Skip to main content

Performance Benchmarking Profiles for Large Language Model Serving Systems
draft-gaikwad-llm-benchmarking-profiles-00

Document Type Active Internet-Draft (individual)
Author Madhava Gaikwad
Last updated 2026-01-20
RFC stream (None)
Intended RFC status (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-gaikwad-llm-benchmarking-profiles-00
Network Working Group                                         M. Gaikwad
Internet-Draft                                    Independent Researcher
Intended status: Informational                              January 2026
Expires: 24 July 2026

   Performance Benchmarking Profiles for Large Language Model Serving
                                Systems
               draft-gaikwad-llm-benchmarking-profiles-00

Abstract

   This document defines performance benchmarking profiles for Large
   Language Model (LLM) serving systems.  Profiles bind the terminology
   defined in draft-gaikwad-llm-benchmarking-terminology and the
   procedures described in draft-gaikwad-llm-benchmarking-methodology to
   concrete architectural roles and workload patterns.  Each profile
   clarifies the System Under Test (SUT) boundary, measurement points,
   and interpretation constraints required for reproducible and
   comparable benchmarking.

   This document specifies profiles only.  It does not define new
   metrics, benchmark workloads, or acceptance thresholds.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 5 July 2026.

Copyright Notice

   Copyright (c) 2026 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Gaikwad                   Expires 24 July 2026                  [Page 1]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
     1.1.  Terminology Alignment . . . . . . . . . . . . . . . . . .   5
   2.  Requirements Language . . . . . . . . . . . . . . . . . . . .   6
   3.  Profile Taxonomy  . . . . . . . . . . . . . . . . . . . . . .   6
     3.1.  Infrastructure Profiles . . . . . . . . . . . . . . . . .   6
     3.2.  Workload Profiles . . . . . . . . . . . . . . . . . . . .   7
     3.3.  Profile Selection Guidance  . . . . . . . . . . . . . . .   8
   4.  Infrastructure Profiles . . . . . . . . . . . . . . . . . . .   8
     4.1.  Model Engine Profile  . . . . . . . . . . . . . . . . . .   9
       4.1.1.  Definition and Concepts . . . . . . . . . . . . . . .   9
       4.1.2.  Boundary Specification  . . . . . . . . . . . . . . .   9
       4.1.3.  Architecture Variants . . . . . . . . . . . . . . . .  10
       4.1.4.  Configuration Disclosure  . . . . . . . . . . . . . .  14
       4.1.5.  Primary Metrics . . . . . . . . . . . . . . . . . . .  16
       4.1.6.  Secondary Metrics . . . . . . . . . . . . . . . . . .  16
       4.1.7.  Benchmarking Constraints  . . . . . . . . . . . . . .  17
     4.2.  AI Gateway Profile  . . . . . . . . . . . . . . . . . . .  17
       4.2.1.  Definition and Concepts . . . . . . . . . . . . . . .  17
       4.2.2.  Boundary Specification  . . . . . . . . . . . . . . .  17
       4.2.3.  Baseline Requirement  . . . . . . . . . . . . . . . .  18
       4.2.4.  Load Balancing Disclosure . . . . . . . . . . . . . .  19
       4.2.5.  Multi-Model Gateway . . . . . . . . . . . . . . . . .  19
       4.2.6.  Semantic Cache  . . . . . . . . . . . . . . . . . . .  20
     4.3.  AI Firewall Profile . . . . . . . . . . . . . . . . . . .  22
       4.3.1.  Definition and Concepts . . . . . . . . . . . . . . .  22
       4.3.2.  Boundary Specification  . . . . . . . . . . . . . . .  22
       4.3.3.  Enforcement Directions  . . . . . . . . . . . . . . .  23
       4.3.4.  Inspection Architecture . . . . . . . . . . . . . . .  24
       4.3.5.  Required Metrics  . . . . . . . . . . . . . . . . . .  25
       4.3.6.  Workload Specification  . . . . . . . . . . . . . . .  27
       4.3.7.  Multi-Layer Firewall  . . . . . . . . . . . . . . . .  28
       4.3.8.  Benchmarking Constraints  . . . . . . . . . . . . . .  28
     4.4.  Compound System Profile . . . . . . . . . . . . . . . . .  29
       4.4.1.  Definition and Concepts . . . . . . . . . . . . . . .  29
       4.4.2.  Boundary Specification  . . . . . . . . . . . . . . .  29
       4.4.3.  Primary Metrics . . . . . . . . . . . . . . . . . . .  30
       4.4.4.  Evaluation Oracle . . . . . . . . . . . . . . . . . .  31

Gaikwad                   Expires 24 July 2026                  [Page 2]
Internet-Draft          LLM Benchmarking Profiles           January 2026

       4.4.5.  Secondary Metrics . . . . . . . . . . . . . . . . . .  32
       4.4.6.  RAG Sub-Profile . . . . . . . . . . . . . . . . . . .  33
       4.4.7.  Agentic System Boundaries . . . . . . . . . . . . . .  34
       4.4.8.  Exclusions  . . . . . . . . . . . . . . . . . . . . .  36
   5.  Workload Profiles . . . . . . . . . . . . . . . . . . . . . .  36
     5.1.  Chatbot Workload Profile  . . . . . . . . . . . . . . . .  36
       5.1.1.  Characteristics . . . . . . . . . . . . . . . . . . .  36
       5.1.2.  Required Parameters . . . . . . . . . . . . . . . . .  37
       5.1.3.  Example . . . . . . . . . . . . . . . . . . . . . . .  37
     5.2.  Compound Workflow Workload Profile  . . . . . . . . . . .  37
       5.2.1.  Characteristics . . . . . . . . . . . . . . . . . . .  37
       5.2.2.  Required Parameters . . . . . . . . . . . . . . . . .  38
       5.2.3.  External Dependency Handling  . . . . . . . . . . . .  38
   6.  Delta Measurement Model . . . . . . . . . . . . . . . . . . .  39
     6.1.  Timestamp Reference . . . . . . . . . . . . . . . . . . .  39
     6.2.  Timestamp Definitions . . . . . . . . . . . . . . . . . .  40
     6.3.  Component Deltas  . . . . . . . . . . . . . . . . . . . .  41
     6.4.  End-to-End Metrics  . . . . . . . . . . . . . . . . . . .  42
     6.5.  Clock Synchronization . . . . . . . . . . . . . . . . . .  42
   7.  Profile Composition . . . . . . . . . . . . . . . . . . . . .  42
     7.1.  Composite SUT Declaration . . . . . . . . . . . . . . . .  43
     7.2.  Composition Validation  . . . . . . . . . . . . . . . . .  43
     7.3.  Interaction Effects . . . . . . . . . . . . . . . . . . .  44
   8.  Access Logging Requirements . . . . . . . . . . . . . . . . .  45
     8.1.  Minimum Fields  . . . . . . . . . . . . . . . . . . . . .  45
     8.2.  Model Engine Fields . . . . . . . . . . . . . . . . . . .  46
     8.3.  AI Firewall Fields  . . . . . . . . . . . . . . . . . . .  46
     8.4.  Compound System Fields  . . . . . . . . . . . . . . . . .  47
     8.5.  AI Gateway Fields . . . . . . . . . . . . . . . . . . . .  47
     8.6.  OpenTelemetry Integration . . . . . . . . . . . . . . . .  47
   9.  Measurement Considerations  . . . . . . . . . . . . . . . . .  48
     9.1.  Baseline and Delta Reporting  . . . . . . . . . . . . . .  48
     9.2.  Warm-up and Steady State  . . . . . . . . . . . . . . . .  48
     9.3.  Clock Synchronization . . . . . . . . . . . . . . . . . .  48
     9.4.  Streaming Protocol Considerations . . . . . . . . . . . .  49
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  49
     10.1.  Bidirectional Enforcement Gaps . . . . . . . . . . . . .  49
     10.2.  Adversarial Workload Handling  . . . . . . . . . . . . .  50
     10.3.  Side-Channel Considerations  . . . . . . . . . . . . . .  50
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  50
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  50
     11.2.  Informative References . . . . . . . . . . . . . . . . .  51
   Appendix A.  Example Benchmark Report Structure . . . . . . . . .  52
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  52

Gaikwad                   Expires 24 July 2026                  [Page 3]
Internet-Draft          LLM Benchmarking Profiles           January 2026

1.  Introduction

   LLM serving systems are rarely monolithic.  Production deployments
   typically compose multiple infrastructural intermediaries before a
   request reaches a Model Engine.  A request may pass through an API
   gateway for authentication, an AI firewall for prompt inspection, a
   load balancer for routing, and finally arrive at an inference engine.
   Each component adds latency and affects throughput.

   Performance metrics such as Time to First Token (TTFT) or throughput
   are boundary dependent.  A TTFT measurement taken at the client
   includes network latency, gateway processing, firewall inspection,
   queue wait time, and prefill computation.  The same measurement taken
   at the engine boundary includes only queue wait and prefill.  Without
   explicit boundary declaration, reported results cannot be compared.

   This document addresses this ambiguity by defining benchmarking
   profiles: standardized descriptions of SUT boundaries and their
   associated performance interpretation rules.  Section 4 defines four
   infrastructure profiles that specify what component is being
   measured.  Section 5 defines workload profiles that specify how that
   component is tested.  Section 6 then shows how to attribute latency
   across composed systems using delta measurement.

Gaikwad                   Expires 24 July 2026                  [Page 4]
Internet-Draft          LLM Benchmarking Profiles           January 2026

                Client
                  |
                  v
        +------------------+
        |   AI Gateway     |<-- Auth, routing, caching
        +--------+---------+
                 |
                 v
        +------------------+
        |   AI Firewall    |<-- Prompt inspection
        +--------+---------+
                 |
                 v
        +------------------+
        |  Model Engine    |<-- Inference
        +--------+---------+
                 |
                 v
        +------------------+
        |   AI Firewall    |<-- Output inspection
        +--------+---------+
                 |
                 v
        +------------------+
        |   AI Gateway     |<-- Response normalization
        +--------+---------+
                 |
                 v
               Client

Each layer adds latency. Benchmarks must declare which layers are included.

