST NOT
      be sent (see above).

   Querying node:  The node MUST restart the GIST handshake from the
      beginning, with a new Query.

   Responding node:  The node MUST delete its own routing state and
      SHOULD report an error condition to the local signalling

   The rules at the Querying or Responding node make GIST open to
   disruption by randomly injected error messages, similar to blind
   reset attacks on TCP (cf. [44]), although because routing state
   matching includes the SID this is mainly limited to on-path
   attackers.  If a GIST node detects a significant rate of such
   attacks, it MAY adopt a policy of using secured messaging
   associations to communicate for the affected MRIs, and only accepting
   "No Routing State" error messages over such associations.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 46]

Internet-Draft                    GIST                        April 2007

5.  Message Formats and Transport

5.1.  GIST Messages

   All GIST messages begin with a common header, followed by a sequence
   of type-length-value (TLV) objects.  This subsection describes the
   various GIST messages and their contents at a high level in ABNF
   [12]; a more detailed description of the header and each object is
   given in Section 5.2.  Note that the NAT traversal mechanism for GIST
   involves the insertion of an additional NAT-Traversal-Object in
   Query, Response, and some Data and Error messages; the rules for this
   are given in Section 7.2.

   GIST-Message: The primary messages are either one of the stages in
   the three-way handshake, or a simple message carrying NSLP data.
   Additional types are defined for errors and keeping messaging
   associations alive.
       GIST-Message = Query / Response / Confirm /
                      Data / Error / MA-Hello

   The common header includes a version number, message type and size,
   and NSLPID.  It also carries a hop count to prevent infinite message
   looping and various control flags, including one (the R flag) to
   indicate if a reply of some sort is requested.  The objects following
   the common header MUST be carried in a fixed order, depending on
   message type.  Messages with missing, duplicate or invalid objects
   for the message type MUST be rejected with an "Object Type Error"
   message with the appropriate subcode (Appendix A.4.4.9).

   Query: A Query MUST be sent in D-mode using the special Q-mode
   encapsulation.  In addition to the common header, it contains certain
   mandatory control objects, and MAY contain a signalling application
   payload.  A stack proposal and configuration data MUST be included if
   the message exchange relates to setup of a messaging association.
   The R flag MUST always be set (R=1) in a Query, since this message
   always elicits a Response.
       Query = Common-Header
               [ NAT-Traversal-Object ]
               [ Stack-Proposal Stack-Configuration-Data ]
               [ NSLP-Data ]

   Response: A Response MAY be sent in D-mode, or MAY be sent in C-mode
   if an existing messaging association is being re-used.  It MUST echo
   the MRI SID and Query-Cookie of the Query, and carries its own

Schulzrinne & Hancock    Expires October 4, 2007               [Page 47]

Internet-Draft                    GIST                        April 2007

   Network-Layer-Information.  If the message exchange relates to setup
   of a new messaging association, which MUST be carried out in D-mode,
   a Responder cookie MUST be included, as well as the Responder's own
   stack proposal and configuration data.  The R flag MUST be set (R=1)
   if a Responder cookie is present but otherwise is optional; if the R
   flag is set, a Confirm MUST be sent as a reply.  Note that the
   direction of this MRI will be inverted compared to that in the Query,
   that is, an upstream MRI becomes downstream and vice versa (see
   Section 3.3).
       Response = Common-Header
                  [ NAT-Traversal-Object ]
                  [ Responder-Cookie
                    [ Stack-Proposal Stack-Configuration-Data ] ]
                  [ NSLP-Data ]

   Confirm: A Confirm MUST be sent in C-mode if a messaging association
   is being used for this routing state, and MUST be sent before other
   messages for this routing state.  If no messaging association is
   being used, the Confirm MUST be sent in D-mode.  The Confirm MUST
   echo the MRI (with inverted direction), SID, and Responder-Cookie if
   the Response carried one.  In C-mode, the Confirm MUST also echo the
   Stack-Proposal from the Response so it can be verified that this has
   not been tampered with.  The first Confirm on a new association MUST
   also repeat the Stack-Configuration-Data from the original Query in
   an abbreviated form, just containing the MA-Hold-Time.
       Confirm = Common-Header
                 [ Responder-Cookie
                   [ Stack-Proposal
                     [ Stack-Configuration-Data ] ] ]
                 [ NSLP-Data ]

   Data: The Data message is used to transport NSLP data without
   modifying GIST state.  It contains no control objects, but only the
   MRI and SID associated with the NSLP data being transferred.
   Network-Layer-Information (NLI) MUST be carried in the D-mode case,
   but MUST NOT be included otherwise.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 48]

Internet-Draft                    GIST                        April 2007

       Data = Common-Header
              [ NAT-Traversal-Object ]
              [ Network-Layer-Information ]

   Error: An Error message reports a problem determined at the GIST
   level.  (Errors generated by signalling applications are reported in
   NSLP-Data payloads and are not treated specially by GIST.)  The
   message includes a Network-Layer-Information object for the
   originator of the error message if it is being sent in D-mode; all
   other information related to the error is carried in a GIST-Error-
   Data object.
       Error = Common-Header
               [ NAT-Traversal-Object ]
               [ Network-Layer-Information ]

   MA-Hello: This message MUST be sent only in C-mode.  It contains the
   common header, with a NSLPID of zero, and a message identifier, the
   Hello-ID.  It always indicates that a node wishes to keep a messaging
   association open, and if sent with R=0 and null Hello-ID this is its
   only function.  A node MAY also invoke a diagnostic request/reply
   exchange by setting R=1 and providing a non-zero Hello-ID; if this
   case, the peer MUST send another MA-Hello back along the messaging
   association echoing the same Hello-ID and with R=0.  Use of this
   diagnostic is entirely at the discretion of the initiating node.
       MA-Hello = Common-Header

5.2.  Information Elements

   This section describes the content of the various objects that can be
   present in each GIST message, both the common header, and the
   individual TLVs.  The bit formats are provided in Appendix A.

5.2.1.  The Common Header

   Each message begins with a fixed format common header, which contains
   the following information:

   Version:  The version number of the GIST protocol.  This
      specification defines GIST version 1.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 49]

Internet-Draft                    GIST                        April 2007

   GIST hop count:  A hop count to prevent a message from looping

   Length:  The number of 32 bit words in the message following the
      common header.

   Upper layer identifier (NSLPID):  This gives the specific NSLP that
      this message is used for.

   Message type:  The message type (Query, Response, etc.)

   Source addressing mode:  If set (S=1), this indicates that the IP
      source address of the message is the same as the IP address of the
      signalling peer, so replies to this message can be sent safely to
      this address.  S is always set in C-mode.  It is cleared (S=0) if
      the IP source address was derived from the message routing
      information in the payload and this is different from the
      signalling source address.

   Response requested:  A flag which if set (R=1) indicates that a GIST
      message should be sent in reply to this message.  The appropriate
      message type for the reply depends on the type of the initial

   Explicit routing:  A flag which if set (E=1) indicates that the
      message was explicitly routed (see Section 7.1.5).

   Note that in D-mode Section 5.3, there is a 32-bit magic number
   before the header.  However, this is regarded as part of the
   encapsulation rather than part of the message itself.

5.2.2.  TLV Objects

   All data following the common header is encoded as a sequence of
   type-length-value objects.  Currently, each object can occur at most
   once; the set of required and permitted objects is determined by the
   message type and encapsulation (D-mode or C-mode).

   Message-Routing-Information (MRI):  Information sufficient to define
      how the signalling message should be routed through the network.

       Message-Routing-Information = message-routing-method

      The format of the method-specific-information depends on the
      message-routing-method requested by the signalling application.
      Note that it always includes a flag defining the direction as
      either 'upstream' or 'downstream' (see Section 3.3).  It is

Schulzrinne & Hancock    Expires October 4, 2007               [Page 50]

Internet-Draft                    GIST                        April 2007

      provided by the NSLP in the message sender and used by GIST to
      select the message routing.

   Session-Identification (SID):  The GIST session identifier is a 128
      bit, cryptographically random identifier chosen by the node which
      originates the signalling exchange.  See Section 3.7.

   Network-Layer-Information (NLI):  This object carries information
      about the network layer attributes of the node sending the
      message, including data related to the management of routing
      state.  This includes a peer identity and IP address for the
      sending node.  It also includes IP-TTL information to allow the IP
      hop count between GIST peers to be measured and reported, and a
      validity time (RS-validity-time) for the routing state.

       Network-Layer-Information = peer-identity

      The use of the RS-validity-time field is described in
      Section 4.4.4.  The peer-identity and interface-address are used
      for matching existing associations, as discussed in Section 4.4.3.

      The interface-address must be routable, i.e. it MUST be usable as
      a destination IP address for packets to be sent back to the node
      generating the signalling message, whether in D-mode or C-mode.
      If this object is carried in a message with the source addressing
      mode flag S=1, the interface-address MUST match the source address
      used in the IP encapsulation, to assist in legacy NAT detection
      (Section 7.2.1).  If this object is carried in a Query or Confirm,
      the interface-address MUST specifically be set to an address bound
      to the interface associated with the MRI, to allow its use in
      route change handling as discussed in Section 7.1.  A suitable
      choice is the interface that is carrying the outbound flow.  A
      node may have several choices for which of its addresses to use as
      the interface-address.  For example, there may be a choice of IP
      versions, or addresses of limited scope (e.g. link-local), or
      addresses bound to different interfaces in the case of a router or
      multi-homed host.  However, some of these interface addresses may
      not be usable by the peer.  A node MUST follow a policy of using a
      global address of the same IP version as in the MRI, unless it can
      establish that an alternative address would also be usable.

      The setting and interpretation of the IP-TTL field depends on the
      message direction (upstream/downstream as determined from the MRI
      as described above) and encapsulation.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 51]

Internet-Draft                    GIST                        April 2007

      *  If the message is sent downstream, if the TTL that will be set
         in the IP header for the message can be determined, the IP-TTL
         value MUST be set to this value, or else set to 0.

      *  On receiving a downstream message in D-mode, a non-zero IP-TTL
         is compared to the TTL in the IP header, and the difference is
         stored as the IP-hop-count-to-peer for the upstream peer in the
         routing state table for that flow.  Otherwise, the field is

      *  If the message is sent upstream, the IP-TTL MUST be set to the
         value of the IP-hop-count-to-peer stored in the routing state
         table, or 0 if there is no value yet stored.

      *  On receiving an upstream message, the IP-TTL is stored as the
         IP-hop-count-to-peer for the downstream peer.

      In all cases, the IP-TTL value reported to signalling applications
      is the one stored with the routing state for that flow, after it
      has been updated if necessary from processing the message in

   Stack-Proposal:  This field contains information about which
      combinations of transport and security protocols are available for
      use in messaging associations, and is also discussed further in
      Section 5.7.

       Stack-Proposal = 1*stack-profile

       stack-profile = 1*protocol-layer

      Each protocol-layer field identifies a protocol with a unique tag;
      any additional data, such as higher-layer addressing or other
      options data associated with the protocol, will be carried in a
      MA-protocol-options field in the Stack-Configuration-Data TLV (see

   Stack-Configuration-Data (SCD):  This object carries information
      about the overall configuration of a messaging association.

       Stack-Configuration-Data = MA-Hold-Time

      The MA-Hold-Time field indicates how long a node will hold open an
      inactive association; see Section 4.4.5 for more discussion.  The
      MA-protocol-options fields give the configuration of the protocols
      (e.g.  TCP, TLS) to be used for new messaging associations, and
      they are described in more detail in Section 5.7.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 52]

Internet-Draft                    GIST                        April 2007

   Query-Cookie/Responder-Cookie:  A Query-Cookie is contained in a
      Query and MUST be echoed in a Response; a Responder-Cookie MAY be
      sent in a Response, and if present MUST be echoed in the following
      Confirm.  Cookies are variable length bit strings, chosen by the
      cookie generator.  See Section 8.5 for further details on
      requirements and mechanisms for cookie generation.

   Hello-ID:  The Hello-ID is a 32-bit quantity that is used to
      correlate messages in an MA-Hello request/reply exchange.  A non-
      zero value MUST be used in a request (messages sent with R=1) and
      the same value must be returned in the reply (which has R=0).  The
      value zero MUST be used for all other messages; if a message is
      received with R=1 and Hello-ID=0, an "Object Value Error" message
      (Appendix A.4.4.10) with subcode 1 ("Value Not Supported") MUST be
      returned and the message dropped.  Nodes MAY use any algorithm to
      generate the Hello-ID; a suitable approach is a local sequence
      number with a random starting point.

   NSLP-Data:  The NSLP payload to be delivered to the signalling
      application.  GIST does not interpret the payload content.

   GIST-Error-Data:  This contains all the information to report the
      cause and context of an error.

       GIST-Error-Data = error-class error-code error-subcode
                         [ Message-Routing-Information-content ]
                         [ Session-Identification-content ]
                         [ comment ]

      The error-class indicates the severity level, and the error-code
      and error-subcode identify the specific error itself.  A full list
      of GIST errors and their severity levels is given in Appendix A.4.
      The common-error-header carries the Common-Header from the
      original message, and contents of the Message-Routing-Information
      (MRI) and Session-Identification (SID) objects are also included
      if they were successfully decoded.  For some errors, additional
      information fields can be included, and these fields themselves
      have a simple TLV format.  Finally, an optional free-text comment
      may be added.

5.3.  D-mode Transport

   This section describes the various encapsulation options for D-mode
   messages.  Although there are several possibilities, depending on
   message type, MRM, and local policy, the general design principle is
   that the sole purpose of the encapsulation is to ensure that the

Schulzrinne & Hancock    Expires October 4, 2007               [Page 53]

Internet-Draft                    GIST                        April 2007

   message is delivered to or intercepted at the correct peer.  Beyond
   that, minimal significance is attached to the type of encapsulation
   or the values of addresses or ports used for it.  This allows new
   options to be developed in the future to handle particular deployment
   requirements without modifying the overall protocol specification.

5.3.1.  Normal Encapsulation

   Normal encapsulation MUST be used for all D-mode messages where the
   signalling peer is already known from previous signalling.  This
   includes Response and Confirm messages, and Data messages except if
   these are being sent without using local routing state.  Normal
   encapsulation is simple: the message is carried in a single UDP
   datagram.  UDP checksums MUST be enabled.  The payload MUST always
   begin with a 32 bit magic number with value 0x4e04 bda5 in network
   byte order; this is followed by the GIST common header and the
   complete set of payloads.  If the magic number is not present, the
   message MUST be rejected with a "Common Header Parse Error" message
   (Appendix A.4.4.1) with subcode 5 ("Missing Magic Number").

   The message is IP addressed directly to the adjacent peer as given by
   the routing state table.  Where the message is a direct reply to a
   Query and no routing state exists, the destination address is derived
   from the input message using the same rules as in Section 4.4.1.  The
   UDP port numbering MUST be compatible with that used on Query
   messages (see below), that is, the same for messages in the same
   direction and with source and destination port numbers swapped for
   messages in the opposite direction.  Normally encapsulated messages
   MUST be sent with source addressing mode flag S=1 unless the message
   is a reply to a message which is known to have passed through a NAT,
   and the receiver MUST check the IP source address with the interface-
   address given in the NLI as part of legacy NAT detection.  Both these
   aspects of message processing are discussed further in Section 7.2.1.

5.3.2.  Q-mode Encapsulation

   Q-mode encapsulation MUST be used for messages where no routing state
   is available or where the routing state is being refreshed, in
   particular for Query messages.  Q-mode encapsulation is similar to
   normal encapsulation, with changes in IP address selection, IP
   options, and a defined method for selecting UDP ports.  Encapsulation and Interception in IPv4

   In general, the IP addresses are derived from information in the MRI;
   the exact rules depend on the MRM.  For the case of messages with
   source addressing mode flag S=1, the receiver MUST check the IP
   source address with the interface-address given in the NLI as part of

Schulzrinne & Hancock    Expires October 4, 2007               [Page 54]

Internet-Draft                    GIST                        April 2007

   legacy NAT detection, see Section 7.2.1.

   Current MRMs define the use of a Router Alert Option [3] to assist
   the peer in intercepting the message depending on the NSLPID.  If the
   MRM defines the use of RAO, the sender MUST include it by default.
   However, a node MAY make the initial interception decision based
   purely on IP-Protocol number transport header analysis (see below).
   Implementations MAY provide an option to disable the setting of RAO
   on Q-mode packets on a per-destination prefix basis; however, the
   option MUST be disabled by default and MUST only be enabled when it
   has been separately verified that the the next GIST node along the
   path to the destination is capable of intercepting packets without
   RAO.  The purpose of this option is to allow operation across
   networks which do not properly support RAO; further details are
   discussed in Appendix C.

   It is possible that fragmented datagrams including an RAO will not be
   correctly handled in the network; furthermore, some of the checks
   that a datagram is a Q-mode packet depend on data beyond the IP
   header.  Therefore the sender MUST set the Don't Fragment (DF) bit in
   the IPv4 header.  Note that all MRMs require S=1 for at least some
   retransmissions, so ICMP errors related to fragmentation will be seen
   at the Querying node.

   The upper layer protocol, identified by the IP-Protocol field in the
   IP header, MUST be UDP.  Encapsulation and Interception in IPv6

   As for IPv4, the IP addresses are derived from information in the
   MRI; the exact rules depend on the MRM.  For the case of messages
   with source addressing mode flag S=1, the receiver MUST check the IP
   source address with the interface-address given in the NLI as part of
   legacy NAT detection, see Section 7.2.1.

   For all current MRMs, the IP header is given a Router Alert Option
   [8] to assist the peer in intercepting the message depending on the
   NSLPID.  If the MRM defines the use of RAO, the sender MUST include
   it without exception.  It is RECOMMENDED that a node bases its
   initial interception decision purely on the presence of a hop-by-hop
   option header containing the RAO, which will be at the start of the
   header chain.

   The upper layer protocol MUST be UDP without intervening
   encapsulation layers.  Following the hop-by-hop option header, the IP
   header MUST NOT include any extension headers other than routing
   options or destination options, and for the last extension header
   MUST have a next-header field of UDP.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 55]

Internet-Draft                    GIST                        April 2007  Upper Layer Encapsulation and Overall Interception

   For both IP versions, the above rules require that the upper layer
   protocol identified by the IP header MUST be UDP.  Other packets MUST
   NOT be identified as GIST Q-mode packets; this includes IP-in-IP
   tunnelled packets, other tunnelled packets (tunnel mode AH/ESP), or
   packets which have undergone some additional transport layer
   processing (transport mode AH/ESP).  If IP output processing at the
   originating node or an intermediate router causes such additional
   encapsulations to be added to a GIST Q-mode packet, this packet will
   not be identified as GIST until the encapsulation is terminated.  If
   the node wishes to signal for data over the network region where the
   encapsulation applies, it MUST generate additional signalling with an
   MRI matching the encapsulated traffic, and the outbound GIST Q-mode
   messages for it MUST bypass the encapsulation processing.

   Therefore, the final stage of the interception process and the final
   part of encapsulation is at the UDP level.  The source UDP port is
   selected by the message sender as the port at which it is prepared to
   receive UDP messages in reply, and the sender MUST use the
   destination UDP port allocated for GIST by IANA (see Section 9).
   Note that for some MRMs, GIST nodes anywhere along the path can
   generate GIST packets with source addresses that spoof the source
   address of the data flow.  Therefore, destinations cannot distinguish
   these packets from genuine end-to-end data purely on address
   analysis.  Instead, it must be possible to distinguish such GIST
   packets by port analysis; furthermore, the mechanism to do so must
   remain valid even if the destination is GIST-unaware.  GIST solves
   this problem by using a fixed destination UDP port from the "well
   known" space for the Q-mode encapsulation.  This port should never be
   allocated on a GIST-unaware host, and therefore Q-mode encapsulated
   messages should always be rejected with an ICMP error.

   Within the network, there may be packets using the GIST UDP port but
   which are not in fact GIST traffic.  Q-mode packets carry the same
   magic number as other D-mode packets (see Section 5.3.1).  A Q-mode
   packets intercepted within the networ which does not match both the
   UDP destination port and the magic number MUST be forwarded
   transparently at the IP layer, regardless of any RAO value they
   contain.  Regardless of the IP level encapsulation, if either the
   destination port is not the GIST port, or the payload start does not
   match the magic number, the packet MUST NOT be identified as a GIST
   Q-mode packet and MUST be processed as a normal IP datagram.  If a
   Q-mode packet is received at an end system (i.e. the at the
   destination address of the IP datagram), if it does not start with
   the correct magic number it MUST be rejected as in the D-mode case.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 56]

Internet-Draft                    GIST                        April 2007  IP Option Processing

   For both IPv4 and IPv6, for Q-mode packets with IP options allowed by
   the above requirements, IP options processing is intended to be
   carried out independently of GIST processing.  Note that for the
   options allowed by the above rules, the options semantics are
   independent of the payload: UDP payload modifications are not
   prevented by the options and do not affect the options content, and
   conversely the presence of the options does not affect the UDP

   On packets originated by GIST, IP options MAY be added according to
   node-local policies on outgoing IP data.  On packets forwarded by
   GIST without NSLP processing, IP options MUST be processed as for a
   normally forwarded IP packet.  On packets locally delivered to the
   NSLP, the IP options MAY be passed to the NSLP and equivalent options
   used on subsequently generated outgoing Q-mode packets.  In this
   case, routing related options on SHOULD be processed identically as
   they would be for a normally forwarded IP packet.

5.3.3.  Retransmission and Rate Control

   D-mode uses UDP, and hence has no automatic reliability or congestion
   control capabilities.  Signalling applications requiring reliability
   should be serviced using C-mode, which should also carry the bulk of
   signalling traffic.  However, some form of messaging reliability is
   required for the GIST control messages themselves, as is rate control
   to handle retransmissions and also bursts of unreliable signalling or
   state setup requests from the signalling applications.

   Query messages which do not receive Responses MAY be retransmitted;
   retransmissions MUST use a binary exponential backoff.  The initial
   timer value is T1, which the backoff process can increase up to a
   maximum value of T2 seconds.  The default value for T1 is 500 ms.  T1
   is an estimate of the round-trip time between the querying and
   responding nodes.  Nodes MAY use smaller values of T1 if it is known
   that the Query should be answered within the local network.  T1 MAY
   be chosen larger, and this is RECOMMENDED if it is known in advance
   (such as on high latency access links) that the round-trip time is
   larger.  The default value of T2 is 64*T1.  Note that Queries may go
   unanswered either because of message loss (in either direction), or
   because there is no reachable GIST peer.  Therefore, implementations
   MAY trade off reliability (large T2) against promptness of error
   feedback to applications (small T2).  If the NSLP has indicated a
   timeout on the validity of this payload (see Appendix B.1), T2 MUST
   be chosen so that the process terminates within this timeout.
   Retransmitted Queries MUST use different Query-Cookie values.  If the
   Query carries NSLP data, it may be delivered multiple times to the

Schulzrinne & Hancock    Expires October 4, 2007               [Page 57]

Internet-Draft                    GIST                        April 2007

   signalling application.  These rules apply equally to the message
   that first creates routing state, and those that refresh it.  In all
   cases, Responses MUST be sent promptly to avoid spurious
   retransmissions.  Nodes generating any type of retransmission MUST be
   prepared to receive and match a reply to any of them, not just the
   one most recently sent.  Although a node SHOULD terminate its
   retransmission process when any reply is received, it MUST continue
   to process further replies as normal.

   This algorithm is sufficient to handle lost Queries and Responses.
   The case of a lost Confirm is more subtle.  The Responding node MAY
   run a retransmission timer to resend the Response until a Confirm is
   received.  The problem of an amplification attack stimulated by a
   malicious Query is handled by requiring the cookie mechanism to
   enable the node receiving the Response to discard it efficiently if
   it does not match a previously sent Query.  This approach is only
   appropriate if the Responding node is prepared to store per-flow
   state after receiving a single (Query) message, which includes the
   case where the node has queued NSLP data.  If the Responding node has
   delayed state installation, the error condition will only be detected
   when a Data message arrives.  This is handled as a routing state
   error (see Section 4.4.6) which causes the Querying node to restart
   the handshake.

   The basic rate-control requirements for D-mode traffic are
   deliberately minimal.  A single rate limiter applies to all traffic,
   for all interfaces and message types.  It applies to retransmissions
   as well as new messages, although an implementation MAY choose to
   prioritise one over the other.  Rate-control applies only to locally
   generated D-mode messages, not to messages which are being forwarded.
   When the rate limiter is in effect, D-mode messages MUST be queued
   until transmission is re-enabled, or they MAY be dropped with an
   error condition indicated back to local signalling applications.  In
   either case, the effect of this will be to reduce the rate at which
   new transactions can be initiated by signalling applications, thereby
   reducing the load on the network.

   The rate limiting mechanism is implementation-defined, but it is
   RECOMMENDED that a token bucket limiter as described in [34] be used.
   The token bucket MUST be sized to ensure that a node cannot saturate
   the network with D-mode traffic, for example when re-probing the
   network for multiple flows after a route change.  A suitable approach
   is to restrict the token bucket parameters so that the mean output
   rate is a small fraction, such as 5%, of the node's lowest-speed
   interface.  Note that, according to the rules of Section 4.3.3, in
   general D-mode SHOULD only be used for Queries and Responses rather
   than normal signalling traffic.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 58]

Internet-Draft                    GIST                        April 2007

5.4.  C-mode Transport

   It is a requirement of the NTLP defined in [30] that it should be
   able to support bundling of small messages, fragmentation of large
   messages, and message boundary delineation.  TCP provides both
   bundling and fragmentation, but not message boundaries.  However, the
   length information in the GIST common header allows the message
   boundary to be discovered during parsing.  The bundling together of
   small messages can either be done within the transport protocol or
   can be carried out by GIST during message construction.  Either way,
   two approaches can be distinguished:

   1.  As messages arrive for transmission they are gathered into a
       bundle until a size limit is reached or a timeout expires (cf.
       the Nagle algorithm of TCP).  This provides maximal efficiency at
       the cost of some latency.

   2.  Messages awaiting transmission are gathered together while the
       node is not allowed to send them, for example because it is
       congestion controlled.

   The second type of bundling is always appropriate.  For GIST, the
   first type MUST NOT be used for trigger messages (i.e. messages that
   update GIST or signalling application state), but may be appropriate
   for refresh messages (i.e. messages that just extend timers).  These
   distinctions are known only to the signalling applications, but MAY
   be indicated (as an implementation issue) by setting the priority
   transfer attribute (Section 4.1.2).

   It can be seen that all of these transport protocol options can be
   supported by the basic GIST message format already presented.  The
   GIST message, consisting of common header and TLVs, is carried
   directly in the transport protocol, possibly incorporating transport
   layer security protection.  Further messages can be carried in a
   continuous stream.  This specification defines only the use of TCP,
   but other possibilities could be included without additional work on
   message formatting.

5.5.  Message Type/Encapsulation Relationships

   GIST has four primary message types (Query, Response, Confirm, and
   Data) and three possible encapsulation methods (normal D-mode,
   Q-mode, and C-mode).  The possible combinations of message type and
   encapsulation are given in the table below.  In some cases there are
   several possible choices, depending on the existence of routing state
   or messaging associations.  The rules governing GIST policy,
   including whether or not to create such state to handle a message,
   are described normatively in the other sections of this

Schulzrinne & Hancock    Expires October 4, 2007               [Page 59]

Internet-Draft                    GIST                        April 2007

   specification.  If a message arrives with an invalid encapsulation
   (e.g. a Query arrives over a messaging association), this MUST be
   rejected with an "Incorrect Encapsulation" error message
   (Appendix A.4.4.3).  However, it should be noted that the processing
   of the message at the receiver is not otherwise affected by the
   encapsulation method used, except that that the decapsulation process
   may provide additional information, such as translated addresses or
   IP hop count to be used in the subsequent message processing.

   |  Message |  Normal D-mode  |     Query D-mode    |     C-mode     |
   |          |                 |       (Q-mode)      |                |
   |   Query  |      Never      |        Always       |      Never     |
   |          |                 |                     |                |
   | Response |     Unless a    |        Never        | If a messaging |
   |          |    messaging    |                     | association is |
   |          |  association is |                     |  being re-used |
   |          |  being re-used  |                     |                |
   |          |                 |                     |                |
   |  Confirm |    Only if no   |        Never        | If a messaging |
   |          |    messaging    |                     |   association  |
   |          | association has |                     |  has been set  |
   |          |  been set up or |                     | up or is being |
   |          |     is being    |                     |     re-used    |
   |          |     re-used     |                     |                |
   |          |                 |                     |                |
   |   Data   |    If routing   | If no routing state | If a messaging |
   |          |   state exists  |  exists and the MRI |   association  |
   |          |   for the flow  |    can be used to   |     exists     |
   |          |      but no     |  derive the Q-mode  |                |
   |          |    messaging    |    encapsulation    |                |
   |          |   association   |                     |                |

5.6.  Error Message Processing

   Special rules apply to the encapsulation and transmission of error

   GIST only generates error messages in reaction to incoming messages.
   Error messages MUST NOT be generated in reaction to incoming error
   messages.  The routing and encapsulation of the error message is
   derived from that of the message that caused the error; in
   particular, local routing state is not consulted.  Routing state and
   messaging association state MUST NOT be created to handle the error,
   and error messages MUST NOT be retransmitted explicitly by GIST,
   although they are subject to the same rate control as other messages.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 60]

Internet-Draft                    GIST                        April 2007

   o  If the incoming message was received in D-mode, the error MUST be
      sent in D-mode using the normal encapsulation, using the
      addressing information from the NLI object in the incoming
      message.  If the NLI could not be determined, the error MUST be
      sent to the IP source of the incoming message if the S flag was
      set in it.  The NLI object in the Error message reports
      information about the originator of the error.

   o  If the incoming message was received over a messaging association,
      the error MUST be sent back over the same messaging association.