                 Figure 1: Typical LLM Serving Stack

1.1.  Terminology Alignment

   This document uses metrics defined in
   [I-D.gaikwad-llm-benchmarking-terminology].  The following table maps
   profile-specific terms to their normative definitions.

Gaikwad                   Expires 24 July 2026                  [Page 5]
Internet-Draft          LLM Benchmarking Profiles           January 2026

        +=========================+===============================+
        | Term Used in Profiles   | Terminology Draft Reference   |
        +=========================+===============================+
        | TTFT                    | Time to First Token           |
        +-------------------------+-------------------------------+
        | ITL                     | Inter-Token Latency           |
        +-------------------------+-------------------------------+
        | TPOT                    | Time per Output Token         |
        +-------------------------+-------------------------------+
        | Queue Residence Time    | Queue Wait Time               |
        +-------------------------+-------------------------------+
        | FRR                     | False Refusal Rate            |
        +-------------------------+-------------------------------+
        | Guardrail Overhead      | Guardrail Processing Overhead |
        +-------------------------+-------------------------------+
        | Task Completion Latency | Task Completion Latency       |
        +-------------------------+-------------------------------+
        | Goodput                 | Goodput                       |
        +-------------------------+-------------------------------+

                        Table 1: Terminology Mapping

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Profile Taxonomy

   Profiles divide into two categories that serve orthogonal purposes.
   Conflating them produces misleading benchmarks.

3.1.  Infrastructure Profiles

   Infrastructure Profiles define what is being tested.  They specify
   the SUT boundary: where measurements start and end, what components
   are included, and what is excluded.

Gaikwad                   Expires 24 July 2026                  [Page 6]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   +==============+========================+===========================+
   | Profile      | SUT Boundary           | Primary Question Answered |
   +==============+========================+===========================+
   | Model Engine | Inference              | How fast can this engine  |
   |              | runtime only           | generate tokens?          |
   +--------------+------------------------+---------------------------+
   | AI Gateway   | API intermediary       | What overhead does the    |
   |              | layer                  | gateway add?              |
   +--------------+------------------------+---------------------------+
   | AI Firewall  | Security               | What latency and accuracy |
   |              | inspection layer       | does inspection cost?     |
   +--------------+------------------------+---------------------------+
   | Compound     | End-to-end             | How long does it take to  |
   | System       | orchestration          | complete a task?          |
   +--------------+------------------------+---------------------------+

                      Table 2: Infrastructure Profiles

   The choice of infrastructure profile determines which metrics are
   meaningful.  Measuring "AI Firewall throughput" in tokens per second
   conflates firewall performance with downstream engine performance.
   The firewall does not generate tokens; it inspects them.  Appropriate
   firewall metrics include inspection latency, detection rate, and
   false positive rate.

3.2.  Workload Profiles

   Workload Profiles define how the SUT is tested.  They specify traffic
   patterns, request characteristics, and arrival models.  Workload
   profiles are independent of infrastructure profiles.

    +==================+========================+====================+
    | Profile          | Traffic Pattern        | Applicable To      |
    +==================+========================+====================+
    | Chatbot Workload | Multi-turn, streaming, | Engine, Gateway,   |
    |                  | human-paced            | Firewall, Compound |
    +------------------+------------------------+--------------------+
    | Compound         | Multi-step, tool-      | Compound System    |
    | Workflow         | using, machine-paced   | primarily          |
    +------------------+------------------------+--------------------+

                        Table 3: Workload Profiles

Gaikwad                   Expires 24 July 2026                  [Page 7]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   A Chatbot Workload can be applied to a Model Engine (measuring raw
   inference speed), an AI Gateway (measuring gateway overhead under
   conversational traffic), or a Compound System (measuring end-to-end
   chat latency including retrieval).  The infrastructure profile
   determines the measurement boundary; the workload profile determines
   the traffic shape.

   Conflating infrastructure and workload profiles produces non-
   comparable results.  "Chatbot benchmark on Gateway A" versus "Chatbot
   benchmark on Engine B" compares different things.  The former
   includes gateway overhead; the latter does not.  Valid comparison
   requires either:

   *  Same infrastructure profile, different implementations (Gateway A
      vs Gateway B)

   *  Same implementation, different workload profiles (Chatbot vs
      Compound Workflow on Engine A)

   Cross-profile comparisons require explicit delta decomposition
   (Section 6).

3.3.  Profile Selection Guidance

   +===========================+====================+==================+
   | If you want to            | Use Infrastructure | Apply Workload   |
   | measure...                | Profile            | Profile          |
   +===========================+====================+==================+
   | Raw model inference       | Model Engine       | Chatbot or       |
   | speed                     |                    | synthetic        |
   +---------------------------+--------------------+------------------+
   | Gateway routing           | AI Gateway         | Match production |
   | overhead                  |                    | traffic          |
   +---------------------------+--------------------+------------------+
   | Security inspection       | AI Firewall        | Mixed benign/    |
   | cost                      |                    | adversarial      |
   +---------------------------+--------------------+------------------+
   | End-to-end agent          | Compound System    | Compound         |
   | latency                   |                    | Workflow         |
   +---------------------------+--------------------+------------------+
   | Full-stack production     | Composite (see     | Match production |
   | performance               | Section 7)         | traffic          |
   +---------------------------+--------------------+------------------+

                      Table 4: Profile Selection Guide

4.  Infrastructure Profiles

Gaikwad                   Expires 24 July 2026                  [Page 8]
Internet-Draft          LLM Benchmarking Profiles           January 2026

4.1.  Model Engine Profile

4.1.1.  Definition and Concepts

   A Model Engine is the runtime responsible for executing LLM
   inference.  Before specifying the benchmark boundary, understanding
   three core operations is necessary:

   *Prefill* (also called prompt processing): The engine processes all
   input tokens in parallel to build initial hidden states.  Prefill is
   compute-bound and benefits from parallelism.  Prefill latency scales
   with input length but can be reduced by adding more compute.

   *Decode* (also called autoregressive generation): The engine
   generates output tokens one at a time, each depending on all previous
   tokens.  Decode is memory-bandwidth-bound because each token requires
   reading the full model weights.  Decode latency per token is
   relatively constant regardless of batch size, but throughput
   increases with batching.

   *KV Cache*: To avoid recomputing attention over previous tokens, the
   engine stores key-value pairs from prior tokens.  The KV cache grows
   with sequence length and consumes GPU memory.  Cache management
   (allocation, eviction, swapping to CPU) directly affects how many
   concurrent sequences the engine can handle.

   These three operations determine the fundamental performance
   characteristics:

   *  TTFT depends primarily on prefill time plus any queue wait

   *  ITL depends on decode time per token

   *  Maximum concurrency depends on KV cache capacity

   *  Throughput depends on batching efficiency during decode

4.1.2.  Boundary Specification

   Included in SUT:

   *  Model weights and inference kernels

   *  Prefill and decode computation

   *  Batch formation and scheduling logic

   *  KV cache allocation, eviction, and swapping

Gaikwad                   Expires 24 July 2026                  [Page 9]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   *  Speculative decoding (if enabled)

   *  Quantization and precision handling

   Excluded from SUT:

   *  Network transport beyond local interface

   *  Authentication and authorization

   *  Policy enforcement and content inspection

   *  Request routing between multiple engines

   *  Protocol translation (handled by gateway)

4.1.3.  Architecture Variants

   Model Engines exist in several architectural configurations that
   affect measurement interpretation.

4.1.3.1.  Monolithic Architecture

   Prefill and decode execute on the same hardware.  This is the
   simplest configuration and the most common in single-GPU deployments.

               MONOLITHIC ENGINE

   +------------------------------------------+
   |               GPU / Accelerator          |
   |                                          |
   |  Request -> [Prefill] -> [Decode] -> Out |
   |               |            |             |
   |            KV Cache <------+             |
   |                                          |
   +------------------------------------------+

   Timeline for single request:
   |---- Queue ----|---- Prefill ----|---- Decode (N tokens) ----|
         t6             t6a -> t7            t7 -> t8

                  Figure 2: Monolithic Engine Architecture

   Timestamp mapping:

Gaikwad                   Expires 24 July 2026                 [Page 10]
Internet-Draft          LLM Benchmarking Profiles           January 2026

       +========+==================================================+
       | Symbol | Event                                            |
       +========+==================================================+
       | t6     | Request enters engine queue                      |
       +--------+--------------------------------------------------+
       | t6a    | Prefill computation begins (batch slot acquired) |
       +--------+--------------------------------------------------+
       | t7     | First output token generated                     |
       +--------+--------------------------------------------------+
       | t8     | Last output token generated                      |
       +--------+--------------------------------------------------+

                                  Table 5

   Derived metrics:

   Queue residence = t6a - t6
   Prefill latency = t7 - t6a
   Engine TTFT = t7 - t6
   Generation time = t8 - t7

4.1.3.2.  Disaggregated Architecture

   Prefill and decode execute on separate hardware pools.  Prefill nodes
   are optimized for compute throughput; decode nodes are optimized for
   memory bandwidth.  After prefill completes, the KV cache must
   transfer across the network to the decode pool.

   This architecture appears in published systems including DistServe
   [DISTSERVE] and Mooncake [MOONCAKE], and in open-source projects such
   as llm-d.

Gaikwad                   Expires 24 July 2026                 [Page 11]
Internet-Draft          LLM Benchmarking Profiles           January 2026

                       DISAGGREGATED SERVING

   +------------------+                      +------------------+
   |  PREFILL POOL    |                      |  DECODE POOL     |
   |                  |                      |                  |
   |  High compute    |    KV Cache          |  High memory BW  |
   |  utilization     |    Transfer          |  utilization     |
   |                  |  ================>   |                  |
   |  +-----------+   |   Network link       |  +-----------+   |
   |  | GPU 0     |   |   (RDMA or TCP)      |  | GPU 0     |   |
   |  +-----------+   |                      |  +-----------+   |
   |  | GPU 1     |   |   Bottleneck at      |  | GPU 1     |   |
   |  +-----------+   |   high context       |  +-----------+   |
   |  | ...       |   |   lengths            |  | ...       |   |
   |  +-----------+   |                      |  +-----------+   |
   +------------------+                      +------------------+

   Timeline:
   |-- Queue --|-- Prefill --|-- KV Transfer --|-- Decode --|
        t6          t6a            t7a              t7 -> t8

                Figure 3: Disaggregated Serving Architecture

   The KV transfer phase (t7a) does not exist in monolithic deployments.
   This phase can become the bottleneck for long contexts.

   KV Transfer Constraint:

   Transfer time depends on context length and network bandwidth:

KV_transfer_time = (context_length * kv_bytes_per_token) / effective_bandwidth

   Where:

   *  context_length = input tokens processed

   *  kv_bytes_per_token = 2 * num_layers * head_dim * num_heads *
      bytes_per_element

   *  effective_bandwidth = min(network_bandwidth, memory_bandwidth) *
      efficiency

   Bandwidth Saturation Threshold: The context length at which KV
   transfer time exceeds prefill compute time.  Beyond this threshold,
   adding more prefill compute does not reduce TTFT.

Gaikwad                   Expires 24 July 2026                 [Page 12]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Configuration:
     Model: 70B parameters
     KV cache: 80 layers, 128 heads, 128 dim, BF16
     KV bytes per token: 2 * 80 * 128 * 128 * 2 = 5.24 MB
     Inter-pool bandwidth: 400 Gbps = 50 GB/s effective

   At 4K context:
     KV transfer = 4096 * 5.24 MB / 50 GB/s = 430 ms

   At 32K context:
     KV transfer = 32768 * 5.24 MB / 50 GB/s = 3.44 s

   If prefill compute takes 500ms for 32K tokens:
     Bottleneck shifts to KV transfer at ~4.8K tokens

                 Figure 4: KV Transfer Example Calculation

   Testers benchmarking disaggregated architectures MUST report:

          +======================+=============================+
          | Parameter            | Description                 |
          +======================+=============================+
          | Pool configuration   | Number and type of prefill  |
          |                      | vs decode accelerators      |
          +----------------------+-----------------------------+
          | KV transfer          | RDMA, TCP, or other;        |
          | mechanism            | theoretical bandwidth       |
          +----------------------+-----------------------------+
          | KV bytes per token   | Calculated from model       |
          |                      | architecture                |
          +----------------------+-----------------------------+
          | Observed transfer    | Measured, not calculated    |
          | latency              |                             |
          +----------------------+-----------------------------+
          | Bandwidth saturation | Context length where        |
          | threshold            | transfer becomes bottleneck |
          +----------------------+-----------------------------+
          | TTFT boundary        | Whether reported TTFT       |
          |                      | includes KV transfer        |
          +----------------------+-----------------------------+

                                 Table 6

   Results from disaggregated and monolithic deployments MUST NOT be
   directly compared without explicit architectural notation.

Gaikwad                   Expires 24 July 2026                 [Page 13]
Internet-Draft          LLM Benchmarking Profiles           January 2026

           MONOLITHIC                         DISAGGREGATED

   +----------------------+      +-----------+    +-----------+
   |     Single Pool      |      |  Prefill  |    |  Decode   |
   |                      |      |   Pool    |    |   Pool    |
   |  Prefill --> Decode  |      |           |    |           |
   |      |         |     |      | +-------+ |    | +-------+ |
   |      +> KV Cache <---+      | | GPU 0 | |    | | GPU 0 | |
   |                      |      | +-------+ |    | +-------+ |
   |  Same memory space   |      | +-------+ |    | +-------+ |
   |  No transfer needed  |      | | GPU 1 |======>| GPU 1 | |
   |                      |      | +-------+ |    | +-------+ |
   +----------------------+      |   KV transfer  |           |
                                 +-----------+    +-----------+

   TTFT = Queue + Prefill        TTFT = Queue + Prefill + KV_Transfer

   Best for:                     Best for:
   - Smaller models              - Large models (70B+)
   - Lower latency               - Higher throughput
   - Simpler deployment          - Independent scaling

              Figure 5: Monolithic vs Disaggregated Comparison

4.1.3.3.  Distributed Architecture

   Model sharded across multiple accelerators using tensor parallelism
   (TP), pipeline parallelism (PP), or expert parallelism (EP for
   mixture-of-experts models).

   Testers MUST report:

   *  Parallelism strategy and degree (e.g., TP=8, PP=2)

   *  Interconnect type (NVLink, PCIe, InfiniBand)

   *  Collective communication overhead if measurable

4.1.4.  Configuration Disclosure

   Testers MUST disclose:

Gaikwad                   Expires 24 July 2026                 [Page 14]
Internet-Draft          LLM Benchmarking Profiles           January 2026

     +=================+=======================+=====================+
     | Configuration   | Example Values        | Why It Matters      |
     +=================+=======================+=====================+
     | Model precision | FP16, BF16, INT8, FP8 | Affects throughput, |
     |                 |                       | memory, and quality |
     +-----------------+-----------------------+---------------------+
     | Quantization    | GPTQ, AWQ,            | Different speed/    |
     | method          | SmoothQuant           | quality tradeoffs   |
     +-----------------+-----------------------+---------------------+
     | Batch strategy  | Static, continuous,   | Affects latency     |
     |                 | chunked prefill       | distribution        |
     +-----------------+-----------------------+---------------------+
     | Max batch size  | 64 requests           | Limits concurrency  |
     +-----------------+-----------------------+---------------------+
     | Max sequence    | 8192 tokens           | Limits context      |
     | length          |                       | window              |
     +-----------------+-----------------------+---------------------+
     | KV cache memory | 24 GB                 | Limits concurrent   |
     |                 |                       | sequences           |
     +-----------------+-----------------------+---------------------+

                                  Table 7

4.1.4.1.  Speculative Decoding

   Speculative decoding uses a smaller draft model to propose multiple
   tokens, then verifies them in parallel with the target model.  When
   draft tokens are accepted, generation is faster.  When rejected,
   compute is wasted.

   If speculative decoding is enabled, testers MUST report:

    +========================+========================================+
    | Parameter              | Description                            |
    +========================+========================================+
    | Draft model            | Identifier and parameter count         |
    +------------------------+----------------------------------------+
    | Speculation window (k) | Tokens proposed per verification step  |
    +------------------------+----------------------------------------+
    | Acceptance rate        | Fraction of draft tokens accepted      |
    +------------------------+----------------------------------------+
    | Verification overhead  | Latency when draft tokens are rejected |
    +------------------------+----------------------------------------+

                                  Table 8

   Acceptance rate directly affects efficiency:

Gaikwad                   Expires 24 July 2026                 [Page 15]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   High acceptance (80%), k=5:
     Expected accepted per step = 4 tokens
     Verification passes per output token = 0.25

   Low acceptance (30%), k=5:
     Expected accepted per step = 1.5 tokens
     Verification passes per output token = 0.67

   Result: 2.7x more verification overhead at low acceptance

   Results with speculative decoding MUST be labeled separately and
   include observed acceptance rate.

4.1.4.2.  Chunked Prefill

   Chunked prefill splits long prompts into smaller pieces, processing
   each chunk and potentially interleaving with decode iterations from
   other requests.  This reduces head-of-line blocking but increases
   total prefill time for the chunked request.

   If chunked prefill is enabled, testers MUST report:

   *  Chunk size in tokens

   *  Whether chunks interleave with other requests

   *  Impact on TTFT for long prompts

4.1.5.  Primary Metrics

   From [I-D.gaikwad-llm-benchmarking-terminology]:

   *  Time to First Token (TTFT)

   *  Inter-Token Latency (ITL)

   *  Time per Output Token (TPOT)

   *  Output Token Throughput

4.1.6.  Secondary Metrics

   *  Request Throughput

   *  Queue Depth over time

   *  Queue Residence Time

Gaikwad                   Expires 24 July 2026                 [Page 16]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   *  Prefill Latency (TTFT minus queue residence)

   *  Batch Utilization

4.1.7.  Benchmarking Constraints

   Request rate saturation differs from token saturation.  A system
   might handle 2000 output tokens per second but only 50 requests per
   second if scheduling overhead dominates.  Testers SHOULD measure both
   dimensions.

   Mixed-length workloads increase tail latency under continuous
   batching.  Short requests arriving behind long prefills experience
   head-of-line blocking.  When workload includes high length variance,
   measure fairness: the ratio of actual latency to expected latency
   based on request size.

4.2.  AI Gateway Profile

4.2.1.  Definition and Concepts

   An AI Gateway is a network-facing intermediary that virtualizes
   access to one or more Model Engines.  Gateways handle cross-cutting
   concerns that do not belong in the inference engine itself.

   Gateways perform several functions that affect latency:

   *Request Processing:* TLS termination, authentication, schema
   validation, and protocol translation.  These operations add fixed
   overhead per request.

   *Routing:* Selection of backend engine based on load, capability, or
   policy.  Intelligent routing (e.g., KV-cache-aware) adds decision
   latency but may reduce overall latency by improving cache hit rates.

   *Caching:* Gateways may implement response caching.  Traditional
   exact-match caching has limited utility for LLM traffic due to low
   query repetition.  Semantic caching (matching similar queries)
   improves hit rates but introduces quality risk from approximate
   matches.

   *Admission Control:* Rate limiting and quota enforcement.  Under
   load, admission control adds queuing delay or rejects requests.

4.2.2.  Boundary Specification

   Included in SUT:

Gaikwad                   Expires 24 July 2026                 [Page 17]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   *  TLS termination

   *  Authentication and authorization

   *  Schema validation and protocol translation

   *  Load balancing across engines or model replicas

   *  Semantic cache lookup and population

   *  Admission control and rate limiting

   *  Retry and fallback logic

   *  Response normalization

   Excluded from SUT:

   *  Model inference computation (handled by downstream engine)

   *  Content inspection for safety (handled by AI Firewall)

4.2.3.  Baseline Requirement

   Gateway overhead is meaningful only relative to direct engine access.
   Gateway benchmarks MUST declare measurement type:

          +==================+=================================+
          | Measurement Type | What It Includes                |
          +==================+=================================+
          | Aggregate        | Gateway processing plus         |
          |                  | downstream engine latency       |
          +------------------+---------------------------------+
          | Differential     | Gateway overhead only, relative |
          |                  | to direct engine access         |
          +------------------+---------------------------------+

                                 Table 9

   To measure differential latency:

   1.  Benchmark the Model Engine directly (baseline)

   2.  Benchmark through the Gateway to the same engine (same workload,
       same conditions)

   3.  Compute delta: Gateway_overhead = Gateway_TTFT - Engine_TTFT

Gaikwad                   Expires 24 July 2026                 [Page 18]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Report both absolute values and delta.