   The NSLPID in the common header of the Error message has the value
   zero.  If for any reason the message cannot be sent, for example,
   because it is too large to send in D-mode, an error SHOULD be logged

5.7.  Messaging Association Setup

5.7.1.  Overview

   A key attribute of GIST is that it is flexible in its ability to use
   existing transport and security protocols.  Different transport
   protocols may have performance attributes appropriate to different
   environments; different security protocols may fit appropriately with
   different authentication infrastructures.  Even given an initial
   default mandatory protocol set for GIST, the need to support new
   protocols in the future cannot be ruled out, and secure feature
   negotiation cannot be added to an existing protocol in a backwards-
   compatible way.  Therefore, some sort of capability discovery is

   Capability discovery is carried out in Query and Response messages,
   using Stack-Proposal and Stack-Configuration-Data objects.  If a new
   messaging association is required it is then set up, followed by a
   Confirm.  Messaging association multiplexing is achieved by short-
   circuiting this exchange by sending the Response or Confirm messages
   on an existing association (Section 4.4.3); whether to do this is a
   matter of local policy.  The end result of this process is a
   messaging association which is a stack of protocols.  If multiple
   associations exist, it is a matter of local policy how to distribute
   messages over them, subject to respecting the transfer attributes
   requested for each message.

   Every possible protocol for a messaging association has the following

   o  MA-Protocol-ID, a 1-byte IANA assigned value (see Section 9).

Schulzrinne & Hancock    Expires October 4, 2007               [Page 61]

Internet-Draft                    GIST                        April 2007

   o  A specification of the (non-negotiable) policies about how the
      protocol should be used; for example, in which direction a
      connection should be opened.

   o  [Depending on the specific protocol:] Formats for an MA-protocol-
      options field to carry the protocol addressing and other
      configuration information in the Stack-Configuration-Data object.
      The format may differ depending on whether the field is present in
      the Query or Response.  Some protocols do not require the
      definition of such additional data, in which case no corresponding
      MA-protocol-options field will occur in the SCD object.

   A Stack-Proposal object is simply a list of profiles; each profile is
   a sequence of MA-Protocol-IDs.  A profile lists the protocols in 'top
   to bottom' order (e.g.  TLS over TCP).  A Stack-Proposal is generally
   accompanied by a Stack-Configuration-Data object which carries an MA-
   protocol-options field for any protocol listed in the Stack-Proposal
   which needs it.  An MA-protocol-options field may apply globally, to
   all instances of the protocol in the Stack-Proposal; or it can be
   tagged as applying to a specific instance.  The latter approach can
   be used to carry different port numbers for TCP depending on whether
   it is to be used with or without TLS.  An MA-protocol-options field
   may also be flagged as not usable; for example, a NAT which could not
   handle SCTP would set this in an MA-protocol-options field about
   SCTP.  A protocol flagged this way MUST NOT be used for a messaging
   association.  If the Stack-Proposal and Stack-Configuration-Data are
   both present but not consistent, for example, if they refer to
   different protocols, or an MA-protocol-options field refers to a non-
   existent profile, an "Object Value Error" message (Appendix A.4.4.10)
   with subcode 5 ("Stack-Proposal - Stack-Configuration-Data Mismatch")
   MUST be returned and the message dropped.

   A node generating a Stack-Configuration-Data object MUST honour the
   implied protocol configurations for the period during which a
   messaging association might be set up; in particular, it MUST be
   immediately prepared to accept incoming datagrams or connections at
   the protocol/port combinations advertised.  This MAY require the
   creation of listening endpoints for the transport and security
   protocols in question, or a node MAY keep a pool of such endpoints
   open for extended periods.  However, the received object contents
   MUST be retained only for the duration of the Query/Response exchange
   and to allow any necessary association setup to complete.  They may
   become invalid because of expired bindings at intermediate NATs, or
   because the advertising node is using agile ports.  Once the setup is
   complete, or if it is not necessary, or fails for some reason, the
   object contents MUST be discarded.  A default time of 30 seconds to
   keep the contents is RECOMMENDED.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 62]

Internet-Draft                    GIST                        April 2007

   A Query requesting association setup always contains a Stack-Proposal
   and Stack-Configuration-Data object.  The Stack-Proposal MUST only
   include protocol configurations that are suitable for the transfer
   attributes of the messages that the Querying node wishes use the
   messaging association for.  For example, it should not simply include
   all configurations that the Querying node is capable of supporting.

   The Response always contains a Stack-Proposal and Stack-
   Configuration-Data object, unless multiplexing (where the Responder
   decides to use an existing association) occurs.  For such a Response,
   the security protocols listed in the Stack-Proposal MUST NOT depend
   on the Query.  A node MAY make different proposals depending on the
   combination of interface and NSLPID.  If multiplexing does occur,
   which is indicated by sending the Response over an existing messaging
   association, the following rules apply:

   o  The re-used messaging association MUST NOT have weaker security
      properties than all of the options that would have been offered in
      the full Response that would have been sent without re-use.

   o  The re-used messaging association MUST have equivalent or better
      transport and security characteristics as at least one of the
      protocol configurations that was offered in the Query.

   Once the messaging association is set up, the Querying node repeats
   the responder's Stack-Proposal over it in the Confirm.  The
   responding node MUST verify that this has not been changed as part of
   bidding-down attack prevention.  If a difference is detected, the
   responding node MUST terminate the messaging association and SHOULD
   log an error condition locally.  See Section 8.6 for further

5.7.2.  Protocol Definition: Forwards-TCP

   This MA-Protocol-ID denotes a basic use of TCP between peers.
   Support for this protocol is REQUIRED.  If this protocol is offered,
   MA-protocol-options data MUST also be carried in the SCD object.  The
   MA-protocol-options field formats are:

   o  in a Query: no information apart from the field header.

   o  in a Response: 2 byte port number at which the connection will be
      accepted, followed by 2 pad bytes.

   The connection is opened in the forwards direction, from the Querying
   node towards the responder.  The Querying node MAY use any source
   address and source port.  The destination information MUST be derived
   from information in the Response: the address from the interface-

Schulzrinne & Hancock    Expires October 4, 2007               [Page 63]

Internet-Draft                    GIST                        April 2007

   address from the Network-Layer-Information object and the port from
   the SCD object as described above.

   Associations using Forwards-TCP can carry messages with the transfer
   attribute Reliable=True.  If an error occurs on the TCP connection
   such as a reset, as can be detected for example by a socket exception
   condition, GIST MUST report this to NSLPs as discussed in
   Section 4.1.2.

5.7.3.  Protocol Definition: Transport Layer Security

   This MA-Protocol-ID denotes a basic use of transport layer channel
   security, initially in conjunction with TCP.  Support for this
   protocol in conjunction with TCP is REQUIRED; associations using it
   can carry messages with transfer attributes requesting
   confidentiality or integrity protection.  The specific TLS version
   will be negotiated within the TLS layer itself, but implementations
   MUST NOT negotiate to protocol versions prior to TLS1.0 [16] and MUST
   use the highest protocol version supported by both peers.
   Implementation of TLS1.1 [13] is RECOMMENDED.  GIST nodes supporting
   TLS1.0 or TLS1.1 MUST- be able to negotiate the TLS ciphersuite
   TLS_RSA_WITH_3DES_EDE_CBC_SHA and SHOULD+ be able to negotiate the
   TLS ciphersuite TLS_RSA_WITH_AES_128_CBC_SHA.  They MAY negotiate any
   mutually acceptable ciphersuite that provides authentication,
   integrity, and confidentiality.

   The default mode of TLS authentication, which applies in particular
   to the above ciphersuites, uses a client/server X.509 certificate
   exchange.  The Querying node acts as a TLS client, and the Responding
   node acts as a TLS server.  Where one of the above ciphersuites is
   negotiated, the GIST node acting as a server MUST provide a
   certificate, and MUST request one from the GIST node acting as a TLS
   client.  This allows either server-only or mutual authentication,
   depending on the certificates available to the client and the policy
   applied at the server.

   GIST nodes MAY negotiate other TLS ciphersuites.  In some cases, the
   negotiation of alternative ciphersuites is used to trigger
   alternative authentication procedures, such as the use of pre-shared
   keys [33].  The use of other authentication procedures may require
   additional specification work to define how they can be used as part
   of TLS within the GIST framework, and may or may not require the
   definition of additional MA-Protocol-IDs.

   No MA-protocol-options field is required for this TLS protocol
   definition.  The configuration information for the transport protocol
   over which TLS is running (e.g.  TCP port number) is provided by the
   MA-protocol-options for that protocol.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 64]

Internet-Draft                    GIST                        April 2007  Identity Checking in TLS

   After TLS authentication, a node MUST check the identity presented by
   the peer in order to avoid man-in-the-middle attacks, and verify that
   the peer is authorised to take part in signalling at the GIST layer.
   The authorisation check is carried out by comparing the presented
   identity with each APD entry in turn, as discussed in Section 4.4.2.
   This section defines the identity comparison algorithm for a single
   APD entry.

   For TLS authentication with X.509 certificates, an identity from the
   DNS namespace MUST be checked against each subjectAltName extension
   of type dNSName present in the certificate.  If no such extension is
   present, then the identity MUST be compared to the (most specific)
   Common Name in the Subject field of the certificate.  When matching
   DNS names against dNSName or Common Name fields, matching is case-
   insensitive.  Also, a "*" wildcard character MAY be used as the left-
   most name component in the certificate or identity in the APD.  For
   example, * in the APD would match certificates for,, *, etc., but would not
   match  Similarly, a certificate for * would
   be valid for APD identities of,,
   *, etc., but not

   Additionally, a node MUST verify the binding between the identity of
   the peer to which it connects and the public key presented by that
   peer.  Nodes SHOULD implement the algorithm in Section 6 of [10] for
   general certificate validation, but MAY supplement that algorithm
   with other validation methods that achieve equivalent levels of
   verification (such as comparing the server certificate against a
   local store of already-verified certificates and identity bindings).

   For TLS authentication with pre-shared keys, the identity in the
   psk_identity_hint (for the server identity, i.e. the Responding node)
   or psk_identity (for the client identity, i.e. the Querying node)
   MUST be compared to the identities in the APD.

5.8.  Specific Message Routing Methods

   Each message routing method (see Section 3.3) requires the definition
   of the format of the message routing information (MRI) and Q-mode
   encapsulation rules.  These are given in the following subsections
   for the MRMs currently defined.  A GIST implementation on a node MUST
   support whatever MRMs are required by the NSLPs on that node; GIST
   implementations SHOULD provide support for both the MRMs defined
   bere, in order to minimise deployment barriers for new signalling
   applications that need them.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 65]

Internet-Draft                    GIST                        April 2007

5.8.1.  The Path-Coupled MRM  Message Routing Information

   For the path-coupled MRM, this is conceptually the Flow Identifier as
   in the NSIS Framework [30].  Minimally, this could just be the flow
   destination address; however, to account for policy based forwarding
   and other issues a more complete set of header fields SHOULD be
   specified if possible (see Section 4.3.4 and Section 7.2 for further

       MRI = network-layer-version
             source-address prefix-length
             destination-address prefix-length
             [ flow-label ]
             [ ipsec-SPI / L4-ports]

   Additional control information defines whether the flow-label, IPsec
   Security Parameters Index (SPI), and port information are present,
   and whether the IP-protocol and diffserv-codepoint fields should be
   interpreted as significant.  The source and destination addresses
   MUST be real node addresses, but prefix lengths other than 32/128
   (for IPv4/6) MAY be used to implement address wildcarding, allowing
   the MRI to refer to traffic to or from a wider address range.

   The MRI format allows a potentially very large number of different
   flag and field combinations.  A GIST implementation that cannot
   interpret the MRI in a message MUST return an "Object Value Error"
   message (Appendix A.4.4.10) with subcodes 1 ("Value Not Supported")
   or 2 ("Invalid Flag-Field Combination") and drop the message.  Downstream Q-mode Encapsulation

   Where the signalling message is travelling in the same ('downstream')
   direction as the flow defined by the MRI, the IP addressing for
   Q-mode encapsulated messages is as follows.  Support for this
   encapsulation is REQUIRED.

   o  The destination IP address MUST be the flow destination address as
      given in the MRI of the message payload.

   o  By default, the source address is the flow source address, again
      from the MRI; therefore, the source addressing mode flag in the
      common header S=0.  This provides the best likelihood that the
      message will be correctly routed through any region performing
      per-packet policy-based forwarding or load balancing which takes

Schulzrinne & Hancock    Expires October 4, 2007               [Page 66]

Internet-Draft                    GIST                        April 2007

      the source address into account.  However, there may be
      circumstances where the use of the signalling source address (S=1)
      is preferable, such as:

      *  In order to receive ICMP error messages about the signalling
         message, such as unreachable port or address.  If these are
         delivered to the flow source rather than the signalling source,
         it will be very difficult for the querying node to detect that
         it is the last GIST node on the path.  Another case is where
         there is an abnormally low MTU along the path, in which case
         the querying node needs to see the ICMP error (recall that
         Q-mode packets are sent with DF set).

      *  In order to receive GIST Error messages where the error message
         sender could not interpret the NLI in the original message.

      *  In order to attempt to run GIST through an unmodified NAT,
         which will only process and translate IP addresses in the IP
         header (see Section 7.2.1).

      Because of these considerations, use of the signalling source
      address is allowed as an option, with use based on local policy.
      A node SHOULD use the flow source address for initial Query
      messages, but SHOULD transition to the signalling source address
      for some retransmissions or as a matter of static configuration,
      for example if a NAT is known to be in the path out of a certain
      interface.  The S-flag in the common header tells the message
      receiver which option was used.

   A router alert option is also included in the IP header.  The option
   value depends on the NSLP being signalled for.  In addition, it is
   essential that the Query mimics the actual data flow as closely as
   possible, since this is the basis of how the signalling message is
   attached to the data path.  To this end, GIST SHOULD set the DiffServ
   codepoint and (for IPv6) flow label to match the values in the MRI.

   A GIST implementation SHOULD apply validation checks to the MRI, to
   reject Query messages that are being injected by nodes with no
   legitimate interest in the flow being signalled for.  In general, if
   the GIST node can detect that no flow could arrive over the same
   interface as the Query, it MUST be rejected with an appropriate error
   message.  Such checks apply only to messages with the Q-mode
   encapsulation, since only those messages are required to track the
   flow path.  The main checks are that the IP version should match the
   version(s) used on that interface, and that the full range of source
   addresses (the source-address masked with its prefix-length) would
   pass ingress filtering checks.  For these cases, the error message is
   "MRI Validation Failure" (Appendix A.4.4.12) with subcodes 1 or 2

Schulzrinne & Hancock    Expires October 4, 2007               [Page 67]

Internet-Draft                    GIST                        April 2007

   ("IP Version Mismatch" or "Ingress Filter Failure") respectively.  Upstream Q-mode Encapsulation

   In some deployment scenarios it is desirable to set up routing state
   in the upstream direction, (i.e. from flow receiver towards the
   sender).  This could be used to support firewall signalling to
   control traffic from an un-cooperative sender, or signalling in
   general where the flow sender was not NSIS-capable.  This capability
   is incorporated into GIST by defining an encapsulation and processing
   rules for sending Query messages upstream.

   In general, it is not possible to determine the hop-by-hop route
   upstream because of asymmetric IP routing.  However, in particular
   cases, the upstream peer can be discovered with a high degree of
   confidence, for example:

   o  The upstream GIST peer is 1 IP hop away, and can be reached by
      tracing back through the interface on which the flow arrives.

   o  The upstream peer is a border router of a single-homed (stub)

   This section defines an upstream Q-mode encapsulation and validation
   checks for when it can be used.  The functionality to generate
   upstream Queries is OPTIONAL, but if received they MUST be processed
   in the normal way.  No special functionality is needed for this.

   It is possible for routing state at a given node, for a specific MRI
   and NSLPID, to be created by both an upstream Query exchange
   (initiated by the node itself), and a downstream Query exchange
   (where the node is the responder).  If the SIDs are different, these
   items of routing state MUST be considered as independent; if the SIDs
   match, the routing state installed by the downstream exchange MUST
   take precedence, provided that the downstream Query passed ingress
   filtering checks.  The rationale for this is that the downstream
   Query is in general a more reliable way to install state, since it
   directly probes the IP routing infrastructure along the flow path,
   whereas use of the upstream Query depends on the correctness of the
   Querying node's understanding of the topology.

   The details of the encapsulation are as follows:

   o  The destination address SHOULD be the flow source address as given
      in the MRI of the message payload.  An implementation with more
      detailed knowledge of local IP routing MAY use an alternative
      destination address (e.g. the address of its default router).

Schulzrinne & Hancock    Expires October 4, 2007               [Page 68]

Internet-Draft                    GIST                        April 2007

   o  The source address SHOULD be the signalling node address, so in
      the common header S=1.

   o  A router alert option is included as in the downstream case.

   o  The DiffServ codepoint and (for IPv6) flow label MAY be set to
      match the values from the MRI as in the downstream case, and the
      UDP port selection is also the same.

   o  The IP layer TTL of the message MUST be set to 255.

   The sending GIST implementation SHOULD attempt to send the Query via
   the same interface and to the same link layer neighbour from which
   the data packets of the flow are arriving.

   The receiving GIST node MAY apply validation checks to the message
   and MRI, to reject Query messages which have reached a node at which
   they can no longer be trusted.  In particular, a node SHOULD reject a
   message which has been propagated more than one IP hop, with an
   "Invalid IP layer TTL" error message (Appendix A.4.4.11).  This can
   be determined by examining the received IP layer TTL, similar to the
   generalised IP TTL security mechanism described in [28].
   Alternatively, receipt of an upstream Query at the flow source MAY be
   used to trigger setup of GIST state in the downstream direction.
   These restrictions may be relaxed in a future version.

5.8.2.  The Loose-End MRM

   The Loose-End MRM is used to discover GIST nodes with particular
   properties in the direction of a given address, for example to
   discover a NAT along the upstream data path as in [35].  Message Routing Information

   For the loose-end MRM, only a simplified version of the Flow
   Identifier is needed.

       MRI = network-layer-version

   The source address is the address of the node initiating the
   discovery process, for example the node that will be the data
   receiver in the NAT discovery case.  The destination address is the
   address of a node which is expected to be the other side of the node
   to be discovered.  Additional control information defines the
   direction of the message relative to this flow as in the path-coupled

Schulzrinne & Hancock    Expires October 4, 2007               [Page 69]

Internet-Draft                    GIST                        April 2007  Downstream Q-mode Encapsulation

   Only one encapsulation is defined for the loose-end MRM; by
   convention, this is referred to as the downstream encapsulation, and
   is defined as follows:

   o  The IP destination address MUST be the destination address as
      given in the MRI of the message payload.

   o  By default, the IP source address is the source address, again
      from the MRI (S=0).  However, the use of the signalling source
      address (S=1) is allowed as in the case of the path-coupled MRM.

   A router alert option is included in the IP header.  The option value
   depends on the NSLP being signalled for.  There are no special
   requirements on the setting of the DiffServ codepoint, IP layer TTL,
   or (for IPv6) the flow label.  Nor are any special validation checks

Schulzrinne & Hancock    Expires October 4, 2007               [Page 70]

Internet-Draft                    GIST                        April 2007

6.  Formal Protocol Specification

   This section provides a more formal specification of the operation of
   GIST processing, in terms of rules for transitions between states of
   a set of communicating state machines within a node.  The following
   description captures only the basic protocol specification;
   additional mechanisms can be used by an implementation to accelerate
   route change processing, and these are captured in Section 7.1.  A
   more detailed description of the GIST protocol operation in state
   machine syntax can be found in [43].

   Conceptually, GIST processing at a node may be seen in terms of four
   types of cooperating state machine:

   1.  There is a top-level state machine which represents the node
       itself (Node-SM).  It is responsible for the processing of events
       which cannot be directed towards a more specific state machine,
       for example, inbound messages for which no routing state
       currently exists.  This machine exists permanently, and is
       responsible for creating per-MRI state machines to manage the
       GIST handshake and routing state maintenance procedures.

   2.  For each flow and signalling direction where the node is
       responsible for the creation of routing state, there is an
       instance of a Query-Node state machine (Querying-SM).  This
       machine sends Query and Confirm messages and waits for Responses,
       according to the requirements from local API commands or timer
       processing, such as message repetition or routing state refresh.

   3.  For each flow and signalling direction where the node has
       accepted the creation of routing state by a peer, there is an
       instance of a Responding-Node state machine (Responding-SM).
       This machine is responsible for managing the status of the
       routing state for that flow.  Depending on policy, it MAY be
       responsible for [re]transmission of Response messages, or this
       MAY be handled by the Node-SM, and a Responding-SM is not even
       created for a flow until a properly formatted Confirm has been

   4.  Messaging associations have their own lifecycle, represented by
       MA-SM, from when they are first created (in an incomplete state,
       listening for an inbound connection or waiting for outbound
       connections to complete), to when they are active and available
       for use.

   Apart from the fact that the various machines can be created and
   destroyed by each other, there is almost no interaction between them.
   The machines for different flows do not interact; the Querying-SM and

Schulzrinne & Hancock    Expires October 4, 2007               [Page 71]

Internet-Draft                    GIST                        April 2007

   Responding-SM for a single flow and signalling direction do not
   interact.  That is, the Responding-SM which accepts the creation of
   routing state for a flow on one interface has no direct interaction
   with the Querying-SM which sets up routing state on the next
   interface along the path.  This interaction is mediated instead
   through the NSLP.

   The state machine descriptions use the terminology rx_MMMM, tg_TTTT
   and er_EEEE for incoming messages, API/lower layer triggers and error
   conditions respectively.  The possible events of these types are
   given in the table below.  In addition, timeout events denoted
   to_TTTT may also occur; the various timers are listed independently
   for each type of state machine in the following subsections.

   | Name                | Meaning                                     |
   | rx_Query            | A Query has been received.                  |
   |                     |                                             |
   | rx_Response         | A Response has been received.               |
   |                     |                                             |
   | rx_Confirm          | A Confirm has been received.                |
   |                     |                                             |
   | rx_Data             | A Data message has been received.           |
   |                     |                                             |
   | rx_Message          | rx_Query||rx_Response||rx_Confirm||rx_Data. |
   |                     |                                             |
   | rx_MA-Hello         | A MA-Hello message has been received.       |
   |                     |                                             |
   | tg_NSLPData         | A signalling application has requested data |
   |                     | transfer (via API SendMessage).             |
   |                     |                                             |
   | tg_Connected        | The protocol stack for a messaging          |
   |                     | association has completed connecting.       |
   |                     |                                             |
   | tg_RawData          | GIST wishes to transfer data over a         |
   |                     | particular messaging association.           |
   |                     |                                             |
   | tg_MAIdle           | GIST decides that it is no longer necessary |
   |                     | to keep an MA open for itself.              |
   |                     |                                             |
   | er_NoRSM            | A "No Routing State" error was received.    |
   |                     |                                             |
   | er_MAConnect        | A messaging association protocol failed to  |
   |                     | complete a connection.                      |
   |                     |                                             |
   | er_MAFailure        | A messaging association failed.             |

Schulzrinne & Hancock    Expires October 4, 2007               [Page 72]

Internet-Draft                    GIST                        April 2007

                              Incoming Events

6.1.  Node Processing

   The Node level state machine is responsible for processing events for
   which no more appropriate messaging association state or routing
   state exists.  Its structure is trivial: there is a single state
   ('Idle'); all events cause a transition back to Idle.  Some events
   cause the creation of other state machines.  The only events that are
   processed by this state machine are incoming GIST messages (Query/
   Response/Confirm/Data) and API requests to send data; no other events
   are possible.  In addition to this event processing, the Node level
   machine is responsible for managing listening endpoints for messaging
   associations.  Although these relate to Responding node operation,
   they cannot be handled by the Responder state machine since they are
   not created per flow.  The processing rules for each event are as

   Rule 1 (rx_Query):
   use the GIST service interface to determine the signalling
       application policy relating to this peer
       // note that this interaction delivers any NSLP-Data to
       // the NSLP as a side effect
   if (the signalling application indicates that routing state should
       be created) then
     if (routing state can be created without a 3-way handshake) then
       create Responding-SM and transfer control to it
       send Response with R=1
     propagate the Query with any updated NSLP payload provided

   Rule 2 (rx_Response):
   // a routing state error
   discard message

   Rule 3 (rx_Confirm):
   if (routing state can be created before receiving a Confirm) then
     // we should already have Responding-SM for it,
     // which would handle this message
     discard message
     send "No Routing State" error message
     create Responding-SM and pass message to it

Schulzrinne & Hancock    Expires October 4, 2007               [Page 73]

Internet-Draft                    GIST                        April 2007

   Rule 4 (rx_Data):
   if (node policy will only process Data messages with matching
       routing state) then
     send "No Routing State" error message
     pass directly to NSLP

   Rule 4 (er_NoRSM):
   discard the message

   Rle 5 (tg_NSLPData):
   if Q-mode encapsulation is not possible for this MRI
     reject message with an error
     if (local policy & transfer attributes say routing
         state is not needed) then
       send message statelessly
       create Querying-SM and pass message to it

6.2.  Query Node Processing

   The Querying-Node state machine (Querying-SM) has three states:

   o  Awaiting Response

   o  Established

   o  Awaiting Refresh

   The Querying-SM is created by the Node-SM machine as a result of a
   request to send a message for a flow in a signalling direction where
   the appropriate state does not exist.  The Query is generated
   immediately and the No_Response timer is started.  The NSLP data MAY
   be carried in the Query if local policy and the transfer attributes
   allow it, otherwise it MUST be queued locally pending MA
   establishment.  Then the machine transitions to the Awaiting Response
   state, in which timeout-based retransmissions are handled.  Data
   messages (rx_Data events) should not occur in this state; if they do,
   this may indicate a lost Response and a node MAY also retransmit a
   Query for this reason.

   Once a Response has been successfully received and routing state
   created, the machine transitions to Established, during which NSLP
   data can be sent and received normally.  Further Responses received
   in this state (which may be the result of a lost Confirm) MUST be
   treated the same way.  The Awaiting Refresh state can be considered
   as a substate of Established, where a new Query has been generated to

Schulzrinne & Hancock    Expires October 4, 2007               [Page 74]

Internet-Draft                    GIST                        April 2007

   refresh the routing state (as in Awaiting Response) but NSLP data can
   be handled normally.

   The timers relevant to this state machine are as follows:

   Refresh_QNode:  Indicates when the routing state stored by this state
      machine must be refreshed.  It is reset whenever a Response is
      received indicating that the routing state is still valid.
      Implementations MUST set the period of this timer based on the
      value in the RS-validity-time field of a Response to ensure that a
      Query is generated before the peer's routing state expires.

   No_Response:  Indicates that a Response has not been received in
      answer to a Query.  This is started whenever a Query is sent and
      stopped when a Response is received.

   Inactive_QNode:  Indicates that no traffic is currently being handled
      by this state machine.  This is reset whenever the state machine
      handles NSLP data, in either direction.  When it expires, the
      state machine MAY be deleted.  The period of the timer can be set
      at any time via the API (SetStateLifetime), and if the period is
      reset in this way the timer itself MUST be restarted.

   The main events (including all those that cause state transitions)
   are shown in the figure below, tagged with the number of the
   processing rule that is used to handle the event.  These rules are
   listed after the diagram.  All events not shown or described in the
   text above are assumed to be impossible in a correct implementation
   and MUST be ignored.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 75]

Internet-Draft                    GIST                        April 2007

              [Initialisation]   +-----+
       |                         +-----+
       | er_NoRSM[3](from all states)                   rx_Response[4]
       |                                               || tg_NSLPData[5]
       |      tg_NSLPData[1]                           || rx_Data[7]
       |        --------                                    -------
       |       |        V                                  |       V
       |       |        V                                  |       V
       |      +----------+                               +-----------+
        ---->>| Awaiting |                               |Established|
        ------| Response |---------------------------->> |           |
       |      +----------+       rx_Response[4]          +-----------+
       |       ^        |                                     ^   |
       |       ^        |                                     ^   |
       |        --------                                      |   |
       |    to_No_Response[2]                                 |   |
       |    [!nResp_reached]     tg_NSLPData[5]               |   |
       |                         || rx_Data[7]                |   |
       |                          --------                    |   |
       |                         |        V                   |   |
       |    to_No_Response[2]    |        V                   |   |
       |     [nResp_reached]    +-----------+  rx_Response[4] |   |
        ----------   -----------|  Awaiting |-----------------    |
                  | |           |  Refresh  |<<-------------------
                  | |           +-----------+    to_Refresh_QNode[8]
                  | |            ^        |
                  V V            ^        | to_No_Response[2]
                  V V             --------  [!nResp_reached]
                +-----+   to_Inactive_QNode[6]
                          (from all states)

                    Figure 5: Query Node State Machine

   The processing rules are as follows:

   Rule 1:  Store the message for later transmission

   Rule 2:
   if number of Queries sent has reached the threshold
     // nQuery_isMax is true
     indicate No Response error to NSLP
     destroy self
     send Query
     start No_Response timer with new value

Schulzrinne & Hancock    Expires October 4, 2007               [Page 76]

Internet-Draft                    GIST                        April 2007

   Rule 3:
   // Assume the Confirm was lost in transit or the peer has reset;
   // restart the handshake
   send Query
   start No_Response timer

   Rule 4:
   if a new MA-SM is needed create one
   if the R flag was set send a Confirm
   pass any NSLP-Data object to the NSLP
   send any stored Data messages
   stop No_Response timer
   start Refresh_QNode and (re)start Inactive_QNode timers

   Rule 5:
   send Data message
   restart Inactive_QNode timer

   Rule 6:  Terminate

   Rule 7:
   pass any data to the NSLP
   restart Inactive_QNode timer

   Rule 8:
   send Query
   start No_Response timer
   stop Refresh_QNode timer

6.3.  Responder Node Processing

   The Responding-Node state machine (Responding-SM) has three states:

   o  Awaiting Confirm

   o  Established

   o  Awaiting Refresh

   The policy governing the handling of Query messages and the creation
   of the Responding-SM has three cases:

   1.  No Confirm is required for a Query, and the state machine can be
       created immediately.

   2.  A Confirm is required for a Query, but the state machine can
       still be created immediately.  A timer is used to retransmit
       Response messages and the Responding-SM is destroyed if no valid

Schulzrinne & Hancock    Expires October 4, 2007               [Page 77]

Internet-Draft                    GIST                        April 2007

       Confirm is received.

   3.  A Confirm is required for a Query, and the state machine can only
       be created when it is received; the initial Query will have been
       handled by the Node level machine.

   In case 2 the Responding-SM is created in the Awaiting Confirm state,
   and remains there until a Confirm is received, at which point it
   transitions to Established.  In cases 1 and 3 the Responding-SM is
   created directly in the Established state.  Note that if the machine
   is created on receiving a Query, some of the message processing will
   already have been performed in the Node state machine.  In principle,
   an implementation MAY change its policy on handling a Query message
   at any time; however, the state machine descriptions here cover only
   the case where the policy is fixed while waiting for a Confirm

   In the Established state the NSLP can send and receive data normally,
   and any additional rx_Confirm events MUST be silently ignored.  The
   Awaiting Refresh state can be considered a substate of Established,
   where a Query has been received to begin the routing state refresh.
   In the Awaiting Refresh state the Responding-SM behaves as in the
   Awaiting Confirm state, except that the NSLP can still send and
   receive data.  In particular, in both states there is timer-based
   retransmission of Response messages until a Confirm is received;
   additional rx_Query events in these states MUST also generate a reply
   and restart the no_Confirm timer.

   The timers relevant to the operation of this state machine are as

   Expire_RNode:  Indicates when the routing state stored by this state
      machine needs to be expired.  It is reset whenever a Query or
      Confirm (depending on local policy) is received indicating that
      the routing state is still valid.  Note that state cannot be
      refreshed from the R-Node.

   No_Confirm:  Indicates that a Confirm has not been received in answer
      to a Response.  This is started/reset whenever a Response is sent
      and stopped when a Confirm is received.

   The detailed state transitions and processing rules are described
   below as in the Query node case.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 78]

Internet-Draft                    GIST                        April 2007

               rx_Query[1]                      rx_Query[5]
            [confirmRequired]    +-----+    [!confirmRequired]
       |                         +-----+                            |
       |                            |         rx_Confirm[2]         |
       |                             ----------------------------   |
       |                                                         |  |
       |                                       rx_Query[5]       |  |
       |     tg_NSLPData[7]                   || rx_Confirm[10]  |  |
       |      || rx_Query[1]                  || rx_Data[4]      |  |
       |      || rx_Data[6]                   || tg_NSLPData[3]  |  |
       |        --------                        --------------   |  |
       |       |        V                      |              V  V  V
       |       |        V                      |              V  V  V
       |      +----------+                     |           +-----------+
        ---->>| Awaiting |     rx_Confirm[8]    -----------|Established|
        ------| Confirm  |------------------------------>> |           |
       |      +----------+                                 +-----------+
       |       ^        |                                      ^   |
       |       ^        |         tg_NSLPData[3]               ^   |
       |        --------          || rx_Query[1]               |   |
       |    to_No_Confirm[9]      || rx_Data[4]                |   |
       |    [!nConf_reached]       --------                    |   |
       |                          |        V                   |   |
       |    to_No_Confirm[9]      |        V                   |   |
       |    [nConf_reached]      +-----------+  rx_Confirm[8]  |   |
        ----------   ------------|  Awaiting |-----------------    |
                  | |            |  Refresh  |<<-------------------
                  | |            +-----------+      rx_Query[1]
                  | |             ^        |     [confirmRequired]
                  | |             ^        |
                  | |              --------
                  V V          to_No_Confirm[9]
                  V V          [!nConf_reached]
                +-----+    er_NoRSM[11]
                               (from Established/Awaiting Refresh)

                  Figure 6: Responder Node State Machine

   The processing rules are as follows:

   Rule 1:
   // a Confirm is required
   send Response with R=1
   (re)start No_Confirm timer

Schulzrinne & Hancock    Expires October 4, 2007               [Page 79]

Internet-Draft                    GIST                        April 2007

   Rule 2:
   pass any NSLP-Data object to the NSLP
   start Expire_RNode timer

   Rule 3:  send the Data message

   Rule 4:  pass data to NSLP

   Rule 5:
   // no Confirm is required
   send Response with R=0
   start Expire_RNode timer

   Rule 6:  send "No Routing State" error message

   Rule 7:  store Data message

   Rule 8:
   pass any NSLP-Data object to the NSLP
   send any stored Data messages
   stop No_Confirm timer
   start Expire_RNode timer

   Rule 9:
   if number of Responses sent has reached threshold
     // nResp_isMax is true
     destroy self
     send Response
     start No_Response timer

   Rule 10:
  // can happen e.g. a retransmitted Response causes a duplicate Confirm
  silently ignore

   Rule 11:  destroy self

6.4.  Messaging Association Processing

   Messaging associations (MAs) are modelled for use within GIST with a
   simple three-state process.  The Awaiting Connection state indicates
   that the MA is waiting for the connection process(es) for every
   protocol in the messaging association to complete; this might involve
   creating listening endpoints or attempting active connects.  Timers
   may also be necessary to detect connection failure (e.g. no incoming
   connection within a certain period), but these are not modelled

Schulzrinne & Hancock    Expires October 4, 2007               [Page 80]

Internet-Draft                    GIST                        April 2007

   The Connected state indicates that the MA is open and ready to use,
   and that the node wishes it to remain open.  In this state, the node
   operates a timer (SendHello) to ensure that messages are regularly
   sent to the peer, to ensure that the peer does not tear the MA down.
   The node transitions from Connected to Idle (indicating that it no
   longer needs the association) as a matter of local policy; one way to
   manage the policy is to use an activity timer but this is not
   specified explicitly by the state machine (see also Section 4.4.5).

   In the Idle state, the node no longer requires the messaging
   association but the peer still requires it and is indicating this by
   sending periodic MA-Hello messages.  A different timer (NoHello)
   operates to purge the MA when these messages stop arriving.  If real
   data is transferred over the MA, the state machine transitions back
   to Connected.

   At any time in the Connected or Idle states, a node MAY test the
   connectivity to its peer and the liveness of the GIST instance at
   that peer by sending a MA-Hello request with R=1.  Failure to receive
   a reply with a matching Hello-ID within a timeout MAY be taken as a
   reason to trigger er_MAFailure.  Initiation of such a test and the
   timeout setting are left to the discretion of the implementaion.
   Note that er_MAFailure may also be signalled by indications from the
   underlying messaging association protocols.  If a messaging
   association fails, this MUST be indicated back to the routing state
   machines which use it, and these MAY generate indications to
   signalling applications.  In particular, if the messaging association
   was being used to deliver messages reliably, this MUST be reported as
   a NetworkNotification error (Appendix B.4).

   Clearly, many internal details of the messaging association protocols
   are hidden in this model, especially where the messaging association
   uses multiple protocol layers.  Note also that although the existence
   of messaging associations is not directly visible to signalling
   applications, there is some interaction between the two because
   security-related information becomes available during the open
   process, and this may be indicated to signalling applications if they
   have requested it.

   The timers relevant to the operation of this state machine are as

   SendHello:  Indicates that an MA-Hello message should be sent to the
      remote node.  The period of this timer is determined by the MA-
      Hold-Time sent by the remote node during the Query/Response/
      Confirm exchange.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 81]

Internet-Draft                    GIST                        April 2007

   NoHello:  Indicates that no MA-Hello has been received from the
      remote node for a period of time.  The period of this timer is
      sent to the remote node as the MA-Hold-Time during the Query/
      Response exchange.

   The detailed state transitions and processing rules are described
   below as in the Query node case.
            [Initialisation]       +-----+
      |                            +-----+       tg_RawData[1]
      |                                          || rx_Message[2]
      |                                          || rx_MA-Hello[3]
      |       tg_RawData[5]                      || to_SendHello[4]
      |        --------                             --------
      |       |        V                           |        V
      |       |        V                           |        V
      |      +----------+                         +-----------+
       ---->>| Awaiting |    tg_Connected[6]      | Connected |
       ------|Connection|----------------------->>|           |
      |      +----------+                         +-----------+
      |                                              ^    |
      |                              tg_RawData[1]   ^    |
      |                            || rx_Message[2]  |    | tg_MAIdle[7]
      |                                              |    V
      |                                              |    V
      | er_MAConnect[8]  +-----+   to_NoHello[8]  +-----------+
       ---------------->>|Death|<<----------------|   Idle    |
                         +-----+                  +-----------+
                           ^                       ^        |
                           ^                       ^        |
                            ---------------         --------
                            er_MAFailure[8]        rx_MA-Hello[9]
                         (from Connected/Idle)

               Figure 7: Messaging Association State Machine

   The processing rules are as follows:

   Rule 1:
   pass message to transport layer
   if the NoHello timer was running, stop it
   (re)start SendHello

   Rule 2:
   pass message to Node-SM
   if the NoHello timer was running, stop it

Schulzrinne & Hancock    Expires October 4, 2007               [Page 82]

Internet-Draft                    GIST                        April 2007

   Rule 3:
   if reply requested
     send MA-Hello
     restart SendHello timer

   Rule 4:
   send MA-Hello message
   restart SendHello timer

   Rule 5:  queue message for later transmission

   Rule 6:
   pass outstanding queued messages to transport layer
   stop any timers controlling connection establishment
   start SendHello timer

   Rule 7:
   stop SendHello timer
   start NoHello timer

   Rule 8:
   report failure to routing state machines and signalling applications
   destroy self

   Rule 9:
   if reply requested
     send MA-Hello
   restart NoHello timer

Schulzrinne & Hancock    Expires October 4, 2007               [Page 83]

Internet-Draft                    GIST                        April 2007

7.  Additional Protocol Features

7.1.  Route Changes and Local Repair

7.1.1.  Introduction

   When IP layer re-routing takes place in the network, GIST and
   signalling application state need to be updated for all flows whose
   paths have changed.  The updates to signalling application state
   depend mainly on the signalling application: for example, if the path
   characteristics have actually changed, simply moving state from the
   old to the new path is not sufficient.  Therefore, GIST cannot carry
   out the complete path update processing.  Its responsibilities are to
   detect the route change, update its local routing state consistently,
   and inform interested signalling applications at affected nodes.

                       x  +--+      +--+      +--+  x      Initial
                      x  .|C1|_.....|D1|_.....|E1|   x     Configuration
                     x  . +--+.    .+--+.    .+--+\.  x
      >>xxxxxxxxxxxxx  .       .  .      .  .       .  xxxxxx>>
        +-+       +-+ .         ..        ..         . +-+
     ...|A|_......|B|/          ..        ..          .|F|_....
        +-+       +-+ .        .  .      .  .        . +-+
                       .      .    .    .    .      .
                        . +--+      +--+      +--+ .
                          +--+      +--+      +--+

                          +--+      +--+      +--+         Configuration
                         .|C1|......|D1|......|E1|         after failure
                        . +--+     .+--+      +--+         of E1-F link
                       .      \.  .     \.  ./
        +-+       +-+ .         ..        ..           +-+
     ...|A|_......|B|.          ..        ..          .|F|_....
        +-+       +-+\         .  .      .  .        . +-+
      >>xxxxxxxxxxxxx .       .    .    .    .      .  xxxxxx>>
                     x  . +--+      +--+      +--+ .  x
                      x  .|C2|_.....|D2|_.....|E2|/  x
                       x  +--+      +--+      +--+  x

               ........... = physical link topology
               >>xxxxxxx>> = flow direction
               _.......... = outgoing link for flow xxxxxx given
                             by local forwarding table

                       Figure 8: A Re-Routing Event

Schulzrinne & Hancock    Expires October 4, 2007               [Page 84]

Internet-Draft                    GIST                        April 2007

   Route change management is complicated by the distributed nature of
   the problem.  Consider the re-routing event shown in Figure 8.  An
   external observer can tell that the main responsibility for
   controlling the updates will probably lie with nodes B and F;
   however, E1 is best placed to detect the event quickly at the GIST
   level, and C1 and D1 could also attempt to initiate the repair.

   The NSIS framework [30] makes the assumption that signalling
   applications are soft-state based and operate end to end.  In this
   case, because GIST also periodically updates its picture of routing
   state, route changes will eventually be repaired automatically.  The
   specification as already given includes this functionality.  However,
   especially if upper layer refresh times are extended to reduce
   signalling load, the duration of inconsistent state may be very long
   indeed.  Therefore, GIST includes logic to exchange prompt
   notifications with signalling applications, to allow local repair if
   possible.  The additional mechanisms to achieve this are described in
   the following subsections.  To a large extent, these additions can be
   seen as implementation issues; the protocol messages and their
   significance are not changed, but there are extra interactions
   through the API between GIST and signalling applications, and
   additional triggers for transitions between the various GIST states.

7.1.2.  Route Change Detection Mechanisms

   There are two aspects to detecting a route change at a single node:

   o  Detecting that the outgoing path, in the direction of the Query,
      has or may have changed.

   o  Detecting that the incoming path, in the direction of the
      Response, has (or may have) changed, in which case the node may no
      longer be on the path at all.

   At a single node, these processes are largely independent, although
   clearly a change in one direction at a node corresponds to a change
   the opposite direction at its peer.  Note that there are two possible
   forms for a route change: the interface through which a flow leaves
   or enters a node may change, and the adjacent peer may change.  In
   general, a route change can include one or the other or both (or
   indeed neither, although such changes are very hard to detect).

   The route change detection mechanisms available to a node depend on
   the MRM in use and the role the node played in setting up the routing
   state in the first place (i.e. as Querying or Responding node).  The
   following discussion is specific to the case of the path-coupled MRM
   using downstream Queries only; other scenarios may require other
   methods.  However, the repair logic described in the subsequent

Schulzrinne & Hancock    Expires October 4, 2007               [Page 85]

Internet-Draft                    GIST                        April 2007

   subsections is intended to be universal.

   There are five mechanisms for a node to detect that a route change
   has occurred, which are listed below.  They apply differently
   depending on whether the change is in the Query or Response
   direction, and these differences are summarised in the following

   Local Trigger:  In local trigger mode, GIST finds out from the local
      forwarding table that the next hop has changed.  This only works
      if the routing change is local, not if it happens a few IP routing
      hops away, including the case that it happens at a GIST-unaware

   Extended Trigger:  Here, GIST checks a link-state topology database
      to discover that the path has changed.  This makes certain
      assumptions on consistency of IP route computation and only works
      within a single area for OSPF [17] and similar link-state
      protocols.  Where available, this offers the most accurate and
      rapid indication of route changes, but requires more access to the
      routing internals than a typical operating system may provide.

   GIST C-mode Monitoring:  GIST may find that C-mode packets are
      arriving (from either peer) with a different IP layer TTL or on a
      different interface.  This provides no direct information about
      the new flow path, but indicates that routing has changed and that
      rediscovery may be required.

   Data Plane Monitoring:  The signalling application on a node may
      detect a change in behaviour of the flow, such as IP layer TTL
      change, arrival on a different interface, or loss of the flow
      altogether.  The signalling application on the node is allowed to
      notify this information locally to GIST (Appendix B.6).

   GIST Probing:  According to the specification, each GIST node MUST
      periodically repeat the discovery (Query/Response) operation.
      Values for the probe frequency are discussed in Section 4.4.4.
      The querying node will discover the route change by a modification
      in the Network-Layer-Information in the Response.  The period can
      be negotiated independently for each GIST hop, so nodes that have
      access to the other techniques listed above MAY use long periods
      for the probing operation.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 86]

Internet-Draft                    GIST                        April 2007

   | Method      | Query direction          | Response direction       |
   | Local       | Discovers new interface  | Not applicable           |
   | Trigger     | (and peer if local)      |                          |
   |             |                          |                          |
   | Extended    | Discovers new interface  | May determine that route |
   | Trigger     | and may determine new    | from peer will have      |
   |             | peer                     | changed                  |
   |             |                          |                          |
   | C-mode      | Provides hint that       | Provides hint that       |
   | Monitoring  | change has occurred      | change has occurred      |
   |             |                          |                          |
   | Data Plane  | Not applicable           | NSLP informs GIST that a |
   | Monitoring  |                          | change may have occurred |
   |             |                          |                          |
   | Probing     | Discovers changed NLI in | Discovers changed NLI in |
   |             | Response                 | Query                    |

7.1.3.  GIST Behaviour Supporting Re-Routing

   The basic GIST behaviour necessary to support re-routing can be
   modelled using a 3-level classification of the validity of each item
   of current routing state.  (In addition to current routing state,
   NSIS can maintain past routing state, described in Section 7.1.4
   below.)  This classification applies separately to the Querying and
   Responding node for each pair of GIST peers.  The levels are:

   Bad:  The routing state is either missing altogether, or not safe to
      use to send data.

   Tentative:  The routing state may have changed, but it is still
      usable for sending NSLP data pending verification.

   Good:  The routing state has been established and no events affecting
      it have since been detected.

   These classifications are not identical to the states described in
   Section 6, but there are dependencies between them.  Specifically,
   routing state is considered Bad until the machine first enters the
   Established state, at which point it becomes Good.  Thereafter, the
   status may be invalidated for any of the reasons discussed above; it
   is an implementation issue to decide which techniques to implement in
   any given node, and how to reclassify routing state (as Bad or
   Tentative) for each.  The status returns to Good, either when the
   state machine re-enters the Established state, or if GIST can
   determine from direct examination of the IP routing or forwarding

Schulzrinne & Hancock    Expires October 4, 2007               [Page 87]

Internet-Draft                    GIST                        April 2007

   tables that the peer has not changed.  When the status returns to
   Good, GIST MUST if necessary update its routing state table so that
   the relationships between MRI/SID/NSLPID tuples and messaging
   associations are up to date.

   When classification of the routing state for the downstream direction
   changes to Bad/Tentative because of local IP routing indications,
   GIST MAY automatically change the classification in the upstream
   direction to Tentative unless local routing indicates that this is
   not necessary.  This SHOULD NOT be done in the case where the initial
   change was indicated by the signalling application.  This mechanism
   accounts for the fact that a routing change may affect several nodes,
   and so can be an indication that upstream routing may also have
   changed.  In any case, whenever GIST updates the routing status, it
   informs the signalling application with the NetworkNotification API
   (Appendix B.4), unless the change was caused via the API in the first

   The GIST behaviour for state repair is different for the Querying and
   Responding node.  At the Responding node, there is no additional
   behaviour, since the Responding node cannot initiate protocol
   transitions autonomously, it can only react to the Querying node.
   The Querying node has three options, depending on how the transition
   from 'Good' was initially caused:

   1.  To inspect the IP routing/forwarding table and verifying that the
       next peer has not changed.  This technique MUST NOT be used if
       the transition was caused by a signalling application, but SHOULD
       be used otherwise if available.

   2.  To move to the 'Awaiting Refresh' state.  This technique MUST NOT
       be used if the current status is 'Bad', since data is being
       incorrectly delivered.

   3.  To move to the 'Awaiting Response' state.  This technique may be
       used at any time, but has the effect of freezing NSLP
       communication while GIST state is being repaired.

   The second and third techniques trigger the execution of a GIST
   handshake to carry out the repair.  It may be desirable to delay the
   start of the handshake process, either to wait for the network to
   stabilise, to avoid flooding the network with Query traffic for a
   large number of affected flows, or to wait for confirmation that the
   node is still on the path from the upstream peer.  One approach is to
   delay the handshake until there is NSLP data to be transmitted.
   Implementation of such delays is a matter of local policy; however,
   GIST MUST begin the handshake immediately if the status change was
   caused by an InvalidateRoutingState API call marked as 'Urgent', and

Schulzrinne & Hancock    Expires October 4, 2007               [Page 88]

Internet-Draft                    GIST                        April 2007

   SHOULD begin it if the upstream routing state is still known to be

7.1.4.  Load Splitting and Route Flapping

   The Q-mode encapsulation rules of Section 5.8 try to ensure that the
   Query messages discovering the path mimic the flow as accurately as
   possible.  However, in environments where there is load balancing
   over multiple routes, and this is based on header fields differing
   between flow and Q-mode packets or done on a round-robin basis, the
   path discovered by the Query may vary from one handshake to the next
   even though the underlying network is stable.  This will appear to
   GIST as a route flap; route flapping can also be caused by problems
   in the basic network connectivity or routing protocol operation.  For
   example, a mobile node might be switching back and forth between two
   links, or might appear to have disappeared even though it is still
   attached to the network via a different route.

   This specification does not define mechanisms for GIST to manage
   multiple parallel routes or an unstable route; instead, GIST MAY
   expose this to the NSLP, which can then manage it according to
   signalling application requirements.  The algorithms already
   described always maintain the concept of the current route, i.e. the
   latest peer discovered for a particular flow.  Instead, GIST allows
   the use of prior signalling paths for some period while the
   signalling applications still need them.  Since NSLP peers are a
   single GIST hop apart, the necessary information to represent a path
   can be just an entry in the node's routing state table for that flow
   (more generally, anything that uniquely identifies the peer, such as
   the NLI, could be used).  Rather than requiring GIST to maintain
   multiple generations of this information, it is provided to the
   signalling application in the same node in an opaque form for each
   message that is received from the peer.  The signalling application
   can store it if necessary and provide it back to the GIST layer in
   case it needs to be used.  Because this is a reference to information
   about the source of a prior signalling message, it is denoted 'SII-
   Handle' (for Source Identification Information) in the abstract API
   of Appendix B.

   Note that GIST if possible SHOULD use the same SII-Handle for
   multiple sessions to the same peer, since this then allows signalling
   applications to aggregate some signalling, such as summary refreshes
   or bulk teardowns.  Messages sent using the SII-Handle MUST bypass
   the routing state tables at the sender, and this MUST be indicated by
   setting the E flag in the common header (Appendix A.1).  Messages
   other than Data messages MUST NOT be sent in this way.  At the
   receiver, GIST MUST NOT validate the MRI/SID/NSLPID against local
   routing state and instead indicates the mode of reception to

Schulzrinne & Hancock    Expires October 4, 2007               [Page 89]

Internet-Draft                    GIST                        April 2007

   signalling applications through the API (Appendix B.2).  Signalling
   applications should validate the source and effect of the message
   themselves, and if appropriate should in particular indicate to GIST
   (see Appendix B.5) that routing state is no longer required for this
   flow.  This is necessary to prevent GIST in nodes on the old path
   initiating routing state refresh and thus causing state conflicts at
   the crossover router.

   GIST notifies signalling applications about route modifications as
   two types of event, additions and deletions.  An addition is notified
   as a change of the current routing state according to the Bad/
   Tentative/Good classification above, while deletion is expressed as a
   statement that an SII handle no longer lies on the path.  Both can be
   reported through the NetworkNotification API call (Appendix B.4).  A
   minimal implementation MAY notify a route change as a single (add,
   delete) operation; however, a more sophisticated implementation MAY
   delay the delete notification, for example if it knows that the old
   route continues to be used in parallel, or that the true route is
   flapping between the two.  It is then a matter of signalling
   application design whether to tear down state on the old path, leave
   it unchanged, or modify it in some signalling application specific
   way to reflect the fact that multiple paths are operating in

7.1.5.  Signalling Application Operation

   Signalling applications can use these functions as provided by GIST
   to carry out rapid local repair following re-routing events.  The
   signalling application instances carry out the multi-hop aspects of
   the procedure, including crossover node detection, and tear-down/
   reinstallation of signalling application state; they also trigger
   GIST to carry out the local routing state maintenance operations over
   each individual hop.  The local repair procedures depend heavily on
   the fact that stateful NSLP nodes are a single GIST hop apart; this
   is enforced by the details of the GIST peer discovery process.

   The following outline description of a possible set of NSLP actions
   takes the scenario of Figure 8 as an example.

   1.  The signalling application at node E1 is notified by GIST of
       route changes affecting the downstream and upstream directions.
       The downstream status was updated to Bad because of a trigger
       from the local forwarding tables, and the upstream status changed
       automatically to Tentative as a consequence.  The signalling
       application at E1 MAY begin local repair immediately, or MAY
       propagate a notification upstream to D1 that re-routing has

Schulzrinne & Hancock    Expires October 4, 2007               [Page 90]

Internet-Draft                    GIST                        April 2007

   2.  The signalling application at node D1 is notified of the route
       change, either by signalling application notifications or from
       the GIST level (e.g. by a trigger from a link-state topology
       database).  If the information propagates faster within the IP
       routing protocol, GIST will change the upstream/downstream
       routing state to Tentative/Bad automatically, and this will cause
       the signalling application to propagate the notification further

   3.  This process continues until the notification reaches node A.
       Here, there is no downstream routing change, so GIST only learns
       of the update via the signalling application trigger.  Since the
       upstream status is still Good, it therefore begins the repair
       handshake immediately.

   4.  The handshake initiated by node A causes its downstream routing
       state to be confirmed as Good and unchanged there; it also
       confirms the (Tentative) upstream routing state at B as Good.
       This is enough to identify B as the crossover router, and the
       signalling application and GIST can begin the local repair

   An alternative way to reach step (4) is that node B is able to
   determine autonomously that there is no likelihood of an upstream
   route change.  For example, it could be an area border router and the
   route change is only intra-area.  In this case, the signalling
   application and GIST will see that the upstream state is Good and can
   begin the local repair directly.

   After a route deletion, a signalling application may wish to remove
   state at another node which is no longer on the path.  However, since
   it is no longer on the path, in principle GIST can no longer send
   messages to it.  In general, provided this state is soft, it will
   time out anyway; however, the timeouts involved may have been set to
   be very long to reduce signalling load.  Instead, signalling
   applications MAY use the SII-Handle described above to route explicit
   teardown messages.

7.2.  NAT Traversal

   GIST messages, for example for the path-coupled MRM, must carry
   addressing and higher layer information as payload data in order to
   define the flow signalled for.  (This applies to all GIST messages,
   regardless of how they are encapsulated or which direction they are
   travelling in.)  At an addressing boundary the data flow packets will
   have their headers translated; if the signalling payloads are not
   translated consistently, the signalling messages will refer to
   incorrect (and probably meaningless) flows after passing through the

Schulzrinne & Hancock    Expires October 4, 2007               [Page 91]

Internet-Draft                    GIST                        April 2007

   boundary.  In addition, GIST handshake messages carry additional
   addressing information about the GIST nodes themselves, and this must
   also be processed appropriately when traversing a NAT.

   There is a dual problem of whether the GIST peers either side of the
   boundary can work out how to address each other, and whether they can
   work out what translation to apply to the signalling packet payloads.
   Existing generic NAT traversal techniques such as STUN [26] or TURN
   [27] can operate only on the two addresses visible in the IP header.
   It is therefore intrinsically difficult to use these techniques to
   discover a consistent translation of the three or four interdependent
   addresses for the flow and signalling source and destination.

   For legacy NATs and MRMs that carry addressing information, the base
   GIST specification is therefore limited to detecting the situation
   and triggering the appropriate error conditions to terminate the
   signalling path.  (MRMs that do not contain addressing information
   could traverse such NATs safely, with some modifications to the GIST
   processing rules.  Such modifications could be described in the
   documents defining such MRMs.)  Legacy NAT handling is covered in
   Section 7.2.1 below.  A more general solution can be constructed
   using GIST-awareness in the NATs themselves; this solution is
   outlined in Section 7.2.2 with processing rules in Section 7.2.3.

   In all cases, GIST interaction with the NAT is determined by the way
   the NAT handles the Query/Response messages in the initial GIST
   handshake; these messages are UDP datagrams.  Best current practice
   for NAT treatment of UDP traffic is defined in [39], and the legacy
   NAT handling defined in this specification is fully consistent with
   that document.  The GIST-aware NAT traversal technique is equivalent
   to requiring an Application Layer Gateway in the NAT for a specific
   class of UDP transactions, namely those where the destination UDP
   port for the initial message is the GIST port (see Section 9).

7.2.1.  Legacy NAT Handling

   Legacy NAT detection during the GIST handshake depends on analysis of
   the IP header and S flag in the GIST common header, and the NLI
   object included in the handshake messages.  The message sequence
   proceeds differently depending on whether the Querying node is on the
   internal or external side of the NAT.