4.2.4.  Load Balancing Disclosure

   Load balancing strategy affects tail latency.  Testers MUST report:

    +===============+=================================+==============+
    | Configuration | Options                         | Impact       |
    +===============+=================================+==============+
    | Algorithm     | Round-robin, least-connections, | Tail latency |
    |               | weighted, adaptive              | variance     |
    +---------------+---------------------------------+--------------+
    | Health checks | Interval, timeout, failure      | Failover     |
    |               | threshold                       | speed        |
    +---------------+---------------------------------+--------------+
    | Sticky        | Enabled/disabled, key type      | Cache        |
    | sessions      |                                 | locality     |
    +---------------+---------------------------------+--------------+
    | Retry policy  | Max retries, backoff strategy   | Failure      |
    |               |                                 | handling     |
    +---------------+---------------------------------+--------------+

                                 Table 10

   For intelligent routing (KV-cache-aware, cost-optimized, latency-
   optimized):

   *  Routing signals used (queue depth, cache locality, model cost)

   *  Decision latency overhead

   *  Routing effectiveness (e.g., cache hit improvement from routing)

4.2.5.  Multi-Model Gateway

   Modern gateways route to multiple backend models based on capability,
   cost, or latency.

   When gateway routes to heterogeneous backends, testers MUST report:

   *  Model selection logic: Rule-based, cost-optimized, capability-
      based

   *  Backend composition: List of models and their roles

   *  Fallback behavior: Conditions triggering model switching

   Per-model metrics SHOULD be reported separately.

Gaikwad                   Expires 24 July 2026                 [Page 19]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Cross-gateway comparison requires backend normalization.  Comparing
   Gateway A (routing to GPT-4) against Gateway B (routing to Llama-70B)
   conflates gateway performance with model performance.

4.2.6.  Semantic Cache

   Semantic caching matches queries by meaning rather than exact text.
   A cache hit on "What is the capital of France?" might serve a
   response cached from "France's capital city?"  This improves hit
   rates but risks serving inappropriate responses for queries that are
   similar but not equivalent.

   Configuration Disclosure:

      +============+========================+=======================+
      | Parameter  | Example                | Why It Matters        |
      +============+========================+=======================+
      | Similarity | Cosine >= 0.92         | Lower threshold: more |
      | threshold  |                        | hits, more mismatches |
      +------------+------------------------+-----------------------+
      | Embedding  | text-embedding-3-small | Affects similarity    |
      | model      |                        | quality               |
      +------------+------------------------+-----------------------+
      | Cache      | 100,000 entries        | Hit rate ceiling      |
      | capacity   |                        |                       |
      +------------+------------------------+-----------------------+
      | Eviction   | LRU, frequency-based   | Long-term hit rate    |
      | policy     |                        |                       |
      +------------+------------------------+-----------------------+
      | Cache      | Global, per-tenant,    | Security and hit rate |
      | scope      | per-user               | tradeoff              |
      +------------+------------------------+-----------------------+
      | TTL        | 1 hour                 | Staleness vs hit rate |
      +------------+------------------------+-----------------------+

                                  Table 11

   Required Metrics:

Gaikwad                   Expires 24 July 2026                 [Page 20]
Internet-Draft          LLM Benchmarking Profiles           January 2026

    +=======================+========================================+
    | Metric                | Definition                             |
    +=======================+========================================+
    | Hit rate              | Fraction of requests served from cache |
    +-----------------------+----------------------------------------+
    | Hit rate distribution | P50, P95, P99 of per-session hit rates |
    +-----------------------+----------------------------------------+
    | Latency on hit        | TTFT when cache serves response        |
    +-----------------------+----------------------------------------+
    | Latency on miss       | TTFT when engine generates             |
    +-----------------------+----------------------------------------+
    | Cache delta           | Latency_miss minus Latency_hit         |
    +-----------------------+----------------------------------------+
    | Mismatch rate         | Fraction of hits where cached response |
    |                       | was inappropriate                      |
    +-----------------------+----------------------------------------+

                                 Table 12

   Mismatch rate requires evaluation.  Testers SHOULD disclose
   evaluation methodology (human review, automated comparison, or LLM-
   as-judge).

   Session Definition: For per-session metrics, define what constitutes
   a session: requests sharing a session identifier, requests from the
   same user within a time window, or another definition.  Testers MUST
   disclose session definition.

   Staleness in RAG Systems: When semantic cache operates with a RAG
   system, cached responses may reference documents that have since been
   updated.

    +========================+========================================+
    | Parameter              | Description                            |
    +========================+========================================+
    | Index update frequency | How often RAG index refreshes          |
    +------------------------+----------------------------------------+
    | Cache TTL              | Maximum age of cached entries          |
    +------------------------+----------------------------------------+
    | Staleness risk         | Estimated fraction of stale cache hits |
    +------------------------+----------------------------------------+

                                  Table 13

   Staleness risk estimate:

staleness_risk = (average_cache_age / index_update_interval) * corpus_change_rate

Gaikwad                   Expires 24 July 2026                 [Page 21]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Benchmarking Constraints: Workload diversity determines hit rate.
   Testers MUST report:

   *  Number of distinct query clusters in workload

   *  Cache state at test start (cold or warm)

   *  Time until hit rate stabilizes

4.3.  AI Firewall Profile

4.3.1.  Definition and Concepts

   An AI Firewall is a bidirectional security intermediary that inspects
   LLM inputs and outputs to detect and prevent policy violations.

   Unlike traditional firewalls that examine packet headers or match
   byte patterns, AI Firewalls analyze semantic content.  They must
   understand what a prompt is asking and what a response is saying.
   This requires ML models, making firewall latency fundamentally
   different from network firewall latency.

   The firewall sits on the request path and adds latency to every
   request.  The core tradeoff: more thorough inspection catches more
   threats but costs more time.

4.3.2.  Boundary Specification

   Included in SUT:

   *  Prompt analysis and classification

   *  Output content inspection

   *  Policy decision engine

   *  Block, allow, or modify actions

   Excluded from SUT:

   *  Model inference (upstream or downstream)

   *  Network-layer firewalling (traditional WAF)

   *  Authentication (handled by gateway)

Gaikwad                   Expires 24 July 2026                 [Page 22]
Internet-Draft          LLM Benchmarking Profiles           January 2026

4.3.3.  Enforcement Directions

   AI Firewalls operate bidirectionally.  Each direction addresses
   different threats.

   Inbound Enforcement inspects user prompts before they reach the
   model:

          +=========================+===========================+
          | Threat                  | Description               |
          +=========================+===========================+
          | Direct prompt injection | User attempts to override |
          |                         | system instructions       |
          +-------------------------+---------------------------+
          | Indirect prompt         | Malicious content in      |
          | injection               | retrieved documents       |
          +-------------------------+---------------------------+
          | Jailbreak attempts      | Techniques to bypass      |
          |                         | model safety training     |
          +-------------------------+---------------------------+
          | Context poisoning       | Adversarial content to    |
          |                         | manipulate model behavior |
          +-------------------------+---------------------------+

                                  Table 14

   Outbound Enforcement inspects model outputs before they reach the
   user:

      +===================+=========================================+
      | Threat            | Description                             |
      +===================+=========================================+
      | PII leakage       | Model outputs personal information      |
      +-------------------+-----------------------------------------+
      | Policy violation  | Output violates content policies        |
      +-------------------+-----------------------------------------+
      | Tool misuse       | Model attempts unauthorized actions     |
      +-------------------+-----------------------------------------+
      | Data exfiltration | Sensitive information encoded in output |
      +-------------------+-----------------------------------------+

                                  Table 15

   Testers MUST declare which directions are enforced.  A benchmark
   testing inbound-only enforcement MUST NOT claim protection against
   outbound threats.

Gaikwad                   Expires 24 July 2026                 [Page 23]
Internet-Draft          LLM Benchmarking Profiles           January 2026

4.3.4.  Inspection Architecture

   Firewalls use different inspection strategies with distinct latency
   characteristics.

   INSPECTION ARCHITECTURE COMPARISON

   BUFFERED (adds to TTFT, no ITL impact):

     Input:   ================........................
              |-- collect --|-- analyze --|-- forward -->

     Output:  ..................========........
              |- engine generates -|- buffer -|- analyze -|-->
                                   t7                     t12
                                   |-- inspection delay --|

   STREAMING (no TTFT impact, adds to ITL):

     Output:  ..o..o..o..o..o..o..o..o..o..o..o..o..o..o..o.
                 |     |     |     |     |     |     |
              inspect  |  inspect  |  inspect  |  inspect
                 |     |     |     |     |     |     |
              --o-----o-----o-----o-----o-----o-----o----->
              Variable delays, increased jitter

                Figure 6: Inspection Architecture Comparison

   Buffered Inspection: The firewall collects complete input (or output)
   before analysis.

   Characteristics:

   *  Adds to TTFT (inbound) or delays token delivery (outbound)

   *  No impact on ITL once streaming starts

   *  Enables deep analysis requiring full context

   For outbound buffered inspection, the client receives the first token
   later than the engine generates it.  This distinction matters:

   Engine TTFT (t7 - t6): 200ms
   Outbound inspection: 50ms
   Client-observed TTFT (t12 - t0): 250ms + network

   Streaming Inspection: The firewall analyzes content as tokens flow
   through.