   For the case of the Querying node on the internal side of the NAT, if
   the S flag is not set in the Query (S=0), a legacy NAT cannot be
   detected.  The receiver will generate a normal Response to the
   interface-address given in the NLI in the Query, but the interface-
   address will not be routable and the Response will not be delivered.
   If retransmitted Queries keep S=0, this behaviour will persist until

Schulzrinne & Hancock    Expires October 4, 2007               [Page 92]

Internet-Draft                    GIST                        April 2007

   the Querying node times out.  The signalling path will thus terminate
   at this point, not traversing the NAT.

   The situation changes once S=1 in a Query; note the Q-mode
   encapsulation rules recommend that S=1 is used at least for some
   retransmissions (see Section 5.8).  If S=1, the receiver MUST check
   the source address in the IP header against the interface-address in
   the NLI, and if these addresses do not match this indicates that a
   legacy NAT has been found.  For MRMs which contain addressing
   information that needs translation, legacy NAT traversal is not
   possible.  The receiver MUST return an "Object Type Error" message
   (Appendix A.4.4.9) with subcode 4 ("Untranslated Object") indicating
   the MRI as the object in question.  The error message MUST be
   addressed to the source address from the IP header of the incoming
   message.  The Responding node SHOULD use the destination IP address
   of the original datagram as the source address for IP header of the
   Response; this makes it more likely that the NAT will accept the
   incoming message, since it looks like a normal UDP/IP request/reply
   exchange.  If this message is able to traverse back through the NAT,
   the Querying node will terminate the handshake immediately;
   otherwise, this reduces to the previous case of a lost Response and
   the Querying node will give up on reaching its retransmission limit.

   When the Querying node is on the external side of the NAT, the Query
   will only traverse the NAT if some static configuration has been
   carried out on the NAT to forward GIST Q-mode traffic to a node on
   the internal network.  Regardless of the S-flag in the Query, the
   Responding node cannot directly detect the presence of the NAT.  It
   MUST send a normal Response with S=1 to an address derived from the
   Querying node's NLI which will traverse the NAT as normal UDP
   traffic.  The Querying node MUST check the source address in the IP
   header with the NLI in the Response, and when it finds a mismatch it
   MUST terminate the handshake.

   Note that in either of the error cases (internal or external Querying
   node), an alternative to terminating the handshake could be to invoke
   some legacy NAT traversal procedure.  This specification does not
   define any such procedure, although one possible approach is
   described in [41].  Any such traversal procedure MUST be incorporated
   into GIST using the existing GIST extensibility capabilities.

7.2.2.  GIST-aware NAT Traversal

   The most robust solution to the NAT traversal problem is to require
   that a NAT is GIST-aware, and to allow it to modify messages based on
   the contents of the MRI.  This makes the assumption that NATs only
   rewrite the header fields included in this payload, and not other
   higher layer identifiers.  Provided this is done consistently with

Schulzrinne & Hancock    Expires October 4, 2007               [Page 93]

Internet-Draft                    GIST                        April 2007

   the data flow header translation, signalling messages will be valid
   each side of the boundary, without requiring the NAT to be signalling
   application aware.  Note, however, that if the NAT does not
   understand the MRI, and the N-flag in the MRI is clear (see
   Appendix A.3.1), it should reject the message with an "Object Type
   Error" message (Appendix A.4.4.9) with subcode 4 ("Untranslated

   This specification defines an additional object that a NAT inserts
   into all Q-mode encapsulated messages and which is echoed back in any
   replies, i.e.  Response or Error messages.  NATs apply GIST-specific
   processing only to Q-mode encapsulated messages or replies carrying
   the NAT traversal object.  All other GIST messages, either in C-mode,
   or D-mode messages with no NAT-Traversal object, should be treated as
   normal data traffic by the NAT, i.e. with IP and transport layer
   header translation but no GIST-specific processing.

   The new object, the NAT-Traversal object (Appendix A.3.9), carries
   the translation between the MRIs which are appropriate for the
   internal and external sides of the NAT.  It also carries a list of
   which other objects in the message have been translated.  This should
   always include the NLI, and the Stack-Configuration-Data if present;
   if GIST is extended with further objects that carry addressing data,
   this list allows a message receiver to know if the new objects were
   supported by the NAT.  Finally, the NAT-Traversal object MAY be used
   to carry data to assist the NAT in back-translating D-mode responses;
   this could be the original NLI or SCD, or opaque equivalents in the
   case of topology hiding.

   A consequence of this approach is that the routing state tables at
   the signalling application peers each side of the NAT are no longer
   directly compatible.  In particular, the values for Message-Routing-
   Information are different, which is why the unmodified MRI is
   propagated in the NAT-Traversal object to allow subsequent C-mode
   messages to be interpreted correctly.

7.2.3.  Message Processing Rules

   This specification normatively defines the behaviour of a GIST node
   receiving a message containing a NAT-Traversal object.  However, it
   does not define normative behaviour for a NAT translating GIST
   messages, since much of this will depend on NAT implementation and
   policy about allocating bindings.  In addition, it is not necessary
   for a GIST implementation itself.  Therefore, those aspects of the
   following description are informative; full details of NAT behaviour
   for handling GIST messages can be found in [42].

   A possible set of operations for a NAT to process a Q-mode

Schulzrinne & Hancock    Expires October 4, 2007               [Page 94]

Internet-Draft                    GIST                        April 2007

   encapsulated message is as follows.  Note that for a Data message,
   only a subset of the operations is applicable.

   1.  Verify that bindings for any data flow are actually in place.

   2.  Create a new Message-Routing-Information object with fields
       modified according to the data flow bindings.

   3.  Create bindings for subsequent C-mode signalling based on the
       information in the Network-Layer-Information and Stack-
       Configuration-Data objects.

   4.  Create new Network-Layer-Information and if necessary Stack-
       Configuration-Data objects with fields to force D-mode response
       messages through the NAT, and to allow C-mode exchanges using the
       C-mode signalling bindings.

   5.  Add a NAT-Traversal object, listing the objects which have been
       modified and including the unmodified MRI and any other data
       needed to interpret the response.  If a NAT-Traversal object is
       already present, in the case of a sequence of NATs, the list of
       modified objects may be updated and further opaque data added,
       but the MRI contained in it is left unchanged.

   6.  Encapsulate the message according to the normal rules of this
       specification for the Q-mode encapsulation.  If the S-flag was
       set in the original message, the same IP source address selection
       policy should be applied to the forwarded message.

   7.  Forward the message with these new payloads.

   A GIST node receiving such a message MUST verify that all mandatory
   objects containing addressing have been translated correctly, or else
   reject the message with an "Object Type Error" message
   (Appendix A.4.4.9) with subcode 4 ("Untranslated Object").  The error
   message MUST include the NAT-Traversal object as the first TLV after
   the common header, and this is also true for any other error message
   generated as a reply.  Otherwise, the message is processed
   essentially as normal.  If no state needs to be updated for the
   message, the NAT-Traversal object can be effectively ignored.  The
   other possibility is that a Response must be returned, either because
   the message is the beginning of a handshake for a new flow, or it is
   a refresh for existing state.  In both cases, the GIST node MUST
   create the Response in the normal way using the local form of the
   MRI, and its own NLI and (if necessary) SCD.  It MUST also include
   the NAT-Traversal object as the first object in the Response after
   the common header.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 95]

Internet-Draft                    GIST                        April 2007

   A NAT will intercept D-mode messages with the normal encapsulation
   containing such echoed NAT-Traversal objects.  The NAT processing is
   a subset of the processing for the Q-mode encapsulated case:

   1.  Verify the existence of bindings for the data flow.

   2.  Leave the Message-Routing-Information object unchanged.

   3.  Modify the NLI and SCD objects for the Responding node if
       necessary, and create or update any bindings for C-mode
       signalling traffic.

   4.  Forward the message.

   A GIST node receiving such a message MUST use the MRI from the NAT-
   Traversal object as the key to index its internal routing state; it
   MAY also store the translated MRI for additional (e.g. diagnostic)
   information, but this is not used in the GIST processing.  The
   remainder of GIST processing is unchanged.

   Note that Confirm messages are not given GIST-specific processing by
   the NAT.  Thus, a Responding node which has delayed state
   installation until receiving the Confirm, only has available the
   untranslated MRI describing the flow, and the untranslated NLI as
   peer routing state.  This would prevent the correct interpretation of
   the signalling messages; also, subsequent Query (refresh) messages
   would always be seen as route changes because of the NLI change.
   Therefore, a Responding node that wishes to delay state installation
   until receiving a Confirm must somehow reconstruct the translations
   when the Confirm arrives.  How to do this is an implementation issue;
   one approach is to carry the translated objects as part of the
   Responder cookie which is echoed in the Confirm.  Indeed, for one of
   the cookie constructions in Section 8.5 this is automatic.

7.3.  Interaction with IP Tunnelling

   The interaction between GIST and IP tunnelling is very simple.  An IP
   packet carrying a GIST message is treated exactly the same as any
   other packet with the same source and destination addresses: in other
   words, it is given the tunnel encapsulation and forwarded with the
   other data packets.

   Tunnelled packets will not be identifiable as GIST messages until
   they leave the tunnel, since any router alert option and the standard
   GIST protocol encapsulation (e.g. port numbers) will be hidden within
   the standard tunnel encapsulation.  If signalling is needed for the
   tunnel itself, this has to be initiated as a separate signalling
   session by one of the tunnel endpoints - that is, the tunnel counts

Schulzrinne & Hancock    Expires October 4, 2007               [Page 96]

Internet-Draft                    GIST                        April 2007

   as a new flow.  Because the relationship between signalling for the
   microflow and signalling for the tunnel as a whole will depend on the
   signalling application in question, it is a signalling application
   responsibility to be aware of the fact that tunnelling is taking
   place and to carry out additional signalling if necessary; in other
   words, at least one tunnel endpoint must be signalling application

   In some cases, it is the tunnel exit point (i.e. the node where
   tunnelled data and downstream signalling packets leave the tunnel)
   that will wish to carry out the tunnel signalling, but this node will
   not have knowledge or control of how the tunnel entry point is
   carrying out the data flow encapsulation.  The information about how
   the inner MRI/SID relate to the tunnel MRI/SID needs to be carried in
   the signalling data from the tunnel entry point; this functionality
   is the equivalent to the RSVP SESSION_ASSOC object of [18].  In the
   NSIS protocol suite, these bindings are managed by the signalling
   applications, either implicitly (e.g. by SID re-use) or explicitly by
   carrying objects that bind the inner and outer SIDs as part of the
   NSLP payload.

7.4.  IPv4-IPv6 Transition and Interworking

   GIST itself is essentially IP version neutral: version dependencies
   are isolated in the formats of the Message-Routing-Information,
   Network-Layer-Information and Stack-Configuration-Data objects, and
   GIST also depends on the version independence of the protocols that
   support messaging associations.  In mixed environments, GIST
   operation will be influenced by the IP transition mechanisms in use.
   This section provides a high level overview of how GIST is affected,
   considering only the currently predominant mechanisms.

   Dual Stack:  (As described in [36].)  In mixed environments, GIST
      MUST use the same IP version for Q-mode encapsulated messages as
      given by the MRI of the flow it is signalling for, and SHOULD do
      so for other signalling also (see Section 5.2.2).  Messages with
      mismatching versions MUST be rejected with a "MRI Validation
      Failure" error message (Appendix A.4.4.12) with subcode 1 ("IP
      Version Mismatch").  The IP version used in D-mode is closely tied
      to the IP version used by the data flow, so it is intrinsically
      impossible for an IPv4-only or IPv6-only GIST node to support
      signalling for flows using the other IP version.  Hosts which are
      dual stack for applications and routers which are dual stack for
      forwarding need GIST implementations which can support both IP
      versions.  Applications with a choice of IP versions might select
      a version based on which could be supported in the network by
      GIST, which could be established by invoking parallel discovery

Schulzrinne & Hancock    Expires October 4, 2007               [Page 97]

Internet-Draft                    GIST                        April 2007

   Packet Translation:  (Applicable to SIIT [9] and NAT-PT [19].)  Some
      transition mechanisms allow IPv4 and IPv6 nodes to communicate by
      placing packet translators between them.  From the GIST
      perspective, this should be treated essentially the same way as
      any other NAT operation (e.g. between internal and external
      addresses) as described in Section 7.2.  The translating node
      needs to be GIST-aware; it will have to translate the addressing
      payloads between IPv4 and IPv6 formats for flows which cross
      between the two.  The translation rules for the fields in the MRI
      payload (including e.g.  DiffServ-codepoint and flow-label) are as
      defined in [9].

   Tunnelling:  (Applicable to 6to4 [21].)  Many transition mechanisms
      handle the problem of how an end to end IPv6 (or IPv4) flow can be
      carried over intermediate IPv4 (or IPv6) regions by tunnelling;
      the methods tend to focus on minimising the tunnel administration

      From the GIST perspective, the treatment should be similar to any
      other IP tunnelling mechanism, as described in Section 7.3.  In
      particular, the end to end flow signalling will pass transparently
      through the tunnel, and signalling for the tunnel itself will have
      to be managed by the tunnel endpoints.  However, additional
      considerations may arise because of special features of the tunnel
      management procedures.  In particular, [22] is based on using an
      anycast address as the destination tunnel endpoint.  GIST MAY use
      anycast destination addresses in the Q-mode encapsulation of
      D-mode messages if necessary, but MUST NOT use them in the
      Network-Layer-Information addressing field; unicast addresses MUST
      be used instead.  Note that the addresses from the IP header are
      not used by GIST in matching requests and replies, so there is no
      requirement to use anycast source addresses.

Schulzrinne & Hancock    Expires October 4, 2007               [Page 98]

Internet-Draft                    GIST                        April 2007

8.  Security Considerations

   The security requirement for GIST is to protect the signalling plane
   against identified security threats.  For the signalling problem as a
   whole, these threats have been outlined in [31]; the NSIS framework
   [30] assigns a subset of the responsibilities to the NTLP.  The main
   issues to be handled can be summarised as:

   Message Protection:  Signalling message content can be protected
      against eavesdropping, modification, injection and replay while in
      transit.  This applies both to GIST payloads, and GIST should also
      provide such protection as a service to signalling applications
      between adjacent peers.

   Routing State Integrity Protection:  It is important that signalling
      messages are delivered to the correct nodes, and nowhere else.
      Here, 'correct' is defined as 'the appropriate nodes for the
      signalling given the Message-Routing-Information'.  In the case
      where the MRI is based on the Flow Identification for path-coupled
      signalling, 'appropriate' means 'the same nodes that the
      infrastructure will route data flow packets through'.  GIST has no
      role in deciding whether the data flow itself is being routed
      correctly; all it can do is ensure the signalling is routed
      consistently with it.  GIST uses internal state to decide how to
      route signalling messages, and this state needs to be protected
      against corruption.

   Prevention of Denial of Service Attacks:  GIST nodes and the network
      have finite resources (state storage, processing power,
      bandwidth).  The protocol tries to minimise exhaustion attacks
      against these resources and not allow GIST nodes to be used to
      launch attacks on other network elements.

   The main additional issue is handling authorisation for executing
   signalling operations (e.g. allocating resources).  This is assumed
   to be done in each signalling application.

   In many cases, GIST relies on the security mechanisms available in
   messaging associations to handle these issues, rather than
   introducing new security measures.  Obviously, this requires the
   interaction of these mechanisms with the rest of the GIST protocol to
   be understood and verified, and some aspects of this are discussed in
   Section 5.7.

8.1.  Message Confidentiality and Integrity

   GIST can use messaging association functionality, specifically in
   this version TLS (Section 5.7.3), to ensure message confidentiality

Schulzrinne & Hancock    Expires October 4, 2007               [Page 99]

Internet-Draft                    GIST                        April 2007

   and integrity.  Implementation of this functionality is REQUIRED but
   its use for any given flow or signalling application is OPTIONAL.  In
   some cases, confidentiality of GIST information itself is not likely
   to be a prime concern, in particular since messages are often sent to
   parties which are unknown ahead of time, although the content visible
   even at the GIST level gives significant opportunities for traffic
   analysis.  Signalling applications may have their own mechanism for
   securing content as necessary; however, they may find it convenient
   to rely on protection provided by messaging associations, since it
   runs unbroken between signalling application peers.

8.2.  Peer Node Authentication

   Cryptographic protection (of confidentiality or integrity) requires a
   security association with session keys.  These can be established by
   an authentication and key exchange protocol based on shared secrets,
   public key techniques or a combination of both.  Authentication and
   key agreement is possible using the protocols associated with the
   messaging association being secured.  TLS incorporates this
   functionality directly.  GIST nodes rely on the messaging association
   protocol to authenticate the identity of the next hop, and GIST has
   no authentication capability of its own.

   With routing state discovery, there are few effective ways to know
   what is the legitimate next or previous hop as opposed to an
   impostor.  In other words, cryptographic authentication here only
   provides assurance that a node is 'who' it is (i.e. the legitimate
   owner of identity in some namespace), not 'what' it is (i.e. a node
   which is genuinely on the flow path and therefore can carry out
   signalling for a particular flow).  Authentication provides only
   limited protection, in that a known peer is unlikely to lie about its
   role.  Additional methods of protection against this type of attack
   are considered in Section 8.3 below.

   It is an implementation issue whether peer node authentication should
   be made signalling application dependent; for example, whether
   successful authentication could be made dependent on presenting
   credentials related to a particular signalling role (e.g. signalling
   for QoS).  The abstract API of Appendix B leaves open such policy and
   authentication interactions between GIST and the NSLP it is serving.
   However, it does allow applications to inspect the authenticated
   identity of the peer to which a message will be sent before

8.3.  Routing State Integrity

   Internal state in a node (see Section 4.2) is used to route messages.
   If this state is corrupted, signalling messages may be misdirected.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 100]

Internet-Draft                    GIST                        April 2007

   In the case where the MRM is path-coupled, the messages need to be
   routed identically to the data flow described by the MRI, and the
   routing state table is the GIST view of how these flows are being
   routed through the network in the immediate neighbourhood of the
   node.  Routes are only weakly secured (e.g. there is no cryptographic
   binding of a flow to a route), and there is no authoritative
   information about flow routes other than the current state of the
   network itself.  Therefore, consistency between GIST and network
   routing state has to be ensured by directly interacting with the IP
   routing mechanisms to ensure that the signalling peers are the
   appropriate ones for any given flow.  An overview of security issues
   and techniques in this context is provided in [38].

   In one direction, peer identification is installed and refreshed only
   on receiving a Response (compare Figure 4).  This MUST echo the
   cookie from a previous Query, which will have been sent along the
   flow path with the Q-mode encapsulation, i.e. end-to-end addressed.
   Hence, only the true next peer or an on-path attacker will be able to
   generate such a message, provided freshness of the cookie can be
   checked at the querying node.

   In the other direction, peer identification MAY be installed directly
   on receiving a Query containing addressing information for the
   signalling source.  However, any node in the network could generate
   such a message; indeed, many nodes in the network could be the
   genuine upstream peer for a given flow.  To protect against this,
   four strategies are used:

   Filtering:  the receiving node MAY reject signalling messages which
      claim to be for flows with flow source addresses which could be
      ruled out by ingress filtering.  An extension of this technique
      would be for the receiving node to monitor the data plane and to
      check explicitly that the flow packets are arriving over the same
      interface and if possible from the same link layer neighbour as
      the D-mode signalling packets.  If they are not, it is likely that
      at least one of the signalling or flow packets is being spoofed.

   Return routability checking:  the receiving node MAY refuse to
      install upstream state until it has completed a Confirm handshake
      with the peer.  This echoes the Response cookie of the Response,
      and discourages nodes from using forged source addresses.  This
      also plays a role in denial of service prevention, see below.

   Authorisation:  a stronger approach is to carry out a peer
      authorisation check (see Section 4.4.2) as part of messaging
      association setup.  The ideal situation is that the receiving node
      can determine the correct upstream node address from routing table
      analysis or knowledge of local topology constraints, and then

Schulzrinne & Hancock    Expires October 4, 2007              [Page 101]

Internet-Draft                    GIST                        April 2007

      verify from the authorised peer database (APD) that the peer has
      this IP address.  This is only technically feasible in a limited
      set of deployment environments.  The APD can also be used to list
      the subsets of nodes which are feasible peers for particular
      source or destination subnets, or to blacklist nodes which have
      previously originated attacks or exist in untrustworthy networks,
      which provide weaker levels of authorisation checking.

   SID segregation:  The routing state lookup for a given MRI and NSLPID
      MUST also take the SID into account.  A malicious node can only
      overwrite existing GIST routing state if it can guess the
      corresponding SID; it can insert state with random SID values, but
      generally this will not be used to route signalling messages for
      which state has already been legitimately established.

8.4.  Denial of Service Prevention and Overload Protection

   GIST is designed so that in general each Query only generates at most
   one Response which is at most only slightly larger than the Query, so
   that a GIST node cannot become the source of a denial of service
   amplification attack.  (There is a special case of retransmitted
   Response messages, see Section 5.3.3.)

   However, GIST can still be subjected to denial-of-service attacks
   where an attacker using forged source addresses forces a node to
   establish state without return routability, causing a problem similar
   to TCP SYN flood attacks.  Furthermore, an adversary might use
   modified or replayed unprotected signalling messages as part of such
   an attack.  There are two types of state attacks and one
   computational resource attack.  In the first state attack, an
   attacker floods a node with messages that the node has to store until
   it can determine the next hop.  If the destination address is chosen
   so that there is no GIST-capable next hop, the node would accumulate
   messages for several seconds until the discovery retransmission
   attempt times out.  The second type of state-based attack causes GIST
   state to be established by bogus messages.  A related computational/
   network-resource attack uses unverified messages to cause a node
   query an authentication or authorisation infrastructure, or attempt
   to cryptographically verify a digital signature.

   We use a combination of two defences against these attacks:

   1.  The responding node need not establish a session or discover its
       next hop on receiving the Query, but MAY wait for a Confirm,
       possibly on a secure channel.  If the channel exists, the
       additional delay is one one-way delay and the total is no more
       than the minimal theoretically possible delay of a three-way
       handshake, i.e., 1.5 node-to-node round-trip times.  The delay

Schulzrinne & Hancock    Expires October 4, 2007              [Page 102]

Internet-Draft                    GIST                        April 2007

       gets significantly larger if a new connection needs to be
       established first.

   2.  The Response to the Query contains a cookie, which is repeated in
       the Confirm.  State is only established for messages that contain
       a valid cookie.  The setup delay is also 1.5 round-trip times.
       This mechanism is similar to that in SCTP [20] and other modern

   There is a potential overload condition if a node is flooded with
   Query or Confirm messages.  One option is for the node to bypass
   these messages altogether as described in Section 4.3.2, effectively
   falling back to being a non-NSIS node.  If this is not possible, a
   node MAY still choose to limit the rate at which it processes Query
   messages and discard the excess, although it SHOULD first adapt its
   policy to one of sending Responses statelessly if it is not already
   doing so.  A conformant GIST node will automatically decrease the
   load by retransmitting Queries with an exponential backoff.  A non-
   conformant node (launching a DoS attack) can generate uncorrelated
   Queries at an arbitrary rate, which makes it hard to apply rate-
   limiting without also affecting genuine handshake attempts.  However,
   if Confirm messages are requested, the cookie binds the message to a
   Querying node address which has been validated by a return
   routability check and rate-limits can be applied per-source.

   Once a node has decided to establish routing state, there may still
   be transport and security state to be established between peers.
   This state setup is also vulnerable to denial of service attacks.
   GIST relies on the implementations of the lower layer protocols that
   make up messaging associations to mitigate such attacks.  In the
   current specification, the querying node is always the one wishing to
   establish a messaging association, so it is the responding node that
   needs to be protected.  It is possible for an attacking node to
   execute these protocols legally to set up large numbers of
   associations that were never used, and responding node
   implementations MAY use rate-limiting or other techniques to control
   the load in such cases.

   Signalling applications can use the services provided by GIST to
   defend against certain (e.g. flooding) denial of service attacks.  In
   particular, they can elect to process only messages from peers that
   have passed a return routability check or been authenticated at the
   messaging association level (see Appendix B.2).  Signalling
   applications that accept messages under other circumstances (in
   particular, before routing state has been fully established at the
   GIST level) need to take this into account when designing their
   denial of service prevention mechanisms, for example by not creating
   local state as a result of processing such messages.  Signalling

Schulzrinne & Hancock    Expires October 4, 2007              [Page 103]

Internet-Draft                    GIST                        April 2007

   applications can also manage overload by invoking flow control, as
   described in Section 4.1.1.

8.5.  Requirements on Cookie Mechanisms

   The requirements on the Query cookie can be summarised as follows:

   Liveness:  The cookie must be live, that is, it must change from one
      handshake to the next.  To prevent replay attacks.

   Unpredictability:  The cookie must not be guessable e.g. from a
      sequence or timestamp.  To prevent direct forgery based on seeing
      a history of captured messages.

   Easily validated:  It must be efficient for the Q-Node to validate
      that a particular cookie matches an in-progress handshake, for a
      routing state machine which already exists.  To discard responses
      which have been randomly generated by an adversary, or to discard
      responses to queries which were generated with forged source
      addresses or an incorrect address in the included NLI object.

   Uniqueness:  The cookie must be unique to a given handshake since it
      is actually used to match the Response to a handshake anyway, e.g.
      because of messaging association multiplexing.

   Likewise, the requirements on the Responder cookie can be summarised
   as follows:

   Liveness:  The cookie must be live as above.  To prevent replay

   Creation simplicity:  The cookie must be lightweight to generate.  To
      avoid resource exhaustion at the responding node.

   Validation simplicity:  It must be simple for the R-node to validate
      that an R-cookie was generated by itself and no-one else, without
      storing state about the handshake it was generated for.

   Binding:  The cookie must be bound to the routing state that will be
      installed.  To prevent use with different routing state e.g. in a
      modified Confirm.  The routing state here includes the NLI of the
      Query, the MRI/NSLPID for the messaging, and the interface on
      which the Query was received.

   A suitable implementation for the Q-Cookie is a cryptographically
   strong random number which is unique for this routing state machine
   handshake.  A node MUST implement this or an equivalently strong
   mechanism.  Guidance on random number generation can be found in

Schulzrinne & Hancock    Expires October 4, 2007              [Page 104]

Internet-Draft                    GIST                        April 2007


   A suitable implementation for the R-Cookie is as follows:

       R-Cookie = liveness data + hash (locally known secret,
                                        Q-Node NLI, MRI, NSLPID,
                                        reception interface,
                                        liveness data)

   A node MUST implement this or an equivalently strong mechanism.
   There are several alternatives for the liveness data.  One is to use
   a timestamp like SCTP.  Another is to give the local secret a (rapid)
   rollover, with the liveness data as the generation number of the
   secret, like IKEv2.  In both cases, the liveness data has to be
   carried outside the hash, to allow the hash to be verified at the
   Responder.  Another approach is to replace the hash with encryption
   under a locally known secret, in which case the liveness data does
   not need to be carried in the clear.  Any symmetric cipher immune to
   known plaintext attacks can be used.

   To support the validation simplicity requirement, the Responder can
   check the liveness data to filter out some blind (flooding) attacks
   before beginning any cryptographic cookie verification.  To support
   this usage, the liveness data must be carried in the clear and not be
   easily guessable; this rules out the timestamp approach, and suggests
   the use of sequence of secrets with the liveness data identifying the
   position in the sequence.  The secret strength and rollover frequency
   must be high enough that the secret cannot be brute-forced during its
   lifetime.  Note that any node can use a Query to discover the current
   liveness data, so it remains hard to defend against sophisticated
   attacks which disguise such probes within a flood of Queries from
   forged source addresses.  Therefore, it remains important to use an
   efficient hashing mechanism or equivalent.

   If a node receives a message for which cookie validation fails, it
   MAY return an "Object Value Error" message (Appendix A.4.4.10) with
   subcode 4 ("Invalid Cookie") to the sender, as well as dropping the
   message.  However, sending the error in general makes a node a source
   of backscatter.  Therefore, this MUST only be enabled selectively,
   e.g. during initial deployment or debugging.

8.6.  Security Protocol Selection Policy

   This specification defines a single mandatory-to-implement security
   protocol (TLS, Section 5.7.3).  However, it is possible to define
   additional security protocols in the future, for example to allow re-
   use with other types of credentials, or migrate towards protocols
   with stronger security properties.  In addition, use of any security

Schulzrinne & Hancock    Expires October 4, 2007              [Page 105]

Internet-Draft                    GIST                        April 2007

   protocol for a messaging association is optional.  Security protocol
   selection is carried out as part of the GIST handshake mechanism
   (Section 4.4.1).

   The selection process may be vulnerable to downgrade attacks, where a
   man in the middle modifies the capabilities offered in the Query or
   Response to mislead the peers into accepting a lower level of
   protection than is achievable.  There is a two part defence against
   such attacks (the following is based the same concepts as [25]):

   1.  The Response does not depend on the Stack-Proposal in the Query
       (see Section 5.7.1).  Therefore, tampering with the Query has no
       effect on the resulting messaging association configuration.

   2.  The Responding node's Stack-Proposal is echoed in the Confirm.
       The Responding node checks this to validate that the proposal it
       made in the Response is the same as the one received by the
       Querying node.  Note that as a consequence of the previous point,
       the Responding node does not have to remember the proposal
       explicitly, since it is a static function of local policy.