Gaikwad                   Expires 24 July 2026                 [Page 24]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Characteristics:

   *  Adds per-token overhead to ITL

   *  May batch or pause tokens during analysis

   *  Introduces jitter in token delivery

   Required measurements:

   +============================+======================================+
   | Metric                     | Definition                           |
   +============================+======================================+
   | Per-token inspection delay | Average latency added per token      |
   +----------------------------+--------------------------------------+
   | Maximum pause duration     | Longest delay during streaming       |
   +----------------------------+--------------------------------------+
   | Pause frequency            | How often inspection causes          |
   |                            | batching                             |
   +----------------------------+--------------------------------------+
   | Jitter contribution        | Standard deviation of delays         |
   +----------------------------+--------------------------------------+

                                  Table 16

   Hybrid Inspection: Initial buffering followed by streaming.  Common
   pattern: buffer first N tokens for context, then stream with spot-
   checks.

   Configuration to disclose:

   *  Buffer threshold (tokens before streaming starts)

   *  Spot-check frequency

   *  Escalation triggers (patterns that switch to full buffering)

4.3.5.  Required Metrics

   Accuracy Metrics:

Gaikwad                   Expires 24 July 2026                 [Page 25]
Internet-Draft          LLM Benchmarking Profiles           January 2026

    +================+================================================+
    | Metric         | Definition                                     |
    +================+================================================+
    | Detection Rate | Fraction of malicious inputs correctly blocked |
    +----------------+------------------------------------------------+
    | False Positive | Fraction of benign inputs blocked by firewall  |
    | Rate (FPR)     |                                                |
    +----------------+------------------------------------------------+
    | False Refusal  | Fraction of policy-compliant requests refused  |
    | Rate (FRR)     | at system boundary                             |
    +----------------+------------------------------------------------+
    | Over-Defense   | FPR conditional on trigger-word presence in    |
    | Rate           | benign inputs                                  |
    +----------------+------------------------------------------------+

                                  Table 17

   FPR vs FRR: FPR measures firewall classifier errors on a benign test
   set.  FRR measures all refusals observed at the system boundary,
   which may include:

   *  Firewall blocks (captured in FPR)

   *  Model refusals (model's own safety behavior)

   *  Policy engine blocks (business rules)

   *  Rate limiting (capacity rejection)

   Therefore: FRR >= FPR when other refusal sources exist.

   When reporting both, attribute refusals by source when possible.

   Over-Defense Rate: Measures false positives on benign inputs that
   contain words commonly associated with attacks.

   Over-Defense Rate = P(Block | Benign AND Contains_Trigger_Words)

   Examples of benign inputs that may trigger over-defense:

   *  "Explain how prompt injection attacks work" (security education)

   *  "What does 'ignore previous instructions' mean?" (linguistic
      question)

   *  "How do I kill a process in Linux?" (technical query)

Gaikwad                   Expires 24 July 2026                 [Page 26]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   The test corpus for over-defense MUST contain semantically benign
   inputs that happen to include trigger words.  Testing with trivially
   benign inputs does not measure real over-defense risk.

   Latency Metrics:

    +========================+=======================================+
    | Metric                 | Definition                            |
    +========================+=======================================+
    | Passing latency        | Overhead when firewall allows request |
    +------------------------+---------------------------------------+
    | Blocking latency       | Time to reach block decision          |
    +------------------------+---------------------------------------+
    | Throughput degradation | Reduction in requests per second      |
    +------------------------+---------------------------------------+

                                 Table 18

   Latency may vary by decision path:

   Example:
     Allow (no flags): 8ms
     Allow (flagged, deep analysis): 45ms
     Block (pattern match): 3ms
     Block (semantic analysis): 67ms

   Report latency distribution by decision type.

4.3.6.  Workload Specification

   AI Firewall benchmarks require careful workload design.

   Benign Workload: Normal traffic with no policy violations.  Measures
   passing latency, FRR, and throughput impact on legitimate use.
   Source: Sanitized production samples or standard datasets.

   Adversarial Workload: Known attack patterns.  Measures detection
   rate, blocking latency, and FPR.  Source: Published datasets (BIPIA
   [BIPIA], JailbreakBench, PromptInject) or red team generated.  Do not
   publish working exploits.

   Mixed Workload (recommended): Combines benign and adversarial at
   declared ratio.

Gaikwad                   Expires 24 July 2026                 [Page 27]
Internet-Draft          LLM Benchmarking Profiles           January 2026

    +========================+=======================================+
    | Parameter              | Example                               |
    +========================+=======================================+
    | Mix ratio              | 95% benign, 5% adversarial            |
    +------------------------+---------------------------------------+
    | Adversarial categories | 40% injection, 30% jailbreak, 30% PII |
    +------------------------+---------------------------------------+
    | Arrival pattern        | Uniform or bursty                     |
    +------------------------+---------------------------------------+

                                 Table 19

4.3.7.  Multi-Layer Firewall

   Production deployments often stack multiple inspection layers.

Request -> Quick Filter -> ML Classifier -> Model -> Semantic Check -> PII Scan -> Response
              |               |                        |              |
           regex           embedding               output           entity
           + rules         classifier             analysis         detection

   When multiple layers exist, report:

   *  Number and position of layers

   *  Per-layer latency

   *  Execution model: Series (latencies add) or parallel

   *  Short-circuit behavior: Does blocking at layer N skip later
      layers?

   Delta decomposition:

Total overhead = Quick(2ms) + ML(12ms) + Semantic(34ms) + PII(8ms) = 56ms

With short-circuit on input block:
  Overhead = Quick(2ms) + ML(12ms) = 14ms

4.3.8.  Benchmarking Constraints

   Blocking speed alone is meaningless.  A firewall blocking all
   requests in 1ms is useless.  Always measure impact on benign traffic
   alongside detection effectiveness.

   Disclose integration with WAF, rate limiting, or DDoS protection.
   These add latency.

Gaikwad                   Expires 24 July 2026                 [Page 28]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Different attack categories have different detection latencies.
   Pattern-based detection is faster than semantic analysis.  Report
   detection latency by category.

4.4.  Compound System Profile

4.4.1.  Definition and Concepts

   A Compound System executes multiple inference, retrieval, and tool-
   use steps to satisfy a user intent.  The system orchestrates these
   steps, manages state across them, and produces a final response.

   Examples: RAG pipelines, multi-agent systems, tool-using assistants,
   coding agents.

   Unlike single-inference benchmarks, compound system benchmarks
   measure task completion, not token generation.  The primary question
   is "Did it accomplish the goal?" not "How fast did it generate
   tokens?"

4.4.2.  Boundary Specification

   Included in SUT:

   *  Orchestration and planning logic

   *  Multiple LLM inference calls

   *  Retrieval pipeline (embedding, search, reranking)

   *  Tool execution environment

   *  Conversation state management

   *  Agent-to-agent communication

   Excluded from SUT:

   *  External APIs outside the system boundary (latency measured but
      not controlled)

   *  User interface rendering

   *  Arbitrary user-supplied code

Gaikwad                   Expires 24 July 2026                 [Page 29]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Boundary Rule: The Compound System boundary includes only components
   deployed and controlled as part of the serving system.  User-provided
   plugins or custom code at runtime are excluded.  This prevents
   ambiguity when comparing systems with different extensibility models.

      +========================+===========+========================+
      | Component              | Included? | Rationale              |
      +========================+===========+========================+
      | Built-in retrieval     | Yes       | Part of serving system |
      +------------------------+-----------+------------------------+
      | Standard tool library  | Yes       | Shipped with system    |
      +------------------------+-----------+------------------------+
      | User-uploaded plugin   | No        | User-supplied          |
      +------------------------+-----------+------------------------+
      | External API (weather) | Latency   | Outside boundary       |
      |                        | measured  |                        |
      +------------------------+-----------+------------------------+

                                  Table 20

4.4.3.  Primary Metrics

           +=========================+========================+
           | Metric                  | Definition             |
           +=========================+========================+
           | Task Completion Latency | Time from user request |
           |                         | to final response      |
           +-------------------------+------------------------+
           | Task Success Rate       | Fraction of tasks      |
           |                         | completed correctly    |
           +-------------------------+------------------------+

                                 Table 21

   Task Success has two dimensions:

       +==============+========================+==================+
       | Type         | Definition             | Evaluation       |
       +==============+========================+==================+
       | Hard Success | Structural correctness | Automated (valid |
       |              |                        | JSON, no errors) |
       +--------------+------------------------+------------------+
       | Soft Success | Semantic correctness   | Requires         |
       |              |                        | evaluation       |
       +--------------+------------------------+------------------+

                                 Table 22

Gaikwad                   Expires 24 July 2026                 [Page 30]
Internet-Draft          LLM Benchmarking Profiles           January 2026

4.4.4.  Evaluation Oracle

   When using automated evaluation for Task Success Rate, disclose
   oracle methodology.

   LLM-as-Judge:

    +=====================+===========================================+
    | Parameter           | Report                                    |
    +=====================+===========================================+
    | Judge model         | Identifier and version                    |
    +---------------------+-------------------------------------------+
    | Judge prompt        | Full prompt or published rubric reference |
    +---------------------+-------------------------------------------+
    | Ground truth access | Whether judge sees reference answers      |
    +---------------------+-------------------------------------------+
    | Sampling            | Temperature, judgments per task           |
    +---------------------+-------------------------------------------+

                                  Table 23

   Report inter-rater agreement if using multiple judges.