   The validity of the second part depends on the strength of the
   security protection provided for the Confirm.  If the Querying node
   is prepared to create messaging associations with null security
   properties (e.g.  TCP only), the defence is ineffective, since the
   man in the middle can re-insert the original Responder's Stack-
   Proposal, and the Responding node will assume that the minimal
   protection is a consequence of Querying node limitations.  However,
   if the messaging association provides at least integrity protection
   that cannot be broken in real-time, the Confirm cannot be modified in
   this way.  Therefore, if the Querying node does not apply a security
   policy to the messaging association protocols to be created that
   ensures at least this minimal level of protection is met, it remains
   open to the threat that a downgrade has occurred.  Applying such a
   policy ensures capability discovery process will result in the setup
   of a messaging association with the correct security properties as
   appropriate for the two peers involved.

8.7.  Residual Threats

   Taking the above security mechanisms into account, the main residual
   threats against NSIS are three types of on-path attack, as well as
   implementation-related weaknesses.

   An on-path attacker who can intercept the initial Query can do most
   things it wants to the subsequent signalling.  It is very hard to
   protect against this at the GIST level; the only defence is to use
   strong messaging association security to see whether the Responding

Schulzrinne & Hancock    Expires October 4, 2007              [Page 106]

Internet-Draft                    GIST                        April 2007

   node is authorised to take part in NSLP signalling exchanges.  To
   some extent, this behaviour is logically indistinguishable from
   correct operation, so it is easy to see why defence is difficult.
   Note that an on-path attacker of this sort can do anything to the
   traffic as well as the signalling.  Therefore, the additional threat
   induced by the signalling weakness seems tolerable.

   At the NSLP level, there is a concern about transitivity of trust of
   correctness of routing along the signalling chain.  The NSLP at the
   querying node can have good assurance that it is communicating with
   an on-path peer or a node delegated by the on-path node by depending
   on the security protection provided by GIST.  However, it has no
   assurance that the node beyond the responder is also on-path, or that
   the MRI (in particular) is not being modified by the responder to
   refer to a different flow.  Therefore, if it sends signalling
   messages with payloads (e.g. authorisation tokens) which are valuable
   to nodes beyond the adjacent hop, it is up to the NSLP to ensure that
   the appropriate chain of trust exists.  This could be achieved using
   higher layer security protection such as CMS [29].

   There is a further residual attack by a node which is not on the path
   of the Query, but is on the path of the Response, or is able to use a
   Response from one handshake to interfere with another.  The attacker
   modifies the Response to cause the Querying node to form an adjacency
   with it rather than the true peer.  In principle, this attack could
   be prevented by including an additional cryptographic object in the
   Response which ties the Response to the initial Query and the routing
   state and can be verified by the Querying node.

   Certain security aspects of GIST operation depend on signalling
   application behaviour: a poorly implemented or compromised NSLP could
   degrade GIST security.  However, the degradation would only affect
   GIST handling of the NSLP's own signalling traffic or overall
   resource usage at the node where the weakness occurred, and
   implementation weakness or compromise could have just as great an
   effect within the NSLP itself.  GIST depends on NSLPs to choose SIDs
   appropriately (Section 4.1.3).  If NSLPs choose non-random SIDs this
   makes off-path attacks based on SID guessing easier to carry out.
   NSLPs can also leak information in structured SIDs, but they could
   leak similar information in the NLSP payload data anyway.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 107]

Internet-Draft                    GIST                        April 2007

9.  IANA Considerations

   This section defines the registries and initial codepoint assignments
   for GIST.  It also defines the procedural requirements to be followed
   by IANA in allocating new codepoints.  Note that the guidelines on
   the technical criteria to be followed in evaluating requests for new
   codepoint assignments are covered normatively in a separate document
   which considers the NSIS protocol suite in a unified way.  That
   document discusses the general issue of NSIS extensibility, as well
   as the technical criteria for particular registries; see [14] for
   further details.

   The registry definitions that follow leave large blocks of codes
   marked "Reserved - not to be allocated".  This is to allow a future
   revision of this specification or another Standards Track document to
   modify the relative space given to different allocation policies
   without having to change the initial rules retrospectively if they
   turn out to have been inappropriate, e.g. if the space for one
   particular policy is exhausted too quickly.

   The allocation policies used in this section follow the guidance
   given in [6].  In addition, for a number of the GIST registries, this
   specification also defines private/experimental ranges as discussed
   in [11].  Note that the only environment in which these codepoints
   can validly be used is a closed one in which the experimenter knows
   all the experiments in progress.

   This specification allocates the following codepoints in existing

      Well-known UDP port XXX as the destination port for Q-mode
      encapsulated GIST messages (Section 5.3).

   This specification creates the following registries with the
   structures as defined below:

   NSLP Identifiers:  Each signalling application requires the
      assignment of one of more NSLPIDs.  The following NSLPID is
      allocated by this specification:

   | NSLPID  | Application                                             |
   | 0       | Used for GIST messages not related to any signalling    |
   |         | application.                                            |

      Every other NSLPID that uses an MRM which requires RAO usage MUST

Schulzrinne & Hancock    Expires October 4, 2007              [Page 108]

Internet-Draft                    GIST                        April 2007

      be associated with a specific RAO value; multiple NSLPIDs MAY be
      associated with the same value.  RAO value assignments require a
      specification of the processing associated with messages that
      carry the value.  NSLP specifications MUST normatively depend on
      this document for the processing, specifically Section 4.3.1,
      Section 4.3.4 and Section 5.3.2.  The NSLPID is a 16 bit integer,
      and allocation policies for further values are as follows:

      1-32703:  IESG Approval

      32704-32767:  Private/Experimental Use

      32768-65536:  Reserved - not to be allocated

   GIST Message Type:  The GIST common header (Appendix A.1) contains a
      1 byte message type field.  The following values are allocated by
      this specification:

                          | MType   | Message  |
                          | 0       | Query    |
                          |         |          |
                          | 1       | Response |
                          |         |          |
                          | 2       | Confirm  |
                          |         |          |
                          | 3       | Data     |
                          |         |          |
                          | 4       | Error    |
                          |         |          |
                          | 5       | MA-Hello |

      Allocation policies for further values are as follows:

      6-63:  Standards Action

      64-119:  Expert Review

      120-127:  Private/Experimental Use

      128-255:  Reserved - not to be allocated

Schulzrinne & Hancock    Expires October 4, 2007              [Page 109]

Internet-Draft                    GIST                        April 2007

   Object Types:  There is a 12-bit field in the object header
      (Appendix A.2).  The following values for object type are defined
      by this specification:

                 | OType   | Object Type                 |
                 | 0       | Message Routing Information |
                 |         |                             |
                 | 1       | Session ID                  |
                 |         |                             |
                 | 2       | Network Layer Information   |
                 |         |                             |
                 | 3       | Stack Proposal              |
                 |         |                             |
                 | 4       | Stack Configuration Data    |
                 |         |                             |
                 | 5       | Query Cookie                |
                 |         |                             |
                 | 6       | Responder Cookie            |
                 |         |                             |
                 | 7       | NAT Traversal               |
                 |         |                             |
                 | 8       | NSLP Data                   |
                 |         |                             |
                 | 9       | Error                       |
                 |         |                             |
                 | 10      | Hello ID                    |

      Allocation policies for further values are as follows:

      10-1023:  Standards Action

      1024-1999:  Specification Required

      2000-2047:  Private/Experimental Use

      2048-4095:  Reserved - not to be allocated

      When a new object type is allocated according to one of the first
      two policies, the specification MUST provide the object format and
      define the setting of the extensibility bits (A/B, see
      Appendix A.2.1).

Schulzrinne & Hancock    Expires October 4, 2007              [Page 110]

Internet-Draft                    GIST                        April 2007

   Message Routing Methods:  GIST allows multiple message routing
      methods (see Section 3.3).  The MRM is indicated in the leading
      byte of the MRI object (Appendix A.3.1).  This specification
      defines the following values:

                  | MRM-ID     | Message Routing Method |
                  | 0          | Path Coupled MRM       |
                  |            |                        |
                  | 1          | Loose End MRM          |

      Allocation policies for further values are as follows:

      2-63:  Standards Action

      64-119:  Expert Review

      120-127:  Private/Experimental Use

      128-255:  Reserved - not to be allocated

      When a new MRM is defined according to one of the first two
      policies, a specification document will be required.  This MUST
      provide the information described in Section 3.3.

   MA-Protocol-IDs:  Each protocol that can be used in a messaging
      association is identified by a 1-byte MA-Protocol-ID
      (Section 5.7).  Note that the MA-Protocol-ID is not an IP Protocol
      number; indeed, some of the messaging association protocols - such
      as TLS - do not have an IP Protocol number.  This is used as a tag
      in the Stack-Proposal and Stack-Configuration-Data objects
      (Appendix A.3.4 and Appendix A.3.5).  The following values are
      defined by this specification:

     | MA-Protocol-ID      | Protocol                                |
     | 0                   | Reserved - not to be allocated          |
     |                     |                                         |
     | 1                   | TCP opened in the forwards direction    |
     |                     |                                         |
     | 2                   | TLS initiated in the forwards direction |

      Allocation policies for further values are as follows:

Schulzrinne & Hancock    Expires October 4, 2007              [Page 111]

Internet-Draft                    GIST                        April 2007

      3-63:  Standards Action

      64-119:  Expert Review

      120-127:  Private/Experimental Use

      128-255:  Reserved - not to be allocated

      When a new MA-Protocol-ID is allocated according to one of the
      first two policies, a specification document will be required.
      This MUST define the format for the MA-protocol-options field (if
      any) in the Stack-Configuration-Data object that is needed to
      define its configuration.  If a protocol is to be used for
      reliable message transfer, it MUST be described how delivery
      errors are to be detected by GIST.  Extensions to include new
      channel security protocols MUST include a description of how to
      integrate the functionality described in Section 3.9 with the rest
      of GIST operation.  If the new MA-Protocol-ID can be used in
      conjunction with existing ones (for example, a new transport
      protocol option which could be used with Transport Layer
      Security), the specification MUST define the interaction between
      the two.

   Error Codes/Subcodes:  There is a 2 byte error code and 1 byte
      subcode in the Value field of the Error object (Appendix A.4.1).
      Error codes 1-12 are defined in Appendix A.4.4 together with
      subcodes 0-5 (code 1), 0-5 (code 9), 0-5 (code 10), and 0-2 (code
      12).  Additional codes and subcodes are allocated on a first-come,
      first-served basis.  When a new code/subcode combination is
      allocated, the following information MUST be provided:

      Error case:  textual name of error

      Error class:  from the categories given in Appendix A.4.3

      Error code:  allocated by IANA, if a new code is required

      Error subcode:  subcode point, also allocated by IANA

      Additional information:  what additional information fields it is
         mandatory to include in the error message, from Appendix A.4.2

   Additional Information Types:  An Error object (Appendix A.4.1) may
      contain Additional Information fields.  Each possible field type
      is identified by a 16-bit AI-Type.  AI-Types 1-4 are defined in
      Appendix A.4.2; additional AI-Types are allocated on a first-come,
      first-served basis.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 112]

Internet-Draft                    GIST                        April 2007

10.  Acknowledgements

   This document is based on the discussions within the IETF NSIS
   working group.  It has been informed by prior work and formal and
   informal inputs from: Cedric Aoun, Attila Bader, Roland Bless, Bob
   Braden, Marcus Brunner, Benoit Campedel, Yoshiko Chong, Luis
   Cordeiro, Elwyn Davies, Christian Dickmann, Pasi Eronen, Alan Ford,
   Xiaoming Fu, Bo Gao, Ruediger Geib, Eleanor Hepworth, Thomas Herzog,
   Cheng Hong, Teemu Huovila, Jia Jia, Cornelia Kappler, Georgios
   Karagiannis, Ruud Klaver, Chris Lang, John Loughney, Allison Mankin,
   Jukka Manner, Pete McCann, Andrew McDonald, Glenn Morrow, Dave Oran,
   Andreas Pashalidis, Henning Peters, Tom Phelan, Akbar Rahman, Takako
   Sanda, Charles Shen, Melinda Shore, Martin Stiemerling, Martijn
   Swanink, Mike Thomas, Hannes Tschofenig, Sven van den Bosch, Michael
   Welzl, Lars Westberg, and Mayi Zoumaro-djayoon.  Parts of the TLS
   usage description (Section 5.7.3) were derived from the Diameter base
   protocol specification, RFC3588.  In addition, Hannes Tschofenig
   provided a detailed set of review comments on the security section,
   and Andrew McDonald provided the formal description for the initial
   packet formats and the name matching algorithm for TLS.  Chris Lang's
   implementation work provided objective feedback on the clarity and
   feasibility of the specification, and he also provided the state
   machine description and the initial error catalogue and formats.
   Magnus Westerlund carried out a detailed AD review which identified a
   number of issues and led to significant clarifications, which was
   followed by an even more detailed IESG review, with comments from
   Jari Arkko, Ross Callon, Brian Carpenter, Lisa Dusseault, Lars
   Eggert, Ted Hardie, Sam Hartman, Russ Housley, Cullen Jennings, and a
   very detailed analysis by Adrian Farrel from the Routing Area

Schulzrinne & Hancock    Expires October 4, 2007              [Page 113]

Internet-Draft                    GIST                        April 2007

11.  References

11.1.  Normative References

   [1]   Braden, R., "Requirements for Internet Hosts - Communication
         Layers", STD 3, RFC 1122, October 1989.

   [2]   Baker, F., "Requirements for IP Version 4 Routers", RFC 1812,
         June 1995.

   [3]   Katz, D., "IP Router Alert Option", RFC 2113, February 1997.

   [4]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
         Levels", BCP 14, RFC 2119, March 1997.

   [5]   Schiller, J., "Cryptographic Algorithms for Use in the Internet
         Key Exchange Version 2 (IKEv2)", RFC 4307, December 2005.

   [6]   Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
         Considerations Section in RFCs", BCP 26, RFC 2434,
         October 1998.

   [7]   Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of
         the Differentiated Services Field (DS Field) in the IPv4 and
         IPv6 Headers", RFC 2474, December 1998.

   [8]   Partridge, C. and A. Jackson, "IPv6 Router Alert Option",
         RFC 2711, October 1999.

   [9]   Nordmark, E., "Stateless IP/ICMP Translation Algorithm (SIIT)",
         RFC 2765, February 2000.

   [10]  Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509
         Public Key Infrastructure Certificate and Certificate
         Revocation List (CRL) Profile", RFC 3280, April 2002.

   [11]  Narten, T., "Assigning Experimental and Testing Numbers
         Considered Useful", BCP 82, RFC 3692, January 2004.

   [12]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
         Specifications: ABNF", RFC 4234, October 2005.

   [13]  Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
         Protocol Version 1.1", RFC 4346, April 2006.

   [14]  Loughney, J., "NSIS Extensibility Model",
         draft-loughney-nsis-ext-02 (work in progress), March 2006.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 114]

Internet-Draft                    GIST                        April 2007

11.2.  Informative References

   [15]  Braden, B., Zhang, L., Berson, S., Herzog, S., and S. Jamin,
         "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
         Specification", RFC 2205, September 1997.

   [16]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
         RFC 2246, January 1999.

   [17]  Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

   [18]  Terzis, A., Krawczyk, J., Wroclawski, J., and L. Zhang, "RSVP
         Operation Over IP Tunnels", RFC 2746, January 2000.

   [19]  Tsirtsis, G. and P. Srisuresh, "Network Address Translation -
         Protocol Translation (NAT-PT)", RFC 2766, February 2000.

   [20]  Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer,
         H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V.
         Paxson, "Stream Control Transmission Protocol", RFC 2960,
         October 2000.

   [21]  Carpenter, B. and K. Moore, "Connection of IPv6 Domains via
         IPv4 Clouds", RFC 3056, February 2001.

   [22]  Huitema, C., "An Anycast Prefix for 6to4 Relay Routers",
         RFC 3068, June 2001.

   [23]  Baker, F., Iturralde, C., Le Faucheur, F., and B. Davie,
         "Aggregation of RSVP for IPv4 and IPv6 Reservations", RFC 3175,
         September 2001.

   [24]  Grossman, D., "New Terminology and Clarifications for
         Diffserv", RFC 3260, April 2002.

   [25]  Arkko, J., Torvinen, V., Camarillo, G., Niemi, A., and T.
         Haukka, "Security Mechanism Agreement for the Session
         Initiation Protocol (SIP)", RFC 3329, January 2003.

   [26]  Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy, "STUN
         - Simple Traversal of User Datagram Protocol (UDP) Through
         Network Address Translators (NATs)", RFC 3489, March 2003.

   [27]  Rosenberg, J., "Obtaining Relay Addresses from Simple Traversal
         Underneath NAT (STUN)", draft-ietf-behave-turn-03 (work in
         progress), March 2007.

   [28]  Gill, V., Heasley, J., and D. Meyer, "The Generalized TTL

Schulzrinne & Hancock    Expires October 4, 2007              [Page 115]

Internet-Draft                    GIST                        April 2007

         Security Mechanism (GTSM)", RFC 3682, February 2004.

   [29]  Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3852,
         July 2004.

   [30]  Hancock, R., Karagiannis, G., Loughney, J., and S. Van den
         Bosch, "Next Steps in Signaling (NSIS): Framework", RFC 4080,
         June 2005.

   [31]  Tschofenig, H. and D. Kroeselberg, "Security Threats for Next
         Steps in Signaling (NSIS)", RFC 4081, June 2005.

   [32]  Eastlake, D., Schiller, J., and S. Crocker, "Randomness
         Requirements for Security", BCP 106, RFC 4086, June 2005.

   [33]  Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites for
         Transport Layer Security (TLS)", RFC 4279, December 2005.

   [34]  Conta, A., Deering, S., and M. Gupta, "Internet Control Message
         Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
         Specification", RFC 4443, March 2006.

   [35]  Stiemerling, M., "NAT/Firewall NSIS Signaling Layer Protocol
         (NSLP)", draft-ietf-nsis-nslp-natfw-14 (work in progress),
         March 2007.

   [36]  Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms for
         IPv6 Hosts and Routers", RFC 4213, October 2005.

   [37]  Kent, S. and K. Seo, "Security Architecture for the Internet
         Protocol", RFC 4301, December 2005.

   [38]  Nikander, P., Arkko, J., Aura, T., Montenegro, G., and E.
         Nordmark, "Mobile IP Version 6 Route Optimization Security
         Design Background", RFC 4225, December 2005.

   [39]  Audet, F. and C. Jennings, "Network Address Translation (NAT)
         Behavioral Requirements for Unicast UDP", BCP 127, RFC 4787,
         January 2007.

   [40]  Floyd, S. and V. Jacobson, "The Synchronisation of Periodic
         Routing Messages", SIGCOMM Symposium on Communications
         Architectures and Protocols pp. 33--44, September 1993.

   [41]  Pashalidis, A. and H. Tschofenig, "GIST Legacy NAT Traversal",
         draft-pashalidis-nsis-gist-legacynats-01 (work in progress),
         March 2007.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 116]

Internet-Draft                    GIST                        April 2007

   [42]  Pashalidis, A. and H. Tschofenig, "GIST NAT Traversal",
         draft-pashalidis-nsis-gimps-nattraversal-04 (work in progress),
         March 2007.

   [43]  Tschofenig, H., "GIST State Machine",
         draft-ietf-nsis-ntlp-statemachine-03 (work in progress),
         March 2007.

   [44]  Ramaiah, A., "Improving TCP's Robustness to Blind In-Window
         Attacks", draft-ietf-tcpm-tcpsecure-07 (work in progress),
         February 2007.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 117]

Internet-Draft                    GIST                        April 2007

Appendix A.  Bit-Level Formats and Error Messages

   This appendix provides formats for the various component parts of the
   GIST messages defined abstractly in Section 5.2.  The whole of this
   appendix is normative.

   Each GIST message consists of a header and a sequence of objects.
   The GIST header has a specific format, described in more detail in
   Appendix A.1 below.  An NSLP message is one object within a GIST
   message.  Note that GIST itself provides the NSLP message length
   information and signalling application identification.  General
   object formatting guidelines are provided in Appendix A.2 below,
   followed in Appendix A.3 by the format for each object.  Finally,
   Appendix A.4 provides the formats used for error reporting.

   In the following object diagrams, '//' is used to indicate a variable
   sized field and ':' is used to indicate a field that is optionally

A.1.  The GIST Common Header

   This header begins all GIST messages.  It has a fixed format, as
   shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |    Version    |   GIST hops   |        Message Length         |
   |           NSLPID              |   Type        |S|R|E| Reserved|

   Version (8 bits):  The GIST protocol version number.

   GIST hops (8 bits):  A hop count for the number of GIST-aware nodes
      this message can still be processed by (including the

   Message Length (16 bits):  The total number of 32-bit words in the
      message after the common header itself.

   NSLPID (16 bits):  IANA assigned identifier of the signalling
      application the message refers to.

   Type (8 bits):  The GIST message type (Query, Response, etc.).

Schulzrinne & Hancock    Expires October 4, 2007              [Page 118]

Internet-Draft                    GIST                        April 2007

   S flag:  S=1 if the IP source address is the same as the signalling
      source address, S=0 if it is different.

   R flag:  R=1 if a reply to this message is explicitly requested.

   E flag:  E=1 if the message was explicitly routed (Section 7.1.5).

   The rules governing the use of the R-flag depend on the GIST message
   type.  It MUST always be set (R=1) in Query messages, since these
   always elicit a Response, and never in Confirm, Data or Error
   messages.  It MAY be set in an MA-Hello; if set, another MA-Hello
   MUST be sent in reply.  It MAY be set in a Response, but MUST be set
   if the Response contains a Responder cookie; if set, a Confirm MUST
   be sent in reply.  The E flag MUST NOT be set unless the message type
   is a Data message.

   Parsing failures may be caused by unknown Version or Type values,
   inconsistent R or E flag setting, or a Message Length inconsistent
   with the set of objects carried.  In all cases the receiver MUST if
   possible return a "Common Header Parse Error" message
   (Appendix A.4.4.1) with the appropriate subcode, and not process the
   message further.

A.2.  General Object Format

   Each object begins with a fixed header giving the object Type and
   object Length.  This is followed by the object Value, which is a
   whole number of 32-bit words long.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |A|B|r|r|         Type          |r|r|r|r|        Length         |
   //                             Value                           //

   A/B flags:  The bits marked 'A' and 'B' are extensibility flags which
      are defined in Appendix A.2.1 below; the remaining bits marked 'r'
      are reserved.

   Type (12 bits):  An IANA-assigned identifier for the type of object.

   Length (12 bits):  Length has the units of 32-bit words, and measures
      the length of Value.  If there is no Value, Length=0.  If the
      Length is not consistent with the contents of the object, an
      "Object Value Error" message (Appendix A.4.4.10) with subcode 0
      "Incorrect Length" MUST be returned and the message dropped.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 119]

Internet-Draft                    GIST                        April 2007

   Value (variable):  Value is (therefore) a whole number of 32 bit
      words.  If there is any padding required, the length and location
      are be defined by the object-specific format information; objects
      which contain variable length (e.g. string) types may need to
      include additional length subfields to do so.

   Any part of the object used for padding or defined as reserved
   (marked 'Reserved' or 'Rsv' or, in the case of individual bits, 'r'
   in the diagrams below) MUST be set to 0 on transmission and MUST be
   ignored on reception.

A.2.1.  Object Extensibility

   The leading two bits of the TLV header are used to signal the desired
   treatment for objects whose Type field is unknown at the receiver.
   The following three categories of object have been identified, and
   are described here.

   AB=00 ("Mandatory"):  If the object is not understood, the entire
      message containing it MUST be rejected with an "Object Type Error"
      message (Appendix A.4.4.9) with subcode 1 ("Unrecognised Object").

   AB=01 ("Ignore"):  If the object is not understood, it MUST be
      deleted and the rest of the message processed as usual.

   AB=10 ("Forward"):  If the object is not understood, it MUST be
      retained unchanged in any message forwarded as a result of message
      processing, but not stored locally.

   The combination AB=11 is reserved.  If a message is received
   containing an object with AB=11, it MUST be rejected with an "Object
   Type Error" message (Appendix A.4.4.9) with subcode 5 ("Invalid
   Extensibility Flags").

   These extensibility rules define only the processing within the GIST
   layer.  There is no requirement on GIST implementations to support an
   extensible service interface to signalling applications, so
   unrecognised objects with AB=01 or AB=10 do not need to be indicated
   to NSLPs.  If a new GIST object is defined which requires such an
   interaction, it should be specified with AB=11.

A.3.  GIST TLV Objects

A.3.1.  Message-Routing-Information

Schulzrinne & Hancock    Expires October 4, 2007              [Page 120]

Internet-Draft                    GIST                        April 2007

   Type:  Message-Routing-Information

   Length:  Variable (depends on MRM)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |     MRM-ID    |N|  Reserved   |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   //     Method-specific addressing information (variable)       //

   MRM-ID (8 bits):  An IANA-assigned identifier for the message routing

   N flag:  If set (N=1), this means that NATs do not need to translate
      this MRM; if clear (N=0) it means that the method-specific
      information contains network or transport layer information that a
      NAT must process.

   The remainder of the object contains method-specific addressing
   information, which is described below.

A.3.1.1.  Path-Coupled MRM

   In the case of basic path-coupled routing, the addressing information
   takes the following format.  The N-flag N=0 for this MRM.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                   |IP-Ver |P|T|F|S|A|B|D|Reserved |
   //                       Source Address                        //
   //                      Destination Address                    //
   | Source Prefix |  Dest Prefix  |   Protocol    | DS-field  |Rsv|
   :       Reserved        |              Flow Label               :
   :                              SPI                              :
   :          Source Port          :       Destination Port        :

Schulzrinne & Hancock    Expires October 4, 2007              [Page 121]

Internet-Draft                    GIST                        April 2007

   IP-Ver (4 bits):  The IP version number, 4 or 6.

   Source/Destination address (variable):  The source and destination
      addresses are always present and of the same type; their length
      depends on the value in the IP-Ver field.

   Source/Dest Prefix (each 8 bits):  The length of the mask to be
      applied to the source and destination addresses for address
      wildcarding.  In the normal case where the MRI refers only to
      traffic between specific host addresses, the Source/Dest Prefix
      values would both be 32/128 for IPv4/6 respectively.

   P flag:  P=1 means that the Protocol field is significant.

   Protocol (8 bits):  The IP protocol number.  This MUST be ignored if
      P=0.  In the case of IPv6, the Protocol field refers to the true
      upper layer protocol carried by the packets, i.e. excluding any IP
      option headers.  This is therefore not necessarily the same as the
      Next Header value from the base IPv6 header.

   T flag:  T=1 means that DiffServ field (DS-field) is significant.

   DS-field (6 bits):  The DiffServ field.  See [7] and [24].

   F flag:  F=1 means that flow label is present and is significant.  F
      MUST NOT be set if IP-Ver is not 6.

   Flow Label (20 bits):  The flow label; only present if F=1.  If F=0,
      the entire 32 bit word containing the Flow Label is absent.

   S flag:  S=1 means that the SPI field is present and is significant.
      The S flag MUST be 0 if the P flag is 0.

   SPI field (32 bits):  The SPI field; see [37].  If S=0, the entire 32
      bit word containing the SPI is absent.

   A/B flags:  These can only be set if P=1.  If either is set, the port
      fields are also present.  If P=0, the A/B flags MUST both be zero
      and the word containing the port numbers is absent.

   Source/Destination Port (each 16 bits):  If either of A (source), B
      (destination) is set the word containing the port numbers is
      included in the object.  However, the contents of each field is
      only significant if the corresponding flag is set; otherwise, the
      contents of the field is regarded as padding, and the MRI refers
      to all ports (i.e. acts as a wildcard).  If the flag is set and
      Port=0x0000, the MRI will apply to a specific port, whose value is
      not yet known.  If neither of A or B is set, the word is absent.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 122]

Internet-Draft                    GIST                        April 2007

   D flag:  The Direction flag has the following meaning: the value 0
      means 'in the same direction as the flow' (i.e. downstream), and
      the value 1 means 'in the opposite direction to the flow' (i.e.

   The MRI format defines a number of constraints on the allowed
   combinations of flags and fields in the object.  If these constraints
   are violated this constitutes a parse error, and an "Object Value
   Error" message (Appendix A.4.4.10) with subcode 2 ("Invalid Flag-
   Field Combination") MUST be returned.

A.3.1.2.  Loose-End MRM

   In the case of the loose-end MRM, the addressing information takes
   the following format.  The N-flag N=0 for this MRM.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                   |IP-Ver |D|      Reserved       |
   //                       Source Address                        //
   //                      Destination Address                    //

   IP-Ver (4 bits):  The IP version number, 4 or 6.

   Source/Destination address (variable):  The source and destination
      addresses are always present and of the same type; their length
      depends on the value in the IP-Ver field.

   D flag:  The Direction flag has the following meaning: the value 0
      means 'towards the edge of the network', and the value 1 means
      'from the edge of the network'.  Note that for Q-mode messages,
      the only valid value is D=0 (see Section 5.8.2).

A.3.2.  Session Identification

   Type:  Session-Identification

   Length:  Fixed (4 32-bit words)

Schulzrinne & Hancock    Expires October 4, 2007              [Page 123]

Internet-Draft                    GIST                        April 2007

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |                                                               |
   +                                                               +
   |                                                               |
   +                          Session ID                           +
   |                                                               |
   +                                                               +
   |                                                               |

A.3.3.  Network-Layer-Information

   Type:  Network-Layer-Information

   Length:  Variable (depends on length of Peer-Identity and IP version)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |   PI-Length   |    IP-TTL     |IP-Ver |        Reserved       |
   |                  Routing State Validity Time                  |
   //                       Peer Identity                         //
   //                     Interface Address                       //

   PI-Length (8 bits):  The byte length of the Peer Identity field.

   Peer Identity (variable):  The Peer Identity field.  Note that the
      Peer-Identity field itself is padded to a whole number of words.

   IP-TTL (8 bits):  Initial or reported IP layer TTL.

   IP-Ver (4 bits):  The IP version for the Interface Address field.

   Interface Address (variable):  The IP address allocated to the
      interface, matching the IP-Ver field.

   Routing State Validity Time (32 bits):  The time for which the
      routing state for this flow can be considered correct without a
      refresh.  Given in milliseconds.  The value 0 (zero) is reserved
      and MUST NOT be used.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 124]

Internet-Draft                    GIST                        April 2007

A.3.4.  Stack Proposal

   Type:  Stack-Proposal

   Length:  Variable (depends on number of profiles and size of each

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |  Prof-Count   |     Reserved                                  |
   //                    Profile 1                                //
   :                                                               :
   //                    Profile N                                //
   Prof-Count (8 bits): The number of profiles listed. MUST be > 0.

   Each profile is itself a sequence of protocol layers, and the profile
   is formatted as a list as follows:

   o  The first byte is a count of the number of layers in the profile.
      MUST be > 0.

   o  This is followed by a sequence of 1-byte MA-Protocol-IDs as
      described in Section 5.7.

   o  The profile is padded to a word boundary with 0, 1, 2 or 3 zero
      bytes.  These bytes MUST be ignored at the receiver.

   If there are no profiles (Prof-Count=0) then an "Object Value Error"
   message (Appendix A.4.4.10) with subcode 1 ("Value Not Supported")
   MUST be returned; if a particular profile is empty (the leading byte
   of the profile is zero), then subcode 3 ("Empty List") MUST be used.
   In both cases, the message MUST be dropped.

A.3.5.  Stack-Configuration-Data

   Type:  Stack-Configuration-Data

   Length:  Variable (depends on number of protocols and size of each
      MA-protocol-options field)

Schulzrinne & Hancock    Expires October 4, 2007              [Page 125]

Internet-Draft                    GIST                        April 2007

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |   MPO-Count   |     Reserved                                  |
   |                           MA-Hold-Time                        |
   //                     MA-protocol-options 1                   //
   :                                                               :
   //                     MA-protocol-options N                   //

   MPO-Count (8 bits):  The number of MA-protocol-options fields present
      (these contain their own length information).  The MPO-Count MAY
      be zero, but this will only be the case if none of the MA-
      protocols referred to in the Stack-Proposal require option data.

   MA-Hold-Time (32 bits):  The time for which the messaging association
      will be held open without traffic or a hello message.  Note that
      this value is given in milliseconds, so the default time of 30
      seconds (Section 4.4.5) corresponds to a value of 30000.  The
      value 0 (zero) is reserved and MUST NOT be used.

   The MA-protocol-options fields are formatted as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |MA-Protocol-ID |     Profile   |    Length     |D|  Reserved   |
   //                         Options Data                        //

   MA-Protocol-ID (8 bits):  Protocol identifier as described in
      Section 5.7.

   Profile (8 bits):  Tag indicating which profile from the accompanying
      Stack-Proposal object this applies to.  Profiles are numbered from
      1 upwards; the special value 0 indicates 'applies to all

   Length (8 bits):  The byte length of MA-protocol-options field that
      follows.  This will be zero-padded up to the next word boundary.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 126]

Internet-Draft                    GIST                        April 2007

   D flag:  If set (D=1), this protocol MUST NOT be used for a messaging

   Options Data (variable):  Any options data for this protocol.  Note
      that the format of the options data might differ depending on
      whether the field is in a Query or Response.

A.3.6.  Query Cookie

   Type:  Query-Cookie

   Length:  Variable (selected by querying node)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   //                        Query Cookie                         //

   The contents are implementation defined.  See Section 8.5 for further

A.3.7.  Responder Cookie

   Type:  Responder-Cookie

   Length:  Variable (selected by responding node)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   //                      Responder Cookie                       //

   The contents are implementation defined.  See Section 8.5 for further

A.3.8.  Hello-ID

   Type:  Hello-ID

   Length:  Fixed (1 32-bit word)

Schulzrinne & Hancock    Expires October 4, 2007              [Page 127]

Internet-Draft                    GIST                        April 2007

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |                          Hello-ID                             |

   The contents are implementation defined.  See Section 5.2.2 for
   further discussion.

A.3.9.  NAT Traversal

   Type:  NAT-Traversal

   Length:  Variable (depends on length of contained fields)

   This object is used to support the NAT traversal mechanisms described
   in Section 7.2.2.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   | MRI-Length    | Type-Count    | NAT-Count    |  Reserved      |
   //            Original Message-Routing-Information             //
   //                 List of translated objects                  //
   | Length of opaque information  |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              //
   //                Information replaced by NAT #1                |
   :                                                               :
   | Length of opaque information  |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              //
   //                Information replaced by NAT #N                |

   MRI-Length (8 bits):  The length of the included MRI payload in 32-
      bit words.

   Original Message-Routing-Information (variable):  The MRI data from
      when the message was first sent, not including the object header.

   Type-Count (8 bits):  The number of objects in the 'List of
      translated objects' field.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 128]

Internet-Draft                    GIST                        April 2007

   List of translated objects (variable):  This field lists the types of
      the objects that were translated by every NAT through which the
      message has passed.  Each element in the list is a 16-bit field
      containing the first 16 bits of the object TLV header, including
      the AB extensibility flags, two reserved bits, and 12 bit object
      type.  The list is initialised by the first NAT on the path;
      subsequent NATs may delete elements in the list.  Padded with 2
      null bytes if necessary.

   NAT-Count (8 bits):  The number of NATs traversed by the message, and
      the number of opaque payloads at the end of the object.  The
      length fields for each opaque payload are byte counts, not
      including the 2 bytes of the length field itself.  Note that each
      opaque information field is zero-padded to the next 32-bit word
      boundary if necessary.

A.3.10.  NSLP Data

   Type:  NSLP-Data

   Length:  Variable (depends on NSLP)

   This object is used to deliver data between NSLPs.  GIST regards the
   data as a number of complete 32-bit words, as given by the length
   field in the TLV; any padding to a word boundary must be carried out
   within the NSLP itself.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   //                          NSLP Data                          //

A.4.  Errors

A.4.1.  Error Object

   Type:  Error

   Length:  Variable (depends on error)

Schulzrinne & Hancock    Expires October 4, 2007              [Page 129]

Internet-Draft                    GIST                        April 2007

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |  Error Class  |           Error Code          | Error Subcode |
   |S|M|C|D|Q|       Reserved      |  MRI Length   |  Info Count   |
   |                                                               |
   +                         Common Header                         +
   |                    (of original message)                      |
   :                          Session Id                           :
   :                    Message Routing Information                :
   :                 Additional Information Fields                 :
   :                       Debugging Comment                       :

   The flags are:
   S - S=1 means the Session ID object is present
   M - M=1 means MRI object is present
   C - C=1 means a debug Comment is present after header.
   D - D=1 means the original message was received in D-mode
   Q - Q=1 means the original message was received Q-mode encapsulated
       (can't be set if D=0).

   A GIST Error object contains an 8 bit error-class (see
   Appendix A.4.3), a 16 bit error-code, an 8 bit error-subcode, and as
   much information about the message which triggered the error as is
   available.  This information MUST include the Common header of the
   original message and MUST also include the Session Id and MRI objects
   if these could be decoded correctly.  These objects are included in
   their entirety, except for their TLV Headers.  The MRI Length field
   gives the length of the MRI object in 32-bit words.

   The Info Count field contains the number of Additional Information
   fields in the object, and the possible formats for these fields are
   given in Appendix A.4.2.  The precise set of fields to include
   depends on the error code/subcode.  For every error description in
   the error catalogue Appendix A.4.4, the line "Additional Info:"
   states what fields MUST be included; further fields beyond these MAY
   be included by the sender, and the fields may be included in any
   order.  The Debugging Comment is a null- terminated UTF-8 string,
   padded if necessary to a whole number of 32- bit words with more null

Schulzrinne & Hancock    Expires October 4, 2007              [Page 130]

Internet-Draft                    GIST                        April 2007

A.4.2.  Additional Information Fields

   The Common Error Header may be followed by some Additional
   Information fields.  Each Additional Information field has a simple
   TLV format as follows:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |          AI-Type              |         AI-Length             |
   //                          AI-Value                           //

   The AI-Type is a 16-bit IANA assigned value.  The AI-Length gives the
   number of 32-bit words in AI-Value; if an AI-Value is not present,
   AI-Length=0.  The AI-Types and AI-Lengths and AI-Value formats of the
   currently defined Additional Information fields are shown below.

   Message Length Info:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |     Calculated Length         |           Reserved            |
   AI-Type: 1
   AI-Length: 1
   Calculated Length (16 bits): the length of the original message
   calculated by adding up all the objects in the message. Measured in
   32-bit words.

   MTU Info:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |           Link MTU            |           Reserved            |
   AI-Type: 2
   AI-Length: 1
   Link MTU (16 bits): the IP MTU for a link along which a message
                       could not be sent. Measured in bytes.

   Object Type Info:

Schulzrinne & Hancock    Expires October 4, 2007              [Page 131]

Internet-Draft                    GIST                        April 2007

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |         Object Type           |           Reserved            |
   AI-Type: 3
   AI-Length: 1
   Object type (16 bits): This provides information about the type
                          of object which caused the error.

   Object Value Info:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   |  Rsv  |  Real Object Length   |            Offset             |
   //                           Object                            //
   AI-Type: 4
   AI-Length: variable (depends on Object length)
   This object carries information about a TLV object which was found
   to be invalid in the original message. An error message MAY contain
   more than one Object Value Info object.

   Real Object Length (12 bits)  Since the length in the original TLV
      header may be inaccurate, this field provides the actual length of
      the object (including the TLV Header) included in the error
      message.  Measured in 32-bit words.

   Offset (16 bits):  The byte in the object at which the GIST node
      found the error.  The first byte in the object has offset=0.

   Object (variable):  The invalid TLV object (including the TLV

A.4.3.  Error Classes

   The first byte of the error object, "Error Class", indicates the
   severity level.  The currently defined severity levels are:

   0 (Informational):  reply data which should not be thought of as
      changing the condition of the protocol state machine.

   1 (Success):  reply data which indicates that the message being
      responded to has been processed successfully in some sense.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 132]

Internet-Draft                    GIST                        April 2007

   2 (Protocol-Error):  the message has been rejected because of a
      protocol error (e.g. an error in message format).

   3 (Transient-Failure):  the message has been rejected because of a
      particular local node status which may be transient (i.e. it may
      be worthwhile to retry after some delay).

   4 (Permanent-Failure):  the message has been rejected because of
      local node status which will not change without additional out of
      band (e.g. management) operations.

   Additional error class values are reserved.

   The allocation of error classes to particular errors is not precise;
   the above descriptions are deliberately informal.  Actual error
   processing SHOULD take into account the specific error in question;
   the error class may be useful supporting information (e.g. in network

A.4.4.  Error Catalogue

   This section lists all the possible GIST errors, including when they
   are raised and what additional information fields MUST be carried in
   the error object.

A.4.4.1.  Common Header Parse Error

   Class:              Protocol-Error
   Code:               1
   Additional Info:    For subcode 3 only, Message Length Info carries
                       the calculated message length.

   This message is sent if a GIST node receives a message where the
   common header cannot be parsed correctly, or where an error in the
   overall message format is detected.  Note that in this case the
   original MRI and Session ID MUST NOT be included in the Error Object.
   This error code is split into subcodes as follows:

   0: Unknown Version:  The GIST version is unknown.  The (highest)
      supported version supported by the node can be inferred from the
      Common Header of the Error message itself.

   1: Unknown Type:  The GIST message type is unknown.

   2: Invalid R-flag:  The R flag in the header is inconsistent with the
      message type.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 133]

Internet-Draft                    GIST                        April 2007

   3: Incorrect Message Length:  The overall message length is not
      consistent with the set of objects carried.

   4: Invalid E-flag:  The E flag is set in the header but this is not a
      Data message.

   5: Missing Magic Number  A D-mode message directly addressed to this
      node (with the normal or Q-mode encapsulation) did not begin with
      the correct magic number.

A.4.4.2.  Hop Limit Exceeded

   Class:              Permanent-Failure
   Code:               2
   Additional Info:    None

   This message is sent if a GIST node receives a message with a GIST
   hop count of zero, or a GIST node tries to forward a message after
   its GIST hop count has been decremented to zero on reception.  This
   message indicates either a routing loop or too small an initial hop
   count value.

A.4.4.3.  Incorrect Encapsulation

   Class:              Protocol-Error
   Code:               3
   Additional Info:    None

   This message is sent if a GIST node receives a message which uses an
   incorrect encapsulation method (e.g. a Query arrives over an MA).

A.4.4.4.  Incorrectly Delivered Message

   Class:              Protocol-Error
   Code:               4
   Additional Info:    None

   This message is sent if a GIST node receives a message over an MA
   which is not associated with the MRI/NSLPID/SID combination in the

A.4.4.5.  No Routing State

   Class:              Protocol-Error
   Code:               5
   Additional Info:    None

   This message is sent if a node receives a message for which routing

Schulzrinne & Hancock    Expires October 4, 2007              [Page 134]

Internet-Draft                    GIST                        April 2007

   state should exist, but has not yet been created and thus there is no
   appropriate Querying-SM or Responding-SM.  This can occur on
   receiving a Data or Confirm message at a node whose policy requires
   routing state to exist before such messages can be accepted.  See
   also Section 6.1 and Section 6.3.

A.4.4.6.  Unknown NSLPID

   Class:              Permanent-Failure
   Code:               6
   Additional Info:    None

   This message is sent if a router receives a directly addressed
   message for an NSLP which it does not support.

A.4.4.7.  Endpoint Found

   Class:              Permanent-Failure
   Code:               7
   Additional Info:    None

   This message is sent if a GIST node at a flow endpoint receives a
   Query message for an NSLP which it does not support.

A.4.4.8.  Message Too Large

   Class:              Permanent-Failure
   Code:               8
   Additional Info:    MTU Info

   A router receives a message which it can't forward because it exceeds
   the IP MTU on the next or subsequent hops.

A.4.4.9.  Object Type Error

   Class:              Protocol-Error
   Code:               9
   Additional Info:    Object Type Info

   This message is sent if a GIST node receives a message containing a
   TLV object with an invalid type.  The message indicates the object
   type at fault in the additional info field.  This error code is split
   into subcodes as follows:

   0: Duplicate Object:  This subcode is used if a GIST node receives a
      message containing multiple instances of an object which may only
      appear once in a message.  In the current specification, this
      applies to all objects.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 135]

Internet-Draft                    GIST                        April 2007

   1: Unrecognised Object:  This subcode is used if a GIST node receives
      a message containing an object which it does not support, and the
      extensibility flags AB=00.

   2: Missing Object:  This subcode is used if a GIST node receives a
      message which is missing one or more mandatory objects.  This
      message is also sent if a Stack-Proposal is sent without a
      matching Stack-Configuration-Data object when one was necessary,
      or vice versa.

   3: Invalid Object Type:  This subcode is used if the object type is
      known, but it is not valid for this particular GIST message type.

   4: Untranslated Object:  This subcode is used if the object type is
      known and is mandatory to interpret, but it contains addressing
      data which has not been translated by an intervening NAT.

   5: Invalid Extensibility Flags:  This subcode is used if an object is
      received with the extensibility flags AB=11.

A.4.4.10.  Object Value Error

   Class:              Protocol-Error
   Code:               10
   Additional Info:    1 or 2 Object Value Info fields as given below

   This message is sent if a node receives a message containing an
   object which cannot be properly parsed.  The error message contains a
   single Object Value Info object, except for subcode 5 as stated
   below.  This error code is split into subcodes as follows:

   0: Incorrect Length:  The overall length does not match the object
      length calculated from the object contents.

   1: Value Not Supported:  The value of a field is not supported by the
      GIST node.

   2: Invalid Flag-Field Combination:  An object contains an invalid
      combination of flags and/or fields.  At the moment this only
      relates to the Path-Coupled MRI (Appendix A.3.1.1), but in future
      there may be more.

   3: Empty List:  At the moment this only relates to Stack-Proposals.
      The error message is sent if a stack proposal with a length > 0
      contains only null bytes (a length of 0 is handled as "Value Not

Schulzrinne & Hancock    Expires October 4, 2007              [Page 136]

Internet-Draft                    GIST                        April 2007

   4: Invalid Cookie:  The message contains a cookie which could not be
      verified by the node.

   5: Stack-Proposal - Stack-Configuration-Data Mismatch:  This subcode
      is used if a GIST node receives a message in which the data in the
      Stack-Proposal object is inconsistent with the information in the
      Stack Configuration Data object.  In this case, both the Stack-
      Proposal object and Stack-Configuration-Data object MUST be
      included in separate Object Value Info fields in that order.

A.4.4.11.  Invalid IP layer TTL

   Class:              Permanent-Failure
   Code:               11
   Additional Info:    None

   This error indicates that a message was received with an IP layer TTL
   outside an acceptable range; for example, that an upstream Query was
   received with an IP layer TTL of less than 254 (i.e. more than one IP
   hop from the sender).  The actual IP distance can be derived from the
   IP-TTL information in the NLI object carried in the same message.

A.4.4.12.  MRI Validation Failure

   Class:              Permanent-Failure
   Code:               12
   Additional Info:    Object Value Info

   This error indicates that a message was received with an MRI that
   could not be accepted, e.g. because of too much wildcarding or
   failing some validation check (cf. Section  The Object
   Value Info includes the MRI so the error originator can indicate the
   part of the MRI which caused the problem.  The error code is divided
   into subcodes as follows:

   0: MRI Too Wild:  The MRI contained too much wildcarding (e.g. too
      short a destination address prefix) to be forwarded correctly down
      a single path.

   1: IP Version Mismatch:  The MRI in a path-coupled Query message
      refers to an IP version which is not implemented on the interface
      used, or is different from the IP version of the Query
      encapsulation (see Section 7.4).

   2: Ingress Filter Failure:  The MRI in a path-coupled Query message
      describes a flow which would not pass ingress filtering on the
      interface used.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 137]

Internet-Draft                    GIST                        April 2007

Appendix B.  API between GIST and Signalling Applications

   This appendix provides an abstract API between GIST and signalling
   applications.  It should not constrain implementers, but rather help
   clarify the interface between the different layers of the NSIS
   protocol suite.  In addition, although some of the data types carry
   the information from GIST information elements, this does not imply
   that the format of that data as sent over the API has to be the same.

   Conceptually the API has similarities to the sockets API,
   particularly that for unconnected UDP sockets.  An extension for an
   API like that for UDP connected sockets could be considered.  In this
   case, for example, the only information needed in a SendMessage
   primitive would be NSLP-Data, NSLP-Data-Size, and NSLP-Message-Handle
   (which can be null).  Other information which was persistent for a
   group of messages could be configured once for the socket.  Such
   extensions may make a concrete implementation more efficient but do
   not change the API semantics, and so are not considered further here.

B.1.  SendMessage

   This primitive is passed from a signalling application to GIST.  It
   is used whenever the signalling application wants to initiate sending
   a message.

   SendMessage ( NSLP-Data, NSLP-Data-Size, NSLP-Message-Handle,
                 NSLPID, Session-ID, MRI, SII-Handle,
                 Transfer-Attributes, Timeout, IP-TTL, GIST-Hop-Count )

   The following arguments are mandatory.

   NSLP-Data:  The NSLP message itself.

   NSLP-Data-Size:  The length of NSLP-Data.

   NSLP-Message-Handle:  A handle for this message, that can be used by
      GIST as a reference in subsequent MessageStatus notifications
      (Appendix B.3).  Notifications could be about error conditions or
      about the security attributes that will be used for the message.
      A NULL handle may be supplied if the NSLP is not interested in
      such notifications.

   NSLPID:  An identifier indicating which NSLP this is.

   Session-ID:  The NSIS session identifier.  Note that it is assumed
      that the signalling application provides this to GIST rather than
      GIST providing a value itself.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 138]

Internet-Draft                    GIST                        April 2007

   MRI:  Message routing information for use by GIST in determining the
      correct next GIST hop for this message.  The MRI implies the
      message routing method to be used and the message direction.

   The following arguments are optional:

   SII-Handle:  A handle, previously supplied by GIST, to a data
      structure that should be used to route the message explicitly to a
      particular GIST next hop.

   Transfer-Attributes:  Attributes defining how the message should be
      handled (see Section 4.1.2).  The following attributes can be

      Reliability:  Values 'unreliable' or 'reliable'.

      Security:  This attribute allows the NSLP to specify what level of
         security protection is requested for the message (such as
         'integrity' or 'confidentiality'), and can also be used to
         specify what authenticated signalling source and destination
         identities should be used to send the message.  The
         possibilities can be learned by the signalling application from
         prior MessageStatus or RecvMessage notifications.  If an NSLP-
         Message-Handle is provided, GIST will inform the signalling
         application of what values it has actually chosen for this
         attribute via a MessageStatus callback.  This might take place
         either synchronously (where GIST is selecting from available
         messaging associations), or asynchronously (when a new
         messaging association needs to be created).

      Local Processing:  This attribute contains hints from the
         signalling application about what local policy should be
         applied to the message; in particular, its transmission
         priority relative to other messages, or whether GIST should
         attempt to set up or maintain forward routing state.

   Timeout:  Length of time GIST should attempt to send this message
      before indicating an error.

   IP-TTL:  The value of the IP layer TTL that should be used when
      sending this message (may be overridden by GIST for particular

   GIST-Hop-Count:  The value for the hop count when sending the

Schulzrinne & Hancock    Expires October 4, 2007              [Page 139]

Internet-Draft                    GIST                        April 2007

B.2.  RecvMessage

   This primitive is passed from GIST to a signalling application.  It
   is used whenever GIST receives a message from the network, including
   the case of null messages (zero length NSLP payload), typically
   initial Query messages.  For Queries, the results of invoking this
   primitive are used by GIST to check whether message routing state
   should be created (see the discussion of the 'Routing-State-Check'
   argument below).

   RecvMessage ( NSLP-Data, NSLP-Data-Size, NSLPID, Session-ID, MRI,
                 Routing-State-Check, SII-Handle, Transfer-Attributes,
                 IP-TTL, IP-Distance, GIST-Hop-Count,
                 Inbound-Interface )

   NSLP-Data:  The NSLP message itself (may be empty).

   NSLP-Data-Size:  The length of NSLP-Data (may be zero).

   NSLPID:  An identifier indicating which NSLP this is message is for.

   Session-ID:  The NSIS session identifier.

   MRI:  Message routing information that was used by GIST in forwarding
      this message.  Implicitly defines the message routing method that
      was used and the direction of the message relative to the MRI.

   Routing-State-Check:  This boolean is True if GIST is checking with
      the signalling application to see if routing state should be
      created with the peer or the message should be forwarded further
      (see Section 4.3.2).  If True, the signalling application should
      return the following values via the RecvMessage call:

         A boolean indicating whether to set up the state.

         Optionally, an NSLP-Payload to carry in the generated Response
         or forwarded Query respectively.

      This mechanism could be extended to enable the signalling
      application to indicate to GIST whether state installation should
      be immediate or deferred (see Section 5.3.3 and Section 6.3 for
      further discussion).

   SII-Handle:  A handle to a data structure, identifying a peer address
      and interface.  Can be used to identify route changes and for
      explicit routing to a particular GIST next hop.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 140]

Internet-Draft                    GIST                        April 2007

   Transfer-Attributes:  The reliability and security attributes that
      were associated with the reception of this particular message.  As
      well as the attributes associated with SendMessage, GIST may
      indicate the level of verification of the addresses in the MRI.
      Three attributes can be indicated:

      *  Whether the signalling source address is one of the flow
         endpoints (i.e. whether this is the first or last GIST hop);

      *  Whether the signalling source address has been validated by a
         return routability check.

      *  Whether the message was explicitly routed (and so has not been
         validated by GIST as delivered consistently with local routing

   IP-TTL:  The value of the IP layer TTL this message was received with
      (if available).

   IP-Distance:  The number of IP hops from the peer signalling node
      which sent this message along the path, or 0 if this information
      is not available.

   GIST-Hop-Count:  The value of the hop count the message was received
      with, after being decremented in the GIST receive-side processing.

   Inbound-Interface:  Attributes of the interface on which the message
      was received, such as whether it lies on the internal or external
      side of a NAT.  These attributes have only local significance and
      are implementation defined.

B.3.  MessageStatus

   This primitive is passed from GIST to a signalling application.  It
   is used to notify the signalling application that a message that it
   requested to be sent could not be dispatched, or to inform the
   signalling application about the transfer attributes that have been
   selected for the message (specifically, security attributes).  The
   signalling application can respond to this message with a return code
   to abort the sending of the message if the attributes are not

   MessageStatus (NSLP-Message-Handle, Transfer-Attributes, Error-Type)

Schulzrinne & Hancock    Expires October 4, 2007              [Page 141]

Internet-Draft                    GIST                        April 2007

   NSLP-Message-Handle:  A handle for the message provided by the
      signalling application in SendMessage.

   Transfer-Attributes:  The reliability and security attributes that
      will be used to transmit this particular message.

   Error-Type:  Indicates the type of error that occurred.  For example,
      'no next node found'.

B.4.  NetworkNotification

   This primitive is passed from GIST to a signalling application.  It
   indicates that a network event of possible interest to the signalling
   application occurred.

   NetworkNotification ( NSLPID, MRI, Network-Notification-Type )

   NSLPID:  An identifier indicating which NSLP this is message is for.

   MRI:  Provides the message routing information to which the network
      notification applies.

   Network-Notification-Type:  Indicates the type of event that caused
      the notification and associated additional data.  Five events have
      been identified:

      Last Node:  GIST has detected that this is the last NSLP-aware
         node in the path.  See Section 4.3.4.

      Routing Status Change:  GIST has installed new routing state, has
         detected that existing routing state may no longer be valid, or
         has re-established existing routing state.  See Section 7.1.3.
         The new status is reported; if the status is Good, the SII-
         Handle of the peer is also reported, as for RecvMessage.

      Route Deletion:  GIST has determined that an old route is now
         definitely invalid, e.g. that flows are definitely not using it
         (see Section 7.1.4).  The SII-Handle of the peer is also

      Node Authorisation Change:  The authorisation status of a peer has
         changed, meaning that routing state is no longer valid or that
         a signalling peer is no longer reachable; see Section 4.4.2.

      Communication Failure:  Communication with the peer has failed;
         messages may have been lost.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 142]

Internet-Draft                    GIST                        April 2007

B.5.  SetStateLifetime

   This primitive is passed from a signalling application to GIST.  It
   indicates the duration for which the signalling application would
   like GIST to retain its routing state.  It can also give a hint that
   the signalling application is no longer interested in the state.

   SetStateLifetime ( NSLPID, MRI, SID, State-Lifetime )

   NSLPID:  Provides the NSLPID to which the routing state lifetime

   MRI:  Provides the message routing information to which the routing
      state lifetime applies; includes the direction (in the D flag).

   SID:  The session ID which the signalling application will be using
      with this routing state.  Can be wildcarded.

   State-Lifetime:  Indicates the lifetime for which the signalling
      application wishes GIST to retain its routing state (may be zero,
      indicating that the signalling application has no further interest
      in the GIST state).

B.6.  InvalidateRoutingState

   This primitive is passed from a signalling application to GIST.  It
   indicates that the signalling application has knowledge that the next
   signalling hop known to GIST may no longer be valid, either because
   of changes in the network routing or the processing capabilities of
   signalling application nodes.  See Section 7.1.

   InvalidateRoutingState ( NSLPID, MRI, Status, NSLP-Data,
                            NSLP-Data-Size, Urgent )

   NSLPID:  The NSLP originating the message.  May be null (in which
      case the invalidation applies to all signalling applications).

   MRI:  The flow for which routing state should be invalidated;
      includes the direction of the change (in the D flag).

   Status:  The new status that should be assumed for the routing state,
      one of Bad or Tentative (see Section 7.1.3).

   NSLP-Data, NSLP-Data-Size  Optional: a payload provided by the NSLP
      to be used the next GIST handshake.  This can be used as part of a
      conditional peering process (see Section 4.3.2).  The payload will
      be transmitted without security protection.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 143]

Internet-Draft                    GIST                        April 2007

   Urgent:  A hint as to whether rediscovery should take place
      immediately, or only with the next signalling message.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 144]

Internet-Draft                    GIST                        April 2007

Appendix C.  Deployment Issues with Router Alert Options

   The GIST peer discovery handshake (Section 4.4.1) depends on the
   interception of Q-mode encapsulated IP packets (Section 4.3.1 and
   Section 5.3.2) by routers.  There are two fundamental requirements on
   the process:

   1.  Packets relevant to GIST must be intercepted.

   2.  Packets not relevant to GIST must be forwarded transparently.

   This specification defines the GIST behaviour to ensure that both
   requirements are met for a GIST-capable node.  However, GIST packets
   will also encounter non-GIST nodes, for which requirement (2) still
   applies.  If non-GIST nodes block Q-mode packets, GIST will not
   function.  It is always possible for middleboxes to block specific
   traffic types; by using a normal encapsulation for Q-mode traffic at
   the UDP level, GIST allows NATs at least to pass these messages
   (Section 7.2.1), and firewalls can be configured with standard
   policies.  However, where the Q-mode encapsulation uses a Router
   Alert Option (RAO) at the IP level this can lead to additional
   problems.  The situation is different for IPv4 and IPv6.