   Rule-Based Evaluation:

   +====================+==============================================+
   | Parameter          | Report                                       |
   +====================+==============================================+
   | Rule specification | Formal definition                            |
   +--------------------+----------------------------------------------+
   | Coverage           | Fraction of criteria                         |
   |                    | that are rule-checkable                      |
   +--------------------+----------------------------------------------+
   | Edge case handling | How ambiguous cases                          |
   |                    | resolve                                      |
   +--------------------+----------------------------------------------+

                                  Table 24

   Human Evaluation:

Gaikwad                   Expires 24 July 2026                 [Page 31]
Internet-Draft          LLM Benchmarking Profiles           January 2026

    +=================+===============================================+
    | Parameter       | Report                                        |
    +=================+===============================================+
    | Evaluator count | Number of humans                              |
    +-----------------+-----------------------------------------------+
    | Rubric          | Criteria and scoring                          |
    +-----------------+-----------------------------------------------+
    | Agreement       | Inter-rater reliability (e.g., Cohen's Kappa) |
    +-----------------+-----------------------------------------------+
    | Blinding        | Whether evaluators knew system identity       |
    +-----------------+-----------------------------------------------+

                                  Table 25

4.4.5.  Secondary Metrics

        +=====================+===================================+
        | Metric              | Definition                        |
        +=====================+===================================+
        | Trace Depth         | Sequential steps in execution     |
        +---------------------+-----------------------------------+
        | Fan-out Factor      | Maximum parallel sub-requests     |
        +---------------------+-----------------------------------+
        | Sub-Request Count   | Total LLM calls per user request  |
        +---------------------+-----------------------------------+
        | Loop Incidence Rate | Fraction of tasks with repetitive |
        |                     | non-progressing actions           |
        +---------------------+-----------------------------------+
        | Stalled Task Rate   | Fraction of tasks hitting step    |
        |                     | limit without resolution          |
        +---------------------+-----------------------------------+
        | State Management    | Latency and memory for multi-turn |
        | Overhead            | context                           |
        +---------------------+-----------------------------------+

                                  Table 26

   Stalled Task Rate:

   Stalled Task Rate = Tasks_reaching_max_steps / Total_tasks

   Stalled tasks differ from loops.  A loop repeats similar actions.  A
   stalled task may try diverse actions but fail to converge.  Both
   indicate problems but different ones.

Gaikwad                   Expires 24 July 2026                 [Page 32]
Internet-Draft          LLM Benchmarking Profiles           January 2026

4.4.6.  RAG Sub-Profile

   When Compound System includes Retrieval-Augmented Generation:

                           RAG PIPELINE LATENCY

       Query --> Embed --> Search --> Rerank --> Inject --> Generate
         |         |          |          |          |          |
         Q         E          S          R          I          G
         |         |          |          |          |          |
       ----------------------------------------------------------->
       0ms      15ms       60ms       180ms      185ms      385ms
                 |          |          |          |          |
                 +--15ms----+          |          |          |
                      +-----45ms-------+          |          |
                                 +-----120ms------+          |
                                           +--5ms-+          |
                                                 +--200ms----+

       TTFT = E + S + R + I + Prefill + Queue = 385ms

                       Figure 7: RAG Pipeline Latency

   Configuration Disclosure:

          +==============+=====================================+
          | Component    | Parameters                          |
          +==============+=====================================+
          | Embedding    | Model, dimensions, batch size       |
          +--------------+-------------------------------------+
          | Vector store | Type, index configuration           |
          +--------------+-------------------------------------+
          | Search       | Top-k, similarity metric, filters   |
          +--------------+-------------------------------------+
          | Reranking    | Model (if used), top-n after rerank |
          +--------------+-------------------------------------+
          | Context      | Max tokens, formatting template     |
          +--------------+-------------------------------------+

                                 Table 27

   RAG-Specific Metrics:

Gaikwad                   Expires 24 July 2026                 [Page 33]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   +============================+=====================================+
   | Metric                     | Definition                          |
   +============================+=====================================+
   | Embedding Latency          | Query to vector conversion          |
   +----------------------------+-------------------------------------+
   | Retrieval Latency          | Search and fetch time               |
   +----------------------------+-------------------------------------+
   | Retrieval Recall           | Fraction of relevant docs retrieved |
   +----------------------------+-------------------------------------+
   | Context Injection Overhead | Additional prefill from retrieved   |
   |                            | content                             |
   +----------------------------+-------------------------------------+

                                 Table 28

   Corpus Constraints:

        +====================+====================================+
        | Characteristic     | Impact                             |
        +====================+====================================+
        | Corpus size        | Larger means longer search         |
        +--------------------+------------------------------------+
        | Document length    | Longer means more context overhead |
        +--------------------+------------------------------------+
        | Semantic diversity | More diverse reduces precision     |
        +--------------------+------------------------------------+

                                  Table 29

   Report corpus statistics: document count, average length, domain.

   Vector index must be fully built before measurement.

4.4.7.  Agentic System Boundaries

   For multi-agent or tool-using systems:

Gaikwad                   Expires 24 July 2026                 [Page 34]
Internet-Draft          LLM Benchmarking Profiles           January 2026

                       AGENTIC EXECUTION TRACE

   User Request
        |
        v
   +---------+     +---------+     +---------+
   | Planner |---->| Agent A |---->| Agent B |
   |  (LLM)  |     |  (LLM)  |     |  (LLM)  |
   +----+----+     +----+----+     +----+----+
        |               |               |
        |          +----+----+          |
        |          v         v          |
        |     +-------+ +-------+       |
        |     | Tool  | | Tool  |       |
        |     |  API  | |  DB   |       |
        |     +-------+ +-------+       |
        |          |         |          |
        |          +----+----+          |
        |               v               |
        |          +---------+          |
        +--------->|  Final  |<---------+
                   | Response|
                   +---------+

   Trace depth: 4 (Planner -> A -> Tools -> B)
   Fan-out: 2 (parallel tool calls)
   Sub-requests: 3 LLM calls

                     Figure 8: Agentic Execution Trace

   Definitions:

      +====================+========================================+
      | Term               | Definition                             |
      +====================+========================================+
      | Agent invocation   | Single LLM call with specific role     |
      +--------------------+----------------------------------------+
      | Tool call          | External capability invocation         |
      +--------------------+----------------------------------------+
      | Orchestration step | Planning/routing decision              |
      +--------------------+----------------------------------------+
      | Trace              | Complete sequence for one user request |
      +--------------------+----------------------------------------+

                                  Table 30

   Measurement Points:

Gaikwad                   Expires 24 July 2026                 [Page 35]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   +===================+======================+=======================+
   | Metric            | Start                | End                   |
   +===================+======================+=======================+
   | Per-agent latency | Agent receives input | Agent produces output |
   +-------------------+----------------------+-----------------------+
   | Per-tool latency  | Tool call initiated  | Response received     |
   +-------------------+----------------------+-----------------------+
   | Orchestration     | Previous step        | Next step starts      |
   | overhead          | complete             |                       |
   +-------------------+----------------------+-----------------------+
   | Task completion   | User request         | Final response        |
   |                   | received             | delivered             |
   +-------------------+----------------------+-----------------------+

                                 Table 31

4.4.8.  Exclusions

   Custom user application logic and bespoke agent frameworks are out of
   scope.  This profile covers general patterns, not specific
   implementations.

5.  Workload Profiles

   Workload profiles specify traffic patterns applied to infrastructure
   profiles.  They do not define measurement boundaries.

5.1.  Chatbot Workload Profile

5.1.1.  Characteristics

       +================+=========================================+
       | Characteristic | Description                             |
       +================+=========================================+
       | Interaction    | Stateful, multi-turn                    |
       +----------------+-----------------------------------------+
       | Delivery       | Streaming                               |
       +----------------+-----------------------------------------+
       | Arrival        | Closed-loop (user thinks between turns) |
       +----------------+-----------------------------------------+
       | Session length | Variable, typically 3-20 turns          |
       +----------------+-----------------------------------------+

                                 Table 32

Gaikwad                   Expires 24 July 2026                 [Page 36]
Internet-Draft          LLM Benchmarking Profiles           January 2026

5.1.2.  Required Parameters

   +===============+==========================+========================+
   | Parameter     | Description              | Example                |
   +===============+==========================+========================+
   | Arrival model | Open or closed loop      | Closed-loop            |
   +---------------+--------------------------+------------------------+
   | Think-time    | User delay between turns | Exponential, mean=5s   |
   +---------------+--------------------------+------------------------+
   | Input length  | Tokens per user message  | Log-normal, median=50  |
   +---------------+--------------------------+------------------------+
   | Output length | Tokens per response      | Log-normal,            |
   |               |                          | median=150             |
   +---------------+--------------------------+------------------------+
   | Context       | History handling         | Sliding window, 4K     |
   | retention     |                          | tokens                 |
   +---------------+--------------------------+------------------------+
   | Session       | Turns per conversation   | Geometric, mean=8      |
   | length        |                          |                        |
   +---------------+--------------------------+------------------------+

                                  Table 33

5.1.3.  Example

   Chatbot Workload: Customer Support

   Arrival: Closed-loop, 100 concurrent sessions
   Think-time: Exponential(mean=8s)
   Input: Log-normal(mu=4.0, sigma=0.8), range [10, 500]
   Output: Log-normal(mu=5.0, sigma=1.0), range [20, 1000]
   Context: Sliding window, last 4000 tokens
   Session: Geometric(p=0.12), mean ~8 turns
   System prompt: 200 tokens, shared

5.2.  Compound Workflow Workload Profile

5.2.1.  Characteristics

   +================+=================================================+
   | Characteristic | Description                                     |
   +================+=================================================+
   | Execution      | Multi-step, may include parallel branches       |
   +----------------+-------------------------------------------------+
   | Tool usage     | API calls, code execution, database queries     |
   +----------------+-------------------------------------------------+
   | Dependencies   | Steps may depend on previous outputs            |
   +----------------+-------------------------------------------------+

Gaikwad                   Expires 24 July 2026                 [Page 37]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   | Failure modes  | Steps may fail, requiring retry or alternatives |
   +----------------+-------------------------------------------------+

                                 Table 34

5.2.2.  Required Parameters

    +=================+=====================+=========================+
    | Parameter       | Description         | Example                 |
    +=================+=====================+=========================+
    | Task complexity | Steps per task      | Fixed=5 or distribution |
    +-----------------+---------------------+-------------------------+
    | Fan-out pattern | Parallel vs         | Max parallel=3          |
    |                 | sequential          |                         |
    +-----------------+---------------------+-------------------------+
    | Tool latency    | External dependency | Real, mocked, simulated |
    |                 | behavior            |                         |
    +-----------------+---------------------+-------------------------+
    | Failure         | Simulated failures  | 5% tool failure rate    |
    | injection       |                     |                         |
    +-----------------+---------------------+-------------------------+
    | Retry behavior  | Failure handling    | Max 2 retries,          |
    |                 |                     | exponential backoff     |
    +-----------------+---------------------+-------------------------+

                                  Table 35

5.2.3.  External Dependency Handling

   Compound workflows depend on external systems.  Disclose handling:

       +===========+===================+===========================+
       | Approach  | Description       | When                      |
       +===========+===================+===========================+
       | Real      | Actual API calls  | Production-representative |
       +-----------+-------------------+---------------------------+
       | Mocked    | Fixed responses   | Controlled experiments    |
       +-----------+-------------------+---------------------------+
       | Simulated | Statistical model | Reproducible benchmarks   |
       +-----------+-------------------+---------------------------+

                                  Table 36

   Report observed latency and failure rate for real dependencies.
   Report configured values for mocked dependencies.

Gaikwad                   Expires 24 July 2026                 [Page 38]
Internet-Draft          LLM Benchmarking Profiles           January 2026

6.  Delta Measurement Model

   Section 4 and Section 5 defined individual profiles.  Production
   systems compose multiple profiles.  A request may pass through
   Gateway, Firewall, and Engine before response generation.

   Meaningful comparison across composed systems requires attributing
   latency to each component.  This section defines the delta
   measurement model.

6.1.  Timestamp Reference

   Consider a request flowing through a full stack:

Gaikwad                   Expires 24 July 2026                 [Page 39]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Client
     |
     |  t0: request sent
     v
   +-------------------+
   |    AI Gateway     |
   |  t1: arrives      |
   |  t2: exits        |
   +-------------------+
     |
     v
   +-------------------+
   |   AI Firewall     |
   |  t3: arrives      |
   |  t4: decision     |
   |  t5: exits        |
   +-------------------+
     |
     v
   +-------------------+
   |   Model Engine    |
   |  t6: queue entry  |
   |  t6a: exec start  |
   |  t7: first token  |
   |  t8: last token   |
   +-------------------+
     |
     v
   +-------------------+
   |   Output Path     |
   |  t9: fw receives  |
   |  t10: fw releases |
   |  t11: gw releases |
   +-------------------+
     |
     v
     t12: client receives first token

                     Figure 9: Request Flow Timestamps

6.2.  Timestamp Definitions

         +===========+==========+===============================+
         | Timestamp | Location | Event                         |
         +===========+==========+===============================+
         | t0        | Client   | Request transmission begins   |
         +-----------+----------+-------------------------------+
         | t1        | Gateway  | Request arrives               |

Gaikwad                   Expires 24 July 2026                 [Page 40]
Internet-Draft          LLM Benchmarking Profiles           January 2026

         +-----------+----------+-------------------------------+
         | t2        | Gateway  | Request exits toward firewall |
         +-----------+----------+-------------------------------+
         | t3        | Firewall | Request arrives               |
         +-----------+----------+-------------------------------+
         | t4        | Firewall | Inbound decision reached      |
         +-----------+----------+-------------------------------+
         | t5        | Firewall | Request exits toward engine   |
         +-----------+----------+-------------------------------+
         | t6        | Engine   | Request enters queue          |
         +-----------+----------+-------------------------------+
         | t6a       | Engine   | Prefill computation begins    |
         +-----------+----------+-------------------------------+
         | t7        | Engine   | First output token generated  |
         +-----------+----------+-------------------------------+
         | t8        | Engine   | Last output token generated   |
         +-----------+----------+-------------------------------+
         | t9        | Firewall | First token arrives for       |
         |           |          | outbound inspection           |
         +-----------+----------+-------------------------------+
         | t10       | Firewall | First token released after    |
         |           |          | inspection                    |
         +-----------+----------+-------------------------------+
         | t11       | Gateway  | First token exits toward      |
         |           |          | client                        |
         +-----------+----------+-------------------------------+
         | t12       | Client   | Client receives first token   |
         +-----------+----------+-------------------------------+

                                 Table 37

6.3.  Component Deltas

   +==========================+===========+===========================+
   | Component                | Formula   | Measures                  |
   +==========================+===========+===========================+
   | Gateway inbound          | t2 - t1   | Auth, validation, routing |
   +--------------------------+-----------+---------------------------+
   | Firewall inbound (pass)  | t5 - t3   | Prompt inspection         |
   +--------------------------+-----------+---------------------------+
   | Firewall inbound (block) | t4 - t3   | Time to block             |
   +--------------------------+-----------+---------------------------+
   | Engine queue             | t6a - t6  | Wait before execution     |
   +--------------------------+-----------+---------------------------+
   | Engine prefill           | t7 - t6a  | Prefill computation       |
   +--------------------------+-----------+---------------------------+
   | Engine TTFT              | t7 - t6   | Queue plus prefill        |
   +--------------------------+-----------+---------------------------+

Gaikwad                   Expires 24 July 2026                 [Page 41]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   | Firewall outbound        | t10 - t9  | Output inspection         |
   +--------------------------+-----------+---------------------------+
   | Gateway outbound         | t11 - t10 | Response processing       |
   +--------------------------+-----------+---------------------------+

                                 Table 38

6.4.  End-to-End Metrics

       +======================+==========+========================+
       | Metric               | Formula  | Notes                  |
       +======================+==========+========================+
       | Engine TTFT          | t7 - t6  | At engine boundary     |
       +----------------------+----------+------------------------+
       | System TTFT          | t12 - t0 | Client-observed        |
       +----------------------+----------+------------------------+
       | Output path overhead | t12 - t7 | Delay from engine emit |
       |                      |          | to client receive      |
       +----------------------+----------+------------------------+

                                 Table 39

6.5.  Clock Synchronization

   Delta metrics within a single component (t2 - t1, both from gateway
   clock) are reliable.  Cross-component deltas (t6 - t5) require clock
   synchronization.

   For end-to-end metrics involving client timestamps (t0, t12), clock
   skew introduces error.

   Options:

   1.  Single-machine measurement (client and server share clock)

   2.  Measure and report skew bounds

   3.  Report server-side metrics only when skew is too large

   Recommended practice: Calculate deltas within components rather than
   across boundaries when possible.

   See Section 9.3 for synchronization requirements.

7.  Profile Composition

Gaikwad                   Expires 24 July 2026                 [Page 42]
Internet-Draft          LLM Benchmarking Profiles           January 2026

7.1.  Composite SUT Declaration

   When SUT includes multiple profiles, testers MUST:

   1.  Enumerate all components in request path:

Client -> AI Gateway -> AI Firewall -> Model Engine -> AI Firewall -> Client

   2.  Declare measurement boundary:

       +===============+==========================================+
       | Type          | Description                              |
       +===============+==========================================+
       | Full-stack    | Client to response, all components       |
       +---------------+------------------------------------------+
       | Per-component | Separate measurement at each boundary    |
       +---------------+------------------------------------------+
       | Partial       | Specific subset (e.g., Gateway + Engine) |
       +---------------+------------------------------------------+

                                 Table 40

   3.  Provide delta decomposition:

   Component          | TTFT Contribution | Throughput Impact
   -------------------|-------------------|------------------
   AI Gateway         | +15ms             | -3%
   AI Firewall (in)   | +45ms             | -8%
   Model Engine       | 180ms (baseline)  | baseline
   AI Firewall (out)  | +12ms*            | -12%
   -------------------|-------------------|------------------
   Total              | 252ms             | -22%

   *Outbound adds to client-observed TTFT, not engine TTFT

7.2.  Composition Validation

   Measure components independently before measuring composite:

   1.  Engine alone: TTFT_engine = 180ms

   2.  Gateway + Engine: TTFT_gw = 195ms, Gateway_delta = 15ms

   3.  Firewall + Engine: TTFT_fw = 225ms, Firewall_delta = 45ms

   4.  Full stack: TTFT_full = 252ms

   5.  Validate: TTFT_engine + deltas approximately equals TTFT_full

Gaikwad                   Expires 24 July 2026                 [Page 43]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   If validation fails, interaction effects exist.  Document them.

7.3.  Interaction Effects

   Components may interact beyond simple addition:

   +==============+==============================+=====================+
   | Effect       | Description                  | Example             |
   +==============+==============================+=====================+
   | Batching     | Gateway batching conflicts   | Gateway batches 8,  |
   | interference | with engine                  | engine max is 4     |
   +--------------+------------------------------+---------------------+
   | Cache        | High gateway cache hit means | Biased difficulty   |
   | interaction  | engine sees hard queries     |                     |
   +--------------+------------------------------+---------------------+
   | Backpressure | Slow component causes        | Firewall slowdown   |
   |              | upstream queuing             | grows gateway       |
   |              |                              | queue               |
   +--------------+------------------------------+---------------------+
   | Timeout      | Mismatched timeouts waste    | See below           |
   | cascades     | resources                    |                     |
   +--------------+------------------------------+---------------------+

                                  Table 41

   Timeout Cascades:

Gaikwad                   Expires 24 July 2026                 [Page 44]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   TIMEOUT CASCADE (mismatched configurations)

   Gateway timeout:  10s  -------------+
   Firewall timeout: 15s  ---------------------+
   Engine timeout:   30s  -------------------------------------+
                          |            |       |               |
   Time: 0s              10s          15s     30s
         |                |            |       |
         +-- Request ---->|            |       |
         |                |            |       |
         |   Gateway -----X timeout    |       |
         |   (returns error to client) |       |
         |                |            |       |
         |   Firewall -----------------+       |
         |   (still waiting)           |       |
         |                             |       |
         |   Engine ---------------------------+
         |   (completes at 12s, result discarded)
         |                             |       |
         +-------------------------------------+

   Result: Client gets error at 10s. Engine wastes 12s of compute.

                     Figure 10: Timeout Cascade Example

   Report timeout configurations and note mismatches.