   The IPv4 RAO is defined by [3], which defines the RAO format with a
   2-byte value field; however, only one value (zero) is defined and
   there is no IANA registry for further allocations.  It states that
   unknown values should be ignored (i.e. the packets forwarded as
   normal IP traffic); however, it has also been reported that some
   existing implementations simply ignore the RAO value completely (i.e.
   process any packet with an RAO as though the option value was zero).
   Therefore, the use of non-zero RAO values cannot be relied on to make
   GIST traffic transparent to existing implementations.  (Note that it
   may still be valuable to be able to allocate non-zero RAO values for
   IPv4: this makes the interception process more efficient for nodes
   which do examine the value field, and makes no difference to nodes
   which - incorrectly - ignore it.  Whether or not non-zero RAO values
   are used does not change the GIST protocol operation, but needs to be
   decided when new NSLPs are registered.)

   The second stage of the analysis is therefore what happens when a
   non-GIST node which implements RAO handling sees a Q-mode packet.
   The RAO specification simply states that "Routers that recognize this
   option shall examine packets carrying it more closely (check the IP
   Protocol field, for example) to determine whether or not further
   processing is necessary."  There are two possible basic behaviours
   for GIST traffic:

Schulzrinne & Hancock    Expires October 4, 2007              [Page 145]

Internet-Draft                    GIST                        April 2007

   1.  The "closer examination" of the packet is sufficiently
       intelligent to realise that the node does not need to process it
       and should forward it.  This could either be by virtue of the
       fact that the node has not been configured to match IP-
       Protocol=UDP for RAO packets at all, or that even if UDP traffic
       is intercepted the port numbers do not match anything locally

   2.  The "closer examination" of the packet identifies it as UDP, and
       delivers it to the UDP stack on the node.  In this case, it can
       no longer be guaranteed to be processed appropriately.  Most
       likely it will simply be dropped or rejected with an ICMP error
       (because there is no GIST process on the destination port to
       deliver it to).

   Analysis of open-source operating system source code shows the first
   type of behaviour, and this has also been seen in direct GIST
   experiments with commercial routers, including the case when they
   process other uses of the RAO (i.e.  RSVP).  However, it has also
   been reported that other RAO implementations will exhibit the second
   type of behaviour.  The consequence of this would be that Q-mode
   packets are blocked in the network and GIST could not be used.  Note
   that although this caused by some subtle details in the RAO
   processing rules, the end result is the same as if the packet was
   simply blocked for other reasons (for example, many IPv4 firewalls
   drop packets with options by default).

   The GIST specification allows two main options for circumventing
   nodes which block Q-mode traffic in IPv4.  Whether to use these
   options is a matter of implementation and configuration choice.

   o  A GIST node can be configured to send Q-mode packets without the
      RAO at all.  This should avoid the above problems, but should only
      be done if it is known that nodes on the path to the receiver are
      able to intercept such packets.  (See Section

   o  If a GIST node can identify exactly where the packets are being
      blocked (e.g. from ICMP messages), or can discover some point on
      the path beyond the blockage (e.g. by use of traceroute or by
      routing table analysis), it can send the Q-mode messages to that
      point using IP-in-IP tunelling without any RAO.  This bypasses the
      input side processing on the blocking node, but picks up normal
      GIST behaviour beyond it.

   If in the light of deployment experience the problem of blocked
   Q-mode traffic turns out to be widespread and these techniques turn
   out to be insufficient, a further possibility is to define an
   alternative Q-mode encapsulation which does not use UDP.  This would

Schulzrinne & Hancock    Expires October 4, 2007              [Page 146]

Internet-Draft                    GIST                        April 2007

   require a specification change.  Such an option would be restricted
   to network-internal use, since operation through NATs and firewalls
   would be much harder with it.

   The situation with IPv6 is rather different, since in that case the
   use of non-zero RAO values is well established in the specification
   ([8]) and an IANA registry exists.  The main problem is that several
   implementations are still immature: for example, some treat any RAO-
   marked packet as though it was for local processing without further
   analysis.  Since this prevents any RAO usage at all (including the
   existing standardised ones) in such a network, it seems reasonable to
   assume that such implementations will be fixed as part of the general
   deployment of IPv6.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 147]

Internet-Draft                    GIST                        April 2007

Appendix D.  Example Routing State Table and Handshake

   Figure 9 shows a signalling scenario for a single flow being managed
   by two signalling applications using the path-coupled message routing
   method.  The flow sender and receiver and one router support both,
   two other routers support one each.  The figure also shows the
   routing state table at node B.

       A                        B          C          D           E
   +------+                  +-----+    +-----+    +-----+    +--------+
   | Flow |    +-+    +-+    |NSLP1|    |NSLP1|    |     |    |  Flow  |
   |Sender|====|R|====|R|====|NSLP2|====|     |====|NSLP2|====|Receiver|
   |      |    +-+    +-+    |GIST |    |GIST |    |GIST |    |        |
   +------+                  +-----+    +-----+    +-----+    +--------+
             Flow Direction ------------------------------>>

   |     Message Routing Information    | Session | NSLPID |  Routing  |
   |                                    |    ID   |        |   State   |
   |    MRM = Path Coupled; Flow ID =   |  0xABCD |  NSLP1 |    IP-A   |
   |   {IP-A, IP-E, proto/ports}; D=up  |         |        |           |
   |                                    |         |        |           |
   |    MRM = Path Coupled; Flow ID =   |  0xABCD |  NSLP1 |   (null)  |
   |  {IP-A, IP-E, proto/ports}; D=down |         |        |           |
   |                                    |         |        |           |
   |    MRM = Path Coupled; Flow ID =   |  0x1234 |  NSLP2 |    IP-A   |
   |   {IP-A, IP-E, proto/ports}; D=up  |         |        |           |
   |                                    |         |        |           |
   |    MRM = Path Coupled; Flow ID =   |  0x1234 |  NSLP2 | Points to |
   |  {IP-A, IP-E, proto/ports}; D=down |         |        |   B-D MA  |

                      Figure 9: A Signalling Scenario

   The upstream state is just the same address for each application.
   For the downstream direction, NSLP1 only requires D-mode messages and
   so no explicit routing state towards C is needed.  NSLP2 requires a
   messaging association for its messages towards node D, and node C
   does not process NSLP2 at all, so the peer state for NSLP2 is a
   pointer to a messaging association that runs directly from B to D.
   Note that E is not visible in the state table (except implicitly in
   the address in the message routing information); routing state is
   stored only for adjacent peers.  (In addition to the peer
   identification, IP hop counts are stored for each peer where the
   state itself if not null; this is not shown in the table.)

   Figure 10 shows a GIST handshake setting up a messaging association

Schulzrinne & Hancock    Expires October 4, 2007              [Page 148]

Internet-Draft                    GIST                        April 2007

   for B-D signalling, with the exchange of Stack Proposals and MA-
   protocol-options in each direction.  The Querying node selects TLS/
   TCP as the stack configuration and sets up the messaging association
   over which it sends the Confirm.

    -------------------------- Query ---------------------------->
    IP(Src=IP#A; Dst=IP#E; RAO for NSLP2); UDP(Src=6789; Dst=GIST)
    Q-mode magic number (0x4e04 bda5)
    GIST(Header(Type=Query; NSLPID=NSLP2; R=1; S=0)
         MRI(MRM=Path-Coupled; Flow=F; Direction=down)
         SessionID(0x1234) NLI(Peer='string1'; IA=IP#B)
         StackProposal(#Proposals=3;1=TLS/TCP; 2=TLS/SCTP; 3=TCP)
         StackConfigurationData(HoldTime=300; #MPO=2;
           TCP(Applicable: all; Data: null)
           SCTP(Applicable: all; Data: null)))

    <---------------------- Response ----------------------------
    IP(Src=IP#D; Dst=IP#B); UDP(Src=GIST; Dst=6789)
    D-mode magic number (0x4e04 bda5)
    GIST(Header(Type=Response; NSLPID=NSLP2; R=1; S=1)
         MRI(MRM=Path-Coupled; Flow=F; Direction=up)
         SessionID(0x1234) NLI(Peer='stringr2', IA=IP#D)
         StackProposal(#Proposals=3; 1=TCP; 2=SCTP; 3=TLS/TCP)
         StackConfigurationData(HoldTime=200; #MPO=3;
           TCP(Applicable: 3; Data: port=6123)
           TCP(Applicable: 1; Data: port=5438)
           SCTP(Applicable: all; Data: port=3333)))

    -------------------------TCP SYN----------------------->
    <----------------------TCP SYN/ACK----------------------
    -------------------------TCP ACK----------------------->
    TCP connect(IP Src=IP#B; IP Dst=IP#D; Src Port=9166; Dst Port=6123)
    <-----------------------TLS INIT----------------------->

    ------------------------ Confirm ---------------------------->
    [Sent within messaging association]
    GIST(Header(Type=Confirm; NSLPID=NSLP2; R=0; S=1)
         MRI(MRM=Path-Coupled; Flow=F; Direction=down)
         SessionID(0x1234) NLI(Peer='string1'; IA=IP#B)
         StackProposal(#Proposals=3; 1=TCP; 2=SCTP; 3=TLS/TCP)

                Figure 10: GIST Handshake Message Sequence

Schulzrinne & Hancock    Expires October 4, 2007              [Page 149]

Internet-Draft                    GIST                        April 2007

Appendix E.  Change History

   Note to the RFC Editor: this appendix to be removed before
   publication as an RFC.

E.1.  Changes in Version -13

   The following changes were made in version 13.  Some are further
   follow ups to IESG review comments.

   1.   Changed the C-mode/D-mode selection rules in Section 4.3.3 to
        make the use of C-mode a SHOULD unless capacity can be
        explicitly engineered.  Also added a reference to this fact in
        the rate control section, Section 5.3.3, and an explanation of
        the effect this has on signalling application behaviour.  [Lars

   2.   Amended the message size limit text in Section 4.3.3 to include
        a check on the first-hop MTU as well as the path MTU and 576
        byte limit.  [Lars Eggert]

   3.   Added 2119 text at the start of Section 5.8 to define the level
        of support required for particular MRMs.

   4.   Added a note at the end of the first paragraph of Section 7.1.4
        to point out the applicability to mobile environments.

   5.   Added the possibility for the InvalidateRoutingState call
        (Appendix B.6) to provide an NSLP payload to support conditional

   6.   Clarified the text in Section 4.4.1 to state that the MA-Hold-
        Time in the Confirm overrides that in the Query, and also
        rewrote part of Section 4.4.5 to make more precise that the MA-
        Hold-Time is the time that a node will keep an MA open, rather
        than the time it requires the peer to keep it open.

   7.   Modified the text on MA multiplexing in Section 5.7.1 to make it
        clear that re-use is allowed if the candidate MA has equivalent
        or better (transport and security) performance as any of the
        options offered in the Query, not that it has to be equivalent
        to all of them.

   8.   Extended the rules about message transmission at the end of
        Section 4.3.3, to point out that absence of routing state may be
        used as trigger for a handshake.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 150]

Internet-Draft                    GIST                        April 2007

   9.   Made the reference to TLS1.0 informational to satisfy nit
        processing rules.

   10.  Added text in Section 5.3.3 to clarify that a node should stop
        its retransmission process on receiving a response to any of its

   11.  Modified the magic number so that it is carried in all D-mode
        message (normal and otherwise), with changes in Section 3.6,
        Section 5.2.1, and Section 5.3 and a new error subcode in
        Appendix A.4.4.1.

E.2.  Changes in Version -12

   The following changes were made in response to IESG review.  The
   changes have been classified into three categories: protocol changes
   (things which would directly affect, technical clarifications, and
   editorial issues.  The name of the reviewer is included with each

   Protocol changes:

   1.   Modified the processing rules for the GIST hop count.  An
        initial check for GHC=0 followed by a decrement is now done on
        the receive side (Section 4.3.1); the local processing
        description in Section 4.3.2 now forces peering (preventing
        bypass) if the GHC has reached zero.  A check is added for a
        valid NSLP-supplied GHC in Section 4.3.3, and this also includes
        the old text from Section 4.3.4 on loop control in NSLPs by
        preserving the GHC.  Section 4.3.3 also includes guidance on how
        to select an initial GHC (referring to IP TTL setting).  A note
        on not retrying if a loop was known to have been formed has been
        removed, and it has been clarified that the mechanism does not
        prevent looping per se, just infinite looping.  [Adrian Farrel]

   2.   Changed the class of the "Endpoint Found" error
        (Appendix A.4.4.7) to Permanent-Failure, to ensure that the
        Querying state machine terminates when it occurs.  [Adrian

   3.   Modified the MA-Hello message (Section 5.1, Section 5.2.2,
        Appendix A.3.8) to include a Hello-ID object which allows the
        correlation of request/response exchanges, and described the
        corresponding processing - that failure to get a response can
        trigger er_MAFailure - in Section 6.4.  Note that the response
        message must have R=0.  [Adrian Farrel, Roland Bless]

Schulzrinne & Hancock    Expires October 4, 2007              [Page 151]

Internet-Draft                    GIST                        April 2007

   4.   Added a new section on Legacy NAT handling in Section 7.2.1
        describing how to detect and respond to such NATs; also re-
        arranged some of the text from old section 1.1 into the start of
        Section 7.2, and added minor details of S flag processing in
        Section 5.2.2, Section 5.3.1, and Section 5.3.2.  [Jari Arkko,
        Brian Carpenter]

   5.   Modified the error message format in Appendix A.4 so that the
        Additional Information fields are carried in proper TLV objects.
        Also created a registry for these objects in Section 9 and
        updated other IANA text about error code registration.  The
        individual error messages now only define the minimum Additional
        Information fields to be carried; their order, and whether to
        carry others, are left open.  [Adrian Farrel]

   6.   Added a magic number to the Q-mode encapsulation in
        Section 5.3.2 to minimise the risk of incorrect interception of
        UDP datagrams as GIST packets, also updating the reception rules
        in Section 4.3.1 and the example in Appendix D.  Also added a
        new Section 3.6 in the overview part explaining the
        architectural impacts of GIST arising from the way that it can
        intercept end to end packets.  [Sam Hartman]

   7.   Extended the analysis of routing state errors to handle cases
        including peer node restarts and malicious traffic (blind
        attacks).  The overall description is now in a dedicated
        Section 4.4.6, with the discussion in Section 5.3.3 simplified
        and corresponding corrections in Section 4.3.2 and Section 6.
        [Adrian Farrel]

   8.   Added a new Section 4.4.2 on the criteria which should be used
        in deciding whether to authorise the creation of a secured MA,
        and pointers in Section 4.4.1 and Section 4.4.3 to when during
        protocol operation those criteria should be invoked.  Also
        updated the text in Section 8.3 to indicate how these
        authorisation checks prevent the on-path or upstream node
        attacks mentioned there.  [Sam Hartman, Russ Housley, Cullen

   9.   Added a new Section to define the algorithm used to
        check names against the database of authorised peers, and noted
        in Section 9 that definition of future channel security
        protocols must provide the same information.  [Sam Hartman, Russ
        Housley, Cullen Jennings]

   10.  Extended the text (mainly in Section 4.3.1, also in
        Section 4.3.4 and Section 9) to be explicit about how the GIST
        specification provides the required message processing rules for

Schulzrinne & Hancock    Expires October 4, 2007              [Page 152]

Internet-Draft                    GIST                        April 2007

        packets carrying the RAO and how this should be called up when
        RAO value assignments are requested by NSLPs.  Also, made the
        prohibition on packet fragmentation in Q-mode absolute in
        Section  Added an informative Appendix C on deployment
        issues with the RAO in IPv4.  [Adrian Farrel]

   11.  Made the NLI present in all Response messages (even those sent
        over an MA as a result of multiplexing).  The NLI is needed
        because it contains the Responding node's value for the routing
        state validity time, and also can be monitored by the Querying
        node for certain classes of route change (e.g. changes in the
        inbound interface at the peer).  [Raised during interoperability

   Technical clarifications:

   1.   Added text in Section 4.3.3 and extended text in Section 4.4.5
        to explain the restrictions on MA usage when in-order delivery
        (for a single SID) is required.  [Lars Eggert]

   2.   Strengthened the text in Section 4.3.3 to be more precise about
        the message size thresholds which cause C mode to be required.
        Also, tidied up related text in Section 5.3.2, Section,
        Section, and Section  [Lars Eggert]

   3.   Added text in Section 3.2 to explain why D-mode is not expected
        to evolve and how such functionality would actually be
        incorporated.  Also added a discussion about how a very simple
        version of some security functions could be added directly to
        D-mode.  [Lars Eggert, Sam Hartman]

   4.   Clarified that the validation checks in Section 4.3.2 must be
        applied in sequence, and re-ordered the sequence of checks to
        prevent carrying out a routing state inventory over a messaging
        association.  [Adrian Farrel]

   5.   Modified Section 4.3.2 to prohibit bypass in the case that the
        node is the endpoint of a flow; correspondingly, clarified the
        routing state table in Section 4.2.1 to eliminate storing null
        state for flow endpoints, and Section 4.3.3 to prevent sending
        messages from a flow endpoint to itself.  [Adrian Farrel]

   6.   Added text in Section 4.4.3 to clarify the uniqueness
        requirement on Peer-Identity, and to note the possibility of
        using the Router-ID as a source for it, with caveats on when
        this may not be sufficient.  [Adrian Farrel]

Schulzrinne & Hancock    Expires October 4, 2007              [Page 153]

Internet-Draft                    GIST                        April 2007

   7.   Clarified the format of the object list in the NAT Traversal
        object (Appendix A.3.9) as containing all 16 bits of the start
        of the object TLV.  [Adrian Farrel]

   8.   Modified the description of TLS usage in Section 5.7.3 to
        clarify that negotiation is performed within TLS, and also using
        RFC4307-style terminology to describe the ciphersuites to be
        supported.  [Russ Housley]

   9.   Strengthened the text in Section 4.3.2 and Section 4.3.4 to
        explain why it is crucial that a node forwarding Query messages
        must not modify them, and give some implementation guidance on
        how to do so.  [Adrian Farrel]

   10.  Modified the description of MA multiplexing with matching Peer-
        Identity and non-matching Interface-Address in Section 4.4.3 to
        indicate that while the non-malicious cases should be rare, the
        malicious case needs to be considered under the general heading
        of denial of service issues, for which the text in Section 8.4
        has been slightly extended.  [Adrian Farrel]

   11.  Refined the text in Section 4.4.4 to clarify that the
        requirement is to have a Query received within the timeout
        period (rather than just to send it), and to provide more
        detailed guidance on how to adapt the timer value if rate
        limiting is impacting the number of Queries that can be sent.
        [Adrian Farrel]

   12.  Moved the text on SID selection from Section 3.7 to a new
        Section 4.1.3 where it is more reasonable for it to be normative
        (as a requirement on the API).  Also added text on residual
        threats in Section 8.7 explaining how GIST depends on the NSLP
        to follow the rules here.  [Sam Hartman]

   13.  Totally restructured the description of Q-mode encapsulation in
        Section 5.3.2, to provide more detailed rules for IP-level
        interception and UDP encapsulation, including a description of
        what IP-layer options are allowed (and how they should be
        handled) and what additional encapsulation layers are not
        allowed.  [Sam Hartman]

   14.  Added discussion of overload protection mechanisms mainly in
        Section 8.4, with supporting text in Section 4.1.1 and
        Section 4.3.2.  [Adrian Farrel]

   15.  Clarified in Section 6.3 that the policy on whether to require a
        Confirm can be changed at a node whenever it likes, but that the
        state machine diagram only covers the simple case where the

Schulzrinne & Hancock    Expires October 4, 2007              [Page 154]

Internet-Draft                    GIST                        April 2007

        policy is fixed when one is in a state waiting for a Confirm in
        the first place.  [Adrian Farrel]

   16.  Clarified when the R flag should be set in Responses, added a
        rule for receiving a Confirm in Established state, and clarified
        when to_Expire_RNode can occur in Section 6.3.  [Adrian Farrel]

   17.  Added text in Section 6.4 explaining what other actions should
        be taken when a messaging association fails.  [Adrian Farrel]

   18.  Extended the text in Section 4.3.1 to explain the different
        significance of the RAO and NSLPID values in a Q-mode message.
        [Lisa Dusseault]

   19.  Modified the route change discussion in Section 7.1, adding a
        new Section 7.1.4 covering the possibility that there may be
        multiple routes in use in parallel (either because of load
        splitting or very rapid route flapping).  The new subsection
        includes some of the text from the old section 1.1, and also
        introduces the SII concept.  [Brian Carpenter, Cullen Jennings]

   Editorial issues:

   1.   Merged together the two subsections in Section 5.4 and removed
        the old figure.  The section apparently caused confusion between
        C- and D-mode and was in any case technically incorrect for the
        case of TCP.  [Lars Eggert]

   2.   Added a note in Section 3.1 to clarify that the actual set of
        allowed protocol combinations is in Section 5.7 and that this
        section is only for conceptual guidance.  Also modified the
        diagram to indicate that both TLS and DTLS are possible
        instantiations of Transport Layer Security, and removed
        references to DTLS in Section 5.7.3, instead clarifying in
        Section 9 that defining new MA-Protocol-IDs requires the
        definition of any interactions with existing options.  [Lars
        Eggert, Russ Housley, Lisa Dusseault]

   3.   Retitled Section 7 from 'Advanced' to 'Additional'.  Some of the
        features were felt not to be so advanced.  [Lars Eggert]

   4.   Use British English consistently (this affects only the word
        'signalling' and its associates).  [Lars Eggert]

   5.   Eliminated the term 'primary key' from the description of the
        routing state table in Section 4.2.1.  [Adrian Farrel]

Schulzrinne & Hancock    Expires October 4, 2007              [Page 155]

Internet-Draft                    GIST                        April 2007

   6.   Clarified what determines whether Q-mode messages have a Router
        Alert Option in their IP encapsulation in Section 4.3.1.
        [Adrian Farrel]

   7.   Clarified how routing state table entries are created in
        Section 4.2.1 by adding a reference to the handshake sections
        [Adrian Farrel]

   8.   Added a reference in Section 4.1.2 to the authentication section
        (Section 8.2) to indicate the origin of the keying material
        [Adrian Farrel]

   9.   Re-wrote the start of Section 4.1 to clarify that the interface
        definition itself is non-normative.  [Adrian Farrel]

   10.  Eliminated the RFC2119 words in Section 3, since these related
        to NSLP behaviour or related node configuration requirements.
        [Adrian Farrel]

   11.  Modified the text in Section 3.7 to clarify that the SID really
        is the responsibility of the NSLP to chose, maintain along the
        path, and enforce uniqueness of.  [Adrian Farrel]

   12.  Deleted the word 'policy' in Section 4.3.2; the interaction is
        with the signalling application itself, not the signalling
        application policy.  [Adrian Farrel]

   13.  Added a note in Section 4.3.4 that directly addressed messages
        shouldn't be received at nodes without the NSLP during normal
        operation (i.e. that this is not impossible, it's just not
        expected).  [Adrian Farrel]

   14.  Modified the text at the start of Section 4.4 to make it clear
        that messaging associations have an independent lifecycle from
        routing state once they have been created.  [Adrian Farrel]

   15.  Modified the text in Section 4.4.3 to describe use of an MA for
        multiple items of routing state as multiplexing rather than re-
        use; changed some of the other uses of the term 're-use' to
        multiplexing also.  [Adrian Farrel]

   16.  Expanded the definition of the D flag in Appendix A.3.1.2 to
        give an interpretation for the values 0 and 1.  [Adrian Farrel]

   17.  Deleted the confusing terms 'Upper Layer' and 'Higher Layer' in
        the description of the MA-Protocol-ID registry, Section 9.
        [Adrian Farrel]

Schulzrinne & Hancock    Expires October 4, 2007              [Page 156]

Internet-Draft                    GIST                        April 2007

   18.  Added text in Section 1 highlighting the importance of the
        framework and threats document as background reading for this
        specification.  [Adrian Farrel, Cullen Jennings]

   19.  Clarified the padding issues for NSLP-Data in Appendix A.3.10;
        the NSLP itself provides and receives data which is already
        aligned on 32-bit boundaries.  [Adrian Farrel]

   20.  Added a note on the Stack-Configuration-Data object
        (Appendix A.3.5) that the format allows the MPO-Count to be
        zero.  [Adrian Farrel]

   21.  Clarified that profiles in the Stack-Proposal object
        (Appendix A.3.4) must be non-empty; an error is raised for
        either empty profiles or an empty list of profiles.  Also, that
        pad bytes must be ignored.  [Adrian Farrel]

   22.  Clarified the syntax of the Confirm message including how it
        depends on when and how it is sent.  In particular,
        Section 4.4.1 now states that the first Confirm MUST contain the
        abbreviated SCD, and Section 4.4.5 covers the error case if the
        object is missing.  The description of the Confirm in
        Section 5.1 has been re-written, and the format of the SCD in
        Appendix A.3.5 emphasises that the time is given in milliseconds
        and that the value 0 is reserved.  [Adrian Farrel, Roland Bless]

   23.  Modified the text in Section 6.4 to explain and motivate the
        differences between the various MA states and the logic for
        transitions between them; in particular, turned the Connected ->
        Idle transition into one driven by policy rather then directly
        by timers.  Clarified that the value 0 for MA-Hold-Time is
        reserved in Appendix A.3.5, and also emphasised that the format
        carries a value in milliseconds.  [Adrian Farrel, Roland Bless]

   24.  Clarified that the value 0 for Routing-State Validity time is
        reserved and must not be used.  [Adrian Farrel]

   25.  Updated the text in Appendix A to use RFC2119 language
        correctly.  [Adrian Farrel]

   26.  Clarified the text on extensibility in Appendix A.2.1 to explain
        that adding new non-mandatory objects should not change the
        interaction with NSLPs.  [Adrian Farrel]

   27.  Updated the text in Appendix A.3.1.1 to clarify under what
        circumstances various combinations of flags can be set, and to
        indicate what error message should be returned if the rules are
        violated.  [Adrian Farrel]

Schulzrinne & Hancock    Expires October 4, 2007              [Page 157]

Internet-Draft                    GIST                        April 2007

   28.  Added a reference to the working group state machine draft in
        Section 6.  [Adrian Farrel]

   29.  Added a reference to the framework for the origin of the
        assumption about signalling application behaviour supporting re-
        routing in Section 7.1.1.  [Adrian Farrel]

   30.  Extended the description of the meaning of the 'Reserved' blocks
        in the IANA considerations (Section 9).  [Adrian Farrel]

   31.  Clarified in Section 9 that the information needed to justify
        certain registrations needs to be in the separate specfication
        document (rather than in the registry itself).  [Adrian Farrel]

   32.  Clarified the required information to accompany the registration
        of a new error in Section 9.  [Adrian Farrel]

   33.  Added a note in Section 4.4.5 that the MA-Hello request/response
        diagnostic can be used for MA protocol failure detection.
        [Adrian Farrel]

   34.  Added a note in Section 4.4.5 to indicate that the MA-Hold-Time
        setting can take NSLP behaviour (e.g. refresh timers) into
        account.  [Adrian Farrel]

   35.  Rephrased the description of the case of colliding peer-identity
        and interface-address in Section 4.4.3 including a forward
        reference to Section 8.7 for the case of on-path attacks.
        [Adrian Farrel]

   36.  Added clarification in Section 4.4.1 about how the Querying node
        knows when downstream routing state has been installed, and
        included a forward pointer from Section 3.4.  [Adrian Farrel]

   37.  Expanded the rationale for the use of UDP for D-mode in
        Section 3.2 (that it is at least partly NAT-friendly).  [Adrian

   38.  Expanded the rationale for the existence of C-mode in
        Section 3.2.  [Adrian Farrel]

   39.  Added a definition for [message] routing in Section 2,
        distinguishing it from normal IP routing; qualified the term
        'routing' in other parts of the document, where this could be
        ambiguous.  [Adrian Farrel]

   40.  Modified the text in step 5 of the example in Section 3.10 to
        make it clear that the forwarding between successive hops is a

Schulzrinne & Hancock    Expires October 4, 2007              [Page 158]

Internet-Draft                    GIST                        April 2007

        signalling application rather than a GIST responsibility.  [Sam
        Hartman, Lisa Dusseault]

   41.  Modified the text in Section 3.10, Section 5.7.3, and
        Appendix B.1 to make it clear that 'security' is not a simple
        true/false attribute.  (The more detailed text on message
        transfer attributes elsewhere already made this distinction.)
        [Sam Hartman]

   42.  Added a note to the end of Section 1 pointing more strongly to
        the NSIS extensibility document for general guidelines on
        protocol extensibility.  [Sam Hartman]

   43.  Added a note at the start of Section 7.2 to highlight the
        relationship of the various NAT traversal solutions for GIST to
        the IETF BCP on NAT traversal.  [Sam Hartman]

   44.  Modified the description of upstream node attacks in Section 3.7
        and Section 8.3 to clarify that the effect would be to disrupt
        the signalling flow rather than the traffic flow itself.  [Sam

   45.  Removed old section 5.7.4 on alternative channel security
        protocols, and created a new Section 3.9 describing the security
        services that GIST requires and where it depends on the channel
        security protocol to provide them.  [Russ Housley]

   46.  Modified some of the text in Section 1 about the meaning of the
        term "path-coupled", and also noted in Section 3.3 the future
        flexibility about defining alternative probe methods.  [Adrian

   47.  Modified Section 1 to leave open the concept of using GIST for
        multicast in certain circumstances.  [Adrian Farrel]

   48.  Added a new Section 3.5 introducing the peering concept in more
        detail, removing some of the related terminology details and
        providing forward pointers to the relevant normative sections.
        [Ted Hardie]

   49.  Modified the start of the example (Section 3.10) to be clear
        that it covers just a single segment of the path.  [Lisa

   50.  Modified the end of Section 3.2 to clarify that there is no
        semantic relationship between the MA and flow concepts.  [Lisa

Schulzrinne & Hancock    Expires October 4, 2007              [Page 159]

Internet-Draft                    GIST                        April 2007

   51.  Extended the definition of D-mode in Section 3.2 to introduce
        Query-mode at the same time.  [Lisa Dusseault]

   52.  Rewrote the start and end of Section 4.3.2 to clarify that the
        scope of the discussion is the interaction with the NSLP, and
        that only the description of the GIST internal processing is
        deferred to a later section.  [Lisa Dusseault]

   53.  Modified the text at the end of Section 4.3.3 to be clear about
        which options use Q-mode and which do on.  [Lisa Dusseault]

   54.  Modified the labelling in Figure 4 to avoid the label 'Q-node'
        etc. (could cause confusion with Q-mode).  [Lisa Dusseault]

   55.  Split the old section on state maintenance into Section 4.4.4
        and Section 4.4.5 to avoid confusion between the two types of
        operation.  [Lisa Dusseault]

   Various other minor editorial corrections have also been made.

E.3.  Changes In Version -11

   1.   Added some text in Section 1 to clarify the scope of GIST
        applicability with non-path-coupled message routing methods.

   2.   Loosened the text about the Query encapsulation to indicate that
        a Router Alert Option is needed for all the current message
        routing methods but not necessarily for future ones.

   3.   Clarified the rules for deriving protocol encapsulation
        addresses for the Response and other messages in Section 4.4.1
        and Section 5.3.1.

   4.   Updated the ABNF and message descriptions in Section 3.4 to
        cover the case of NAT traversal for stateless data messages;
        also minor changes in Section 7.2.

   5.   Re-corrected the timeout processing rules in Section 6.4 (update
        in version 10 changed rule 3 but should have changed rule 4).
        In addition, the rule 3 processing is made conditional on the
        state (i.e. split) since different timers are running in the two

   6.   Clarified that the E flag can only be set on Data messages, and
        added notes to the flag description in Section 7.1.5 and the
        format description in Appendix A.1.  Also, included a new error
        condition to cover incorrect setting in Appendix A.4.4.1.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 160]

Internet-Draft                    GIST                        April 2007

   7.   Clarified the text in Section 8.4 to note the issues about
        Response size contributing to reflection attacks, and also the
        defence against various forms of message spoofing in
        Section 8.5.

   8.   Stated that MA-Protocol-ID value 0 is reserved (not allocated)
        in Section 9.

   9.   Clarified the units (bytes, 32-bit words) for all length fields
        in Appendix A.

   10.  Clarified that the restriction on the D flag value for the
        loose-end MRM applies only to Q-mode messages in
        Appendix A.3.1.2.

   11.  Added the Hold Time to the example in Appendix D.

E.4.  Changes In Version -10

   1.   Added further guidance on parameter setting for initial backoff
        and rate control for D-mode to Section 5.3.3 [AD review comment

   2.   Rephrased the end of Section 8.6 to highlight the threat left
        open when the Querying node does not apply a strong security
        policy to offered Stack-Proposal [AD review comment M2].

   3.   Clarified in Section 7.2 that although NAT behaviour is only
        informatively described in this specification, it is being
        defined in a separate document [AD review M3].

   4.   Strengthened and clarified the reference to the extensibility
        document for technical guidance on codepoint allocation, and
        made the reference normative.  Added rationale for the
        'Reserved' blocks in the various registries, and added further
        notes on what information must be provided to support an
        allocation request [AD review comment M4].

   5.   Fixed an identifier collision in the ABNF for the GIST messages
        in Section 5.2.2 (Common-Header in the message header and
        common-header as a payload in error messages) and re-verified
        the ABNF [AD review comment L1].

   6.   Clarified the text in Section 3.3 about the impact on NATs of
        defining a new MRM, referring to the specification split
        described in Section 7.2.3.  Also added a flag to the MRM format
        (Appendix A.3.1) to denote MRIs which do not contain network or
        transport addresses, and made more specific the error message to

Schulzrinne & Hancock    Expires October 4, 2007              [Page 161]

Internet-Draft                    GIST                        April 2007

        be returned if a NAT does not understand an MRM in Section 7.2.2
        [AD review comment L2].

   7.   Added discussion in Section 4.1.2 on delivery failure detected
        for reliable messaging in general, and for the case of Forwards-
        TCP in particular in Section 5.7.2.  Also noted that this needs
        to be considered for future MA-Protocol-IDs used for reliable
        messaging (Section 9) [AD review comment L3].

   8.   Added clarifying text to Section 5.1 on what it means to invert
        the direction of an MRI [AD review comment L5].

   9.   Enhanced the format descriptions in Appendix A to include
        descriptions of all message and object fields and also field
        lengths [AD review comment L6].

   10.  Added more explanation in Section 5.2.2 of how a message
        direction is defined, in particular in the context of TTL
        measurement [AD review comment L7].

   11.  Added a new explanation of why a well-known port is needed for
        the query encapsulation in Section 5.3.2 [AD review comment L8].

   12.  Added a note that DCCP does not provide reliability in
        Section 5.4 [AD review comment L9].

   13.  Clarified the rules on how long to retain stack configuration
        data in Section 5.7.1 and included a default timer value [AD
        review comment L10].

   14.  Modified the text about stack-proposal verification as part of
        downgrade protection in Section 5.7.1, to clarify that the MUST
        applies directly to the object verification itself; also noted
        the action to be taken in case of a failed verification [AD
        review comment L11].

   15.  Added further information on the addressing used in opening a
        forwards-TCP connection in Section 5.7.2 [AD review comment

   16.  Modified the text in Section to say that using the
        signalling source address is a consequence of setting DF itself
        rather than why DF was set in the first place; also weakened the
        instruction from MUST to SHOULD [AD review comment L14].

   17.  Added further clarification of why routing state installed by a
        downstream Query should supersede that from an upstream Query in
        Section [AD review comment L15].

Schulzrinne & Hancock    Expires October 4, 2007              [Page 162]

Internet-Draft                    GIST                        April 2007

   18.  Corrected a timer in the Messaging Association state machine
        (Section 6.4) from NoHello to SendHello.  Also, added default
        values for MA-Hold-Time and route change probe frequency, and
        explanatory text for each, to Section 4.4.4 and Section 4.4.5
        [AD review comment L16].

   19.  Re-arranged the text in Section 7.2 to highlight the rules about
        precisely which messages are and are not translated in a GIST-
        specific way by NATs [AD review comment L19].

   20.  Explicitly noted that 'r' bits are also reserved in Appendix A.2
        [AD review comment L20].

   21.  Added an error condition for processing messages which have the
        extensibility flags AB set to 11 in Appendix A.2.1 [AD review
        comment L21].

   22.  Fixed the table of MRM identifiers in Section 9 so the field
        name matches that in Appendix A.3.1 [AD review comment L22].

   23.  Clarified why only D=0 is valid for the loose-end MRM in
        Appendix A.3.1.2 [AD review comment L23].

   24.  Clarified the rules about processing the NAT traversal object in
        Appendix A.3.9 to cover the case where there are several NATs
        along the path with different capabilities [AD review comment

   25.  Strengthened the text in Appendix A.4.1 to be clearer about what
        additional information fields must be included in error messages
        [AD review comment L25].

   26.  Tidied up the use of acronyms throughout the document, including
        adding some to the terminology list in Section 2 [AD review
        comment N1].

   27.  Added references to RFC4086 and updated 2119 language for
        cryptographic randomness of SIDs and cookies in Section 3.7 and
        Section 8.5 respectively [AD review comment N2].

   28.  Modified the transition labelling in Figure 7 to make it clearer
        that in the Established-Established transition, the
        [!confirmRequired] qualification applies only to the rx_Query
        case [AD review comment N4].

   29.  Added a reference for OSPF in Section 7.1.2 [AD review comment

Schulzrinne & Hancock    Expires October 4, 2007              [Page 163]

Internet-Draft                    GIST                        April 2007

   30.  Changed NAT terminology from public/private to external/internal
        to match BEHAVE usage in Section 7.2 and Section 7.4 [AD review
        comment N6].

   31.  Updated a number of i-d references to published RFCs or working
        group documents [AD review comment N7 partial].

   32.  Fixed rfc2119 capitalisation of MUST not in Appendix A.3.5 [AD
        review comment N8].

   33.  Fixed an error subcode name from 'Invalid Object' to 'Invalid
        Object Type' in Appendix A.4.4.9 [AD review comment N9].

   34.  Added the NTO to the GIST message ABNF in Section 5.1 and
        updated the forward reference to the NAT traversal section
        [tracker issue 104].

   35.  Removed a spurious rule about creating listening MAs in
        Section 6.3 and strengthened the rules about needing to have
        these available but with an open policy on when to create and
        destroy them in Section 5.7.1 [tracker issue 105].

   36.  Added text that limits the applicability of the private/
        experimental space to closed network environments [tracker issue

   37.  Added text in Section 7.1.5 encouraging GIST to use a single SII
        across multiple sessions if possible to allow signalling
        application aggregation [tracker issue 107].

   38.  Specified that this document would define GIST version 1 in
        Section 5.2.1 [tracker issue 108].

   39.  Added the ability for RecvMessage to pass up interface
        attributes in Appendix B.2 [tracker issue 110].

   40.  Added additional text on rules for selecting stack proposals and
        MA re-use in Section 5.7.1 to ensure that re-used associations
        have properties that the Querying node actually needs [tracker
        issue 111].

   41.  Added a brief introduction to the GIST message types in a new
        Section 3.4.

   In addition, the following AD review comments did not lead to text
   changes.  See the mailing list discussion at

Schulzrinne & Hancock    Expires October 4, 2007              [Page 164]

Internet-Draft                    GIST                        April 2007

   L4:  Direct use of PMTUD by GIST.

   L13:  Use of TLS 1.0 rather than 1.1.

   L17:  Guidance on NSLP behaviour during rerouting,

   L18:  Behaviour of GIST-unaware NATs.

   N3:  Node state machine logic.

E.5.  Changes In Version -09

   1.   Added a new Section 3.8 clarifying the relationship between
        signalling applications and NSLPIDs; modified terminology in the
        remainder of the document likewise.

   2.   Added a new Section 8.6 explaining the rationale behind the
        downgrade attack prevention mechanism.

   3.   Re-wrote parts of Section 4.3.2, Section 6.1 and Appendix B.2 to
        clarify the way that GIST is assumed to interact with signalling
        applications to exercise policy control over whether or not two
        nodes become signalling peers during a GIST handshake.

   4.   Generalised an error message Appendix A.4.4.12 to cover
        additional MRI validation checks in Section 4.3.4 and

   5.   Allowed an optional Stack-Configuration-Data object in Confirm
        messages to allow messaging association lifetime to be
        negotiated even in the case of late state installation at the
        Responding node (see Section 4.4.1 and Section 4.4.5).

   6.   Removed the option in Section 4.4.3 of allowing a node to treat
        messaging associations with the same authenticated end points as

   7.   Include additional guidance in Section 4.4.4 to prevent routing
        state being erroneously refreshed in the case of rerouting
        events; also included general guidance notes on timer setting.

   8.   Clarified that the Stack-Proposal lists protocols in top-to-
        bottom order (see Section 5.7.1).

   9.   Enhanced the definition of TLS usage in Section 5.7.3 with
        details on ciphersuite requirements and authentication methods.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 165]

Internet-Draft                    GIST                        April 2007

   10.  Tidied up terminology and discussion of how protocol options
        data is carried in the SCD; renamed higher-layer-addressing to

E.6.  Changes In Version -08

   1.   Changed the protocol name from GIMPS to GIST (everywhere).

   2.   Inserted RFC2119 language (MUST etc.) in the appropriate places.

   3.   Added references to the actions to be taken in various error
        conditions, including the error messages to be send

   4.   Added legacy NAT traversal to the list of excluded functions in
        old section 1.1.

   5.   Included some text at the end of Section 3.3 analysing the case
        of a GIST node which does not support a particular MRM.

   6.   Added a flag to mark when messages have been explicitly routed,
        so they can bypass validation against current routing state (see
        Section 4.3.1).

   7.   Re-wrote the discussion in Section 4.3.4 to cover all cases of
        nodes not hosting an NSLP (including end systems), in particular
        the validations that can be performed at intermediate GIST nodes
        (this replaces the old section 7.2).

   8.   Clarified the rules about R and S flag setting in the common
        header and D flag in the MRI (Section 5).

   9.   Included discussion of how a node with a choice of interfaces or
        IP versions should select one to use in the NLI (Section 5.2.2).

   10.  Modified the description of messaging association protocol
        selections (Section 5.7 and elsewhere) to clarify that this is
        essentially capability discovery rather than an open ended
        protocol negotiation.

   11.  Modified the description of how higher layer addressing
        information is carried (Section 5.7.1 and Appendix A.3.5) to
        allow the data to be tagged against a specific profile if
        necessary, or omitted if the protocol does not need it.

   12.  Added a higher layer protocol definition for TLS in
        Section 5.7.3.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 166]

Internet-Draft                    GIST                        April 2007

   13.  Simplified and restructured the state machine presentation in
        Section 6, in particular using a single list for the events and
        eliminating the transition tables.  Also modified the operation
        of the Responder machine to handle retransmitted Query messages

   14.  Re-wrote the route change handling text in Section 7.1 to
        clarify the relative responsibilities of GIST and NSLPs and
        their interaction through the API.  Notifications are now
        assumed to be a signalling application responsibility, and GIST
        behaviour is defined in terms of handling changes in a 3-state
        model of the correctness of the routing state for each

   15.  Updated the NAT traversal description in Section 7.2, including
        normative text about how GIST nodes should handle messages
        containing NAT-Traversal objects.

   16.  Likewise, clarified that the responsibility for session/flow
        binding in the case of tunnelling is handled by NSLPs
        (Section 7.3).

   17.  Formalised the IANA considerations (Section 9).

   18.  Extended the routing state example (Appendix D) to include a
        message sequence for association setup.

   19.  Re-arranged the sequence of sections, including placing this
        change history at the end.

E.7.  Changes In Version -07

   1.  The open issues section has finally been removed in favour of the
       authoritative list of open issues in an online issue tracker at h

   2.  Clarified terminology on peering and adjacencies that there may
       be NSIS nodes between GIMPS peers that do some message
       processing, but that are not explicitly visible in the peer state

   3.  Added a description of the loose-end MRM (Section 5.8.2 and
       Appendix A.3.1.2).

   4.  Added a description of an upstream Query encapsulation for the
       path-coupled MRM, Section, including rationale for and
       restrictions on its use.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 167]

Internet-Draft                    GIST                        April 2007

   5.  The formal description of the protocol in Section 6 has been
       significantly updated and extended in terms of detail.

   6.  Modified the description of the interaction between NSLPs and
       GIMPS for handling inbound messages for which no routing state
       exists, to allow the NSLP to indicate whether state setup should
       proceed and to provide NSLP payloads for the Response or
       forwarded message (Section 3.10, Section 4.3.2 and Appendix B).

   7.  Included new text, Section 5.6, on the processing and
       encapsulation of error messages.  Also added formats and an error
       message catalogue in Appendix A.4, including a modified format
       for the overall GIMPS-Error message and the GIMPS-Error-Data

   8.  Removed the old section 5.3.3 on NSLPID/RAO setting on the
       assumption that this will be covered in the extensibility

   9.  Included a number of other minor corrections and clarifications.

E.8.  Changes In Version -06

   Version -06 does not introduce any major structural changes to the
   protocol definition, although it does clarify a number of details and
   resolve some outstanding open issues.  The primary changes are as

   1.   Added a new high level Section 3.3 which gathers together the
        various aspects of the message routing method concept.

   2.   Added a new high level Section 3.7 which explains the concept
        and significance of the session identifier.  Also clarified that
        the routing state always depends on the session identifier.

   3.   Added notes about the level of address validation performed by
        GIMPS in Section 4.1.2 and extensions to the API in Appendix B.

   4.   Split the old Node-Addressing object into a Network-Layer-
        Information object and Stack-Configuration-Data object.  The
        former refers to basic information about a node, and the latter
        carries information about messaging association configuration.
        Redefined the content of the various handshake messages
        accordingly in Section 4.4.1 and Section 5.1.

   5.   Re-wrote Section 4.4.4 and Section 4.4.5 to clarify the rules on
        refresh and purge of routing state and messaging associations.
        Also, moved the routing state lifetime into the Network-Layer-

Schulzrinne & Hancock    Expires October 4, 2007              [Page 168]

Internet-Draft                    GIST                        April 2007

        Information object and added a messaging association lifetime to
        the Stack- Configuration-Data object (Section 5.2).

   6.   Added specific message types for errors and MA-Refresh in
        Section 5.1.  The error object is now GIMPS-specific
        (Appendix A.4.1).

   7.   Moved the Flow-Identifier information about the message routing
        method from the general description of the object to the path-
        coupled MRM section (Section, and made a number of
        clarifications to the bit format (Appendix A.3.1.1).

   8.   Removed text about assumptions on the version numbering of
        NSLPs, and restricted the scope of the description of TLV object
        formats and extensibility flags to GIMPS rather than the whole
        of NSIS (Appendix A).

   9.   Added a new Section 5.5 explaining the possible relationships
        between message types and encapsulation formats.

   10.  Added a new Section 6 in outline form, to capture the formal
        specification of the protocol operation.

   11.  Added new security sections on cookie requirements (Section 8.5)
        and residual threats (Section 8.7).

E.9.  Changes In Version -05

   Version -05 reformulates the specification, to describe routing state
   maintenance in terms of exchanging explicitly identified Query/
   Response/Confirm messages, leaving the upstream/downstream
   distinction as a specific detail of how Query messages are
   encapsulated.  This necessitated widespread changes in the
   specification text, especially Section 4.2.1, Section 4.4,
   Section 5.1 and Section 5.3 (although the actual message sequences
   are unchanged).  A number of other issues, especially in the area of
   message encapsulation, have also been closed.  The main changes are
   the following:

   1.   Added a reference to an individual draft on the Loose End MRM as
        a concrete example of an alternative message routing method.

   2.   Added further text (particularly in Section 2) on what GIMPS
        means by the concept of 'session'.

   3.   Firmed up the selection of UDP as the encapsulation choice for
        D-mode, removing the open issue on this topic.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 169]

Internet-Draft                    GIST                        April 2007

   4.   Defined the interaction between GIMPS and signalling
        applications for communicating about the cryptographic security
        properties of how a message will be sent or has been received
        (see Section 4.1.2 and Appendix B).

   5.   Closed the issue on whether Query messages should use the
        signalling or flow source address in the IP header; both options
        are allowed by local policy and a flag in the common header
        indicates which was used.  (See Section

   6.   Added the necessary information elements to allow the IP hop
        count between adjacent GIMPS peers to be measures and reported.
        (See Section 5.2.2 and Appendix A.3.3.)

   7.   The old open-issue text on selection of IP router alert option
        values has been moved into the main specification to capture the
        technical considerations that should be used in assigning such
        values (in old section 5.3.3).

   8.   Resolved the open issue on lost Confirm messages by allowing a
        choice of timer-based retransmission of the Response, or an
        error message from the responding node which causes the
        retransmission of the Confirm (see Section 5.3.3).

   9.   Closed the open issue on support for message scoping (this is
        now assumed to be a NSLP function).

   10.  Moved the authoritative text for most of the remaining open
        issues to an online issue tracker.

E.10.  Changes In Version -04

   Version -04 includes mainly clarifications of detail and extensions
   in particular technical areas, in part to support ongoing
   implementation work.  The main details are as follows:

   1.   Substantially updated Section 4, in particular clarifying the
        rules on what messages are sent when and with what payloads
        during routing and messaging association setup, and also adding
        some further text on message transfer attributes.

   2.   The description of messaging association protocol setup
        including the related object formats has been centralised in a
        new Section 5.7, removing the old Section 6.6 and also closing
        old open issues 8.5 and 8.6.

   3.   Made a number of detailed changes in the message format
        definitions (Appendix A), as well as incorporating initial rules

Schulzrinne & Hancock    Expires October 4, 2007              [Page 170]

Internet-Draft                    GIST                        April 2007

        for encoding message extensibility information.  Also included
        explicit formats for a general purpose Error object, and the
        objects used to discover supported messaging association
        protocols.  Updated the corresponding open issues section (old
        section 9.3) with a new item on NSLP versioning.

   4.   Updated the GIMPS API (Appendix B), including more precision on
        message transfer attributes, making the NSLP hint about storing
        reverse path state a return value rather than a separate
        primitive, and adding a new primitive to allow signalling
        applications to invalidate GIMPS routing state.  Also, added a
        new parameter to SendMessage to allow signalling applications to
        'bypass' a message statelessly, preserving the source of an
        input message.

   5.   Added an outline for the future content of an IANA
        considerations section (Section 9).  Currently, this is
        restricted to identifying the registries and allocations
        required, without defining the allocation policies and other
        considerations involved.

   6.   Shortened the background design discussion in Section 3.

   7.   Made some clarifications in the terminology section relating to
        how the use of C-mode does and does not mandate the use of
        transport or security protection.

   8.   The ABNF for message formats in Section 5.1 has been re-written
        with a grammar structured around message purpose rather than
        message direction, and additional explanation added to the
        information element descriptions in Section 5.2.

   9.   The description of the D-mode transport in Section 5.3 has been
        updated.  The encapsulation rules (covering IP addressing and
        UDP port allocation) have been corrected, and a new subsection
        on message retransmission and rate limiting has been added,
        superseding the old open issue on the same subject (section

   10.  A new open issue on IP TTL measurement to detect non-GIMPS
        capable hops has been added (old section 9.5).

E.11.  Changes In Version -03

   Version -03 includes a number of minor clarifications and extensions
   compared to version -02, including more details of the GIMPS API and
   messaging association setup and the node addressing object.  The full
   list of changes is as follows:

Schulzrinne & Hancock    Expires October 4, 2007              [Page 171]

Internet-Draft                    GIST                        April 2007

   1.  Added a new section pinning down more formally the interaction
       between GIMPS and signalling applications (Section 4.1), in
       particular the message transfer attributes that signalling
       applications can use to control GIMPS (Section 4.1.2).

   2.  Added a new open issue identifying where the interaction between
       the security properties of GIMPS and the security requirements of
       signalling applications should be identified (old section 9.10).

   3.  Added some more text in Section 4.2.1 to clarify that GIMPS has
       the (sole) responsibility for generating the messages that
       refresh message routing state.

   4.  Added more clarifying text and table to GHC and IP TTL handling
       discussion of Section 4.3.4.

   5.  Split Section 4.4 into subsections for different scenarios, and
       added more detail on Node-Addressing object content and use to
       handle the case where association re-use is possible in
       Section 4.4.3.

   6.  Added strawman object formats for Node-Addressing and Stack-
       Proposal objects in Section 5.1 and Appendix A.

   7.  Added more detail on the bundling possibilities and appropriate
       configurations for various transport protocols in Section 5.4.

   8.  Included some more details on NAT traversal in Section 7.2,
       including a new object to carry the untranslated address-bearing
       payloads, the NAT-Traversal object.

   9.  Expanded the open issue discussion in old section 9.3 to include
       an outline set of extensibility flags.

E.12.  Changes In Version -02

   Version -02 does not represent any radical change in design or
   structure from version -01; the emphasis has been on adding details
   in some specific areas and incorporation of comments, including early
   review comments.  The full list of changes is as follows:

   1.   Added a new section 1.1 (since removed in version 12) which
        summarises restrictions on scope and applicability; some
        corresponding changes in terminology in Section 2.

   2.   Closed the open issue on including explicit GIMPS state teardown
        functionality.  On balance, it seems that the difficulty of
        specifying this correctly (especially taking account of the

Schulzrinne & Hancock    Expires October 4, 2007              [Page 172]

Internet-Draft                    GIST                        April 2007

        security issues in all scenarios) is not matched by the saving
        of state enabled.

   3.   Removed the option of a special class of message transfer for
        reliable delivery of a single message.  This can be implemented
        (inefficiently) as a degenerate case of C-mode if required.

   4.   Extended Appendix A with a general discussion of rules for
        message and object formats across GIMPS and other NSLPs.  Some
        remaining open issues are noted in old section 9.3 (since

   5.   Updated the discussion of RAO/NSLPID relationships to take into
        account the proposed message formats and rules for allocation of
        NSLP id, and propose considerations for allocation of RAO

   6.   Modified the description of the information used to route
        messages (first given in Section 4.2.1 but also throughout the
        document).  Previously this was related directly to the flow
        identification and described as the Flow-Routing-Information.
        Now, this has been renamed Message-Routing-Information, and
        identifies a message routing method and any associated

   7.   Modified the text in Section 4.3 and elsewhere to impose sanity
        checks on the Message-Routing-Information carried in C-mode
        messages, including the case where these messages are part of a
        GIMPS-Query/Response exchange.

   8.   Added rules for message forwarding to prevent message looping in
        a new Section 4.3.4, including rules on IP TTL and GIMPS hop
        count processing.  These take into account the new RAO
        considerations described above.

   9.   Added an outline mechanism for messaging association protocol
        stack setup, with the details in a new Section 6.6 and other
        changes in Section 4.4 and the various sections on message

   10.  Removed the open issue on whether storing reverse routing state
        is mandatory or optional.  This is now explicit in the API
        (under the control of the local NSLP).

   11.  Added an informative annex describing an abstract API between
        GIMPS and NSLPs in Appendix B.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 173]

Internet-Draft                    GIST                        April 2007

E.13.  Changes In Version -01

   The major change in version -01 is the elimination of
   'intermediaries', i.e. imposing the constraint that signalling
   application peers are also GIMPS peers.  This has the consequence
   that if a signalling application wishes to use two classes of
   signalling transport for a given flow, maybe reaching different
   subsets of nodes, it must do so by running different signalling
   sessions; and it also means that signalling adaptations for passing
   through NATs which are not signalling application aware must be
   carried out in D-mode.  On the other hand, it allows the elimination
   of significant complexity in the C-mode handling and also various
   other protocol features (such as general route recording).

   The full set of changes is as follows:

   1.   Added a worked example in Section 3.10.

   2.   Stated that nodes which do not implement the signalling
        application should bypass the message (Section 4.3).

   3.   Decoupled the state handling logic for routing state and
        messaging association state in Section 4.4.  Also, allow
        messaging associations to be used immediately in both directions
        once they are opened.

   4.   Added simple ABNF for the various GIMPS message types in a new
        Section 5.1, and more details of the common header and each
        object in Section 5.2, including bit formats in Appendix A.  The
        common header format means that the encapsulation is now the
        same for all transport types (Section 5.4).

   5.   Added some further details on D-mode encapsulation in
        Section 5.3, including more explanation of why a well known port
        is needed.

   6.   Removed the possibility for fragmentation over DCCP
        (Section 5.4), mainly in the interests of simplicity and loss

   7.   Removed all the tunnel mode encapsulations (old sections 5.3.3
        and 5.3.4).

   8.   Fully re-wrote the route change handling description
        (Section 7.1), including some additional detection mechanisms
        and more clearly distinguishing between upstream and downstream
        route changes.  Included further details on GIMPS/NSLP
        interactions, including where notifications are delivered and

Schulzrinne & Hancock    Expires October 4, 2007              [Page 174]

Internet-Draft                    GIST                        April 2007

        how local repair storms could be avoided.  Removed old
        discussion of propagating notifications through signalling
        application unaware nodes (since these are now bypassed
        automatically).  Added discussion on how to route messages for
        local state removal on the old path.

   9.   Revised discussion of policy-based forwarding (old Section 7.2)
        to account for actual Flow-Routing-Information definition, and
        also how wildcarding should be allowed and handled.

   10.  Removed old route recording section (old Section 6.3).

   11.  Extended the discussion of NAT handling (Section 7.2) with an
        extended outline on processing rules at a GIMPS-aware NAT and a
        pointer to implications for C-mode processing and state

   12.  Clarified the definition of 'correct routing' of signalling
        messages in Section 8 and GIMPS role in enforcing this.  Also,
        opened the possibility that peer node authentication could be
        signalling application dependent.

   13.  Removed old open issues on C-mode Encapsulation (section 8.7);
        added new open issues on Message Routing (old Section 9.3 of
        version -05, later moved to Section 3.3) and D-mode congestion

   14.  Added this change history.

Schulzrinne & Hancock    Expires October 4, 2007              [Page 175]

Internet-Draft                    GIST                        April 2007

Authors' Addresses

   Henning Schulzrinne
   Columbia University
   Department of Computer Science
   450 Computer Science Building
   New York, NY  10027

   Phone: +1 212 939 7042

   Robert Hancock
   Siemens/Roke Manor Research
   Old Salisbury Lane
   Romsey, Hampshire  SO51 0ZN


Schulzrinne & Hancock    Expires October 4, 2007              [Page 176]

Internet-Draft                    GIST                        April 2007

Full Copyright Statement

   Copyright (C) The IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at


   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).

Schulzrinne & Hancock    Expires October 4, 2007              [Page 177]