8.  Access Logging Requirements

8.1.  Minimum Fields

   All profiles MUST log:

Gaikwad                   Expires 24 July 2026                 [Page 45]
Internet-Draft          LLM Benchmarking Profiles           January 2026

            +============+===================================+
            | Field      | Description                       |
            +============+===================================+
            | timestamp  | Request start time                |
            +------------+-----------------------------------+
            | request_id | Unique identifier                 |
            +------------+-----------------------------------+
            | profile    | Infrastructure profile under test |
            +------------+-----------------------------------+
            | workload   | Workload profile applied          |
            +------------+-----------------------------------+
            | latency_ms | Total request latency             |
            +------------+-----------------------------------+
            | status     | Success, error, timeout           |
            +------------+-----------------------------------+

                                 Table 42

8.2.  Model Engine Fields

            +=================+==============================+
            | Field           | Description                  |
            +=================+==============================+
            | queue_time_ms   | Time in queue                |
            +-----------------+------------------------------+
            | prefill_time_ms | Prefill latency              |
            +-----------------+------------------------------+
            | decode_time_ms  | Generation time              |
            +-----------------+------------------------------+
            | batch_size      | Concurrent requests in batch |
            +-----------------+------------------------------+
            | token_count_in  | Input tokens                 |
            +-----------------+------------------------------+
            | token_count_out | Output tokens                |
            +-----------------+------------------------------+

                                 Table 43

8.3.  AI Firewall Fields

               +====================+======================+
               | Field              | Description          |
               +====================+======================+
               | direction          | Inbound or outbound  |
               +--------------------+----------------------+
               | decision           | Allow, block, modify |
               +--------------------+----------------------+
               | policy_triggered   | Which policy matched |

Gaikwad                   Expires 24 July 2026                 [Page 46]
Internet-Draft          LLM Benchmarking Profiles           January 2026

               +--------------------+----------------------+
               | confidence         | Detection confidence |
               +--------------------+----------------------+
               | inspection_time_ms | Analysis time        |
               +--------------------+----------------------+

                                  Table 44

8.4.  Compound System Fields

              +==============+==============================+
              | Field        | Description                  |
              +==============+==============================+
              | trace_id     | Identifier linking all steps |
              +--------------+------------------------------+
              | step_count   | Total orchestration steps    |
              +--------------+------------------------------+
              | tool_calls   | List of tools invoked        |
              +--------------+------------------------------+
              | success_type | Hard, soft, or failure       |
              +--------------+------------------------------+

                                  Table 45

8.5.  AI Gateway Fields

                +=================+======================+
                | Field           | Description          |
                +=================+======================+
                | cache_status    | Hit, miss, or bypass |
                +-----------------+----------------------+
                | route_target    | Selected backend     |
                +-----------------+----------------------+
                | token_count_in  | Input tokens         |
                +-----------------+----------------------+
                | token_count_out | Output tokens        |
                +-----------------+----------------------+

                                 Table 46

8.6.  OpenTelemetry Integration

   OpenTelemetry integration SHOULD be supported.  Reference GenAI
   semantic conventions when available.

Gaikwad                   Expires 24 July 2026                 [Page 47]
Internet-Draft          LLM Benchmarking Profiles           January 2026

9.  Measurement Considerations

9.1.  Baseline and Delta Reporting

   For intermediary components (Gateway, Firewall), provide differential
   measurements:

   1.  Measure downstream directly (baseline)

   2.  Measure through intermediary

   3.  Compute delta

   4.  Report both absolute and delta

9.2.  Warm-up and Steady State

   Declare whether results include cold start.

               +==============+===========================+
               | Profile      | Cold Start Factors        |
               +==============+===========================+
               | Model Engine | JIT compilation, KV cache |
               |              | allocation, batch ramp-up |
               +--------------+---------------------------+
               | AI Gateway   | Connection pool, cache    |
               |              | population                |
               +--------------+---------------------------+
               | AI Firewall  | Model loading, rule       |
               |              | compilation               |
               +--------------+---------------------------+
               | Compound     | All above plus retrieval  |
               | System       | index loading             |
               +--------------+---------------------------+

                                 Table 47

   If excluding cold start, report warm-up procedure and duration.

9.3.  Clock Synchronization

    +==========================+==================+===================+
    | Configuration            | Minimum Accuracy | Method            |
    +==========================+==================+===================+
    | Single-machine           | Inherent         | N/A               |
    +--------------------------+------------------+-------------------+
    | Same rack                | 1ms              | NTP               |
    +--------------------------+------------------+-------------------+

Gaikwad                   Expires 24 July 2026                 [Page 48]
Internet-Draft          LLM Benchmarking Profiles           January 2026

    | Distributed              | 100us            | PTP               |
    +--------------------------+------------------+-------------------+
    | Sub-millisecond analysis | 10us             | PTP with hardware |
    |                          |                  | timestamps        |
    +--------------------------+------------------+-------------------+

                                  Table 48

   Reports MUST declare:

   *  Synchronization method

   *  Estimated maximum skew

   *  Single-point or distributed measurement

9.4.  Streaming Protocol Considerations

    +==============+===========================+======================+
    | Profile      | Recommended Protocol      | Notes                |
    +==============+===========================+======================+
    | Model Engine | gRPC streaming            | Lower overhead       |
    +--------------+---------------------------+----------------------+
    | AI Gateway   | SSE over HTTP             | Broad compatibility  |
    +--------------+---------------------------+----------------------+
    | AI Firewall  | Match upstream/downstream | Minimize translation |
    +--------------+---------------------------+----------------------+
    | Compound     | SSE or WebSocket          | Client dependent     |
    | System       |                           |                      |
    +--------------+---------------------------+----------------------+

                                  Table 49

   Report chunk size distribution when measuring ITL.

10.  Security Considerations

10.1.  Bidirectional Enforcement Gaps

   AI Firewalls enforcing only one direction leave systems exposed.

   Inbound-only gaps:

   *  Cannot prevent PII leakage

   *  Cannot catch policy violations from model

   *  Cannot stop tool misuse

Gaikwad                   Expires 24 July 2026                 [Page 49]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Outbound-only gaps:

   *  Cannot prevent prompt injection

   *  Cannot stop jailbreak attempts

   *  Malicious content reaches model

   Declare which directions are enforced.  "AI Firewall protection"
   without direction is incomplete.

10.2.  Adversarial Workload Handling

   Security requirements for adversarial benchmarks:

   *  Samples MUST NOT contain working exploits

   *  Use sanitized patterns or synthetic constructs

   *  Reference published taxonomies (OWASP LLM Top 10, MITRE ATLAS)

   *  Do not publish novel attacks discovered during testing

10.3.  Side-Channel Considerations

   Performance characteristics may leak information:

      +=========+======================================+============+
      | Channel | Risk                                 | Mitigation |
      +=========+======================================+============+
      | Timing  | Decision time reveals classification | Add noise  |
      +---------+--------------------------------------+------------+
      | Cache   | Hit patterns reveal similarity       | Per-tenant |
      |         |                                      | isolation  |
      +---------+--------------------------------------+------------+
      | Routing | Balancing reveals backend state      | Randomize  |
      +---------+--------------------------------------+------------+

                                  Table 50

   Multi-tenant benchmarks SHOULD measure side-channel exposure.

11.  References

11.1.  Normative References

Gaikwad                   Expires 24 July 2026                 [Page 50]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   [I-D.gaikwad-llm-benchmarking-terminology]
              Gaikwad, M., "Benchmarking Terminology for Large Language
              Model Serving", Work in Progress, Internet-Draft, draft-
              gaikwad-llm-benchmarking-terminology, 2026,
              <https://datatracker.ietf.org/doc/html/draft-gaikwad-llm-
              benchmarking-terminology>.

   [I-D.gaikwad-llm-benchmarking-methodology]
              Gaikwad, M., "Benchmarking Methodology for Large Language
              Model Serving", Work in Progress, Internet-Draft, draft-
              gaikwad-llm-benchmarking-methodology, 2026,
              <https://datatracker.ietf.org/doc/html/draft-gaikwad-llm-
              benchmarking-methodology>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2.  Informative References

   [RFC2647]  Newman, D., "Benchmarking Terminology for Firewall
              Performance", RFC 2647, August 1999,
              <https://www.rfc-editor.org/info/rfc2647>.

   [RFC3511]  Hickman, B., Newman, D., Tadjudin, S., and T. Martin,
              "Benchmarking Methodology for Firewall Performance",
              RFC 3511, April 2003,
              <https://www.rfc-editor.org/info/rfc3511>.

   [OWASP-LLM]
              OWASP Foundation, "OWASP Top 10 for Large Language Model
              Applications", 2023, <https://owasp.org/www-project-top-
              10-for-large-language-model-applications/>.

   [BIPIA]    Yi, J., Xie, Y., Zhu, B., Hines, K., Kiciman, E., Sun, G.,
              and X. Xie, "Benchmarking and Defending Against Indirect
              Prompt Injection Attacks on Large Language Models", 2023,
              <https://arxiv.org/abs/2312.14197>.

   [DISTSERVE]
              Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X.,
              Jin, X., and H. Zhang, "DistServe: Disaggregating Prefill
              and Decoding for Goodput-optimized Large Language Model

Gaikwad                   Expires 24 July 2026                 [Page 51]
Internet-Draft          LLM Benchmarking Profiles           January 2026

              Serving", OSDI 2024, 2024,
              <https://www.usenix.org/conference/osdi24/presentation/
              zhong-yinmin>.

   [MOONCAKE] Qin, R., Li, Z., He, W., Zhang, M., Wu, Y., Zheng, W., and
              L. Zhou, "Mooncake: A KVCache-centric Disaggregated
              Architecture for LLM Serving", 2024,
              <https://arxiv.org/abs/2407.00079>.

Appendix A.  Example Benchmark Report Structure

   1. Executive Summary
      - SUT and profile(s) used
      - Key results

   2. System Configuration
      - Hardware
      - Software versions
      - Profile-specific config (per Section 4)

   3. Workload Specification
      - Workload profile
      - Parameters (per Section 5)
      - Dataset sources

   4. Methodology
      - Measurement boundary
      - Clock synchronization
      - Warm-up procedure
      - Duration and request counts

   5. Results
      - Primary metrics with percentiles
      - Secondary metrics
      - Delta decomposition (if composite)

   6. Analysis
      - Observations
      - Interaction effects
      - Limitations

   7. Reproduction
      - Config files
      - Scripts
      - Random seeds

Author's Address

Gaikwad                   Expires 24 July 2026                 [Page 52]
Internet-Draft          LLM Benchmarking Profiles           January 2026

   Madhava Gaikwad
   Independent Researcher
   Email: gaikwad.madhav@gmail.com

Gaikwad                   Expires 24 July 2026                 [Page 53]