Scenarios and Simulation Results of PCE in Native IP Network
draft-ietf-teas-native-ip-scenarios-12

Document Type Active Internet-Draft (teas WG)
Last updated 2019-11-04 (latest revision 2019-10-29)
Replaces draft-wang-teas-ccdr
Stream IETF
Intended RFC status Informational
Formats plain text xml pdf htmlized bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Lou Berger
Shepherd write-up Show (last changed 2019-07-10)
IESG IESG state RFC Ed Queue
Consensus Boilerplate Yes
Telechat date
Responsible AD Deborah Brungard
Send notices to Lou Berger <lberger@labn.net>
IANA IANA review state Version Changed - Review Needed
IANA action state No IANA Actions
RFC Editor RFC Editor state EDIT
TEAS Working Group                                               A. Wang
Internet-Draft                                             China Telecom
Intended status: Informational                                  X. Huang
Expires: May 1, 2020                                              C. Kou
                                                                    BUPT
                                                                   Z. Li
                                                            China Mobile
                                                                   P. Mi
                                                     Huawei Technologies
                                                        October 29, 2019

      Scenarios and Simulation Results of PCE in Native IP Network
                 draft-ietf-teas-native-ip-scenarios-12

Abstract

   Requirements for providing the End to End(E2E) performance assurance
   are emerging within the service provider networks.  While there are
   various technology solutions, there is no single solution that can
   fulfill these requirements for a native IP network.  In particular,
   there is a need for a universal (E2E) solution that can cover both
   intra- and inter-domain scenarios.

   One feasible E2E traffic engineering solution is the addition of
   central control in a native IP network.  This document describes
   various complex scenarios and simulation results when applying the
   Path Computation Element (PCE) in a native IP network.  This
   solution, referred to as Centralized Control Dynamic Routing (CCDR),
   integrates the advantage of using distributed protocols and the power
   of a centralized control technology, providing traffic engineering
   for native IP networks in a manner that applies equally to intra- and
   inter-domain scenarios.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

Wang, et al.               Expires May 1, 2020                  [Page 1]
Internet-Draft    CCDR Scenario and Simulation Results      October 2019

   This Internet-Draft will expire on May 1, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  CCDR Scenarios  . . . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  QoS Assurance for Hybrid Cloud-based Application  . . . .   4
     3.2.  Link Utilization Maximization . . . . . . . . . . . . . .   5
     3.3.  Traffic Engineering for Multi-Domain  . . . . . . . . . .   6
     3.4.  Network Temporal Congestion Elimination . . . . . . . . .   7
   4.  CCDR Simulation . . . . . . . . . . . . . . . . . . . . . . .   7
     4.1.  Case Study for CCDR Algorithm . . . . . . . . . . . . . .   8
     4.2.  Topology Simulation . . . . . . . . . . . . . . . . . . .   9
     4.3.  Traffic Matrix Simulation . . . . . . . . . . . . . . . .  10
     4.4.  CCDR End-to-End Path Optimization . . . . . . . . . . . .  10
     4.5.  Network Temporal Congestion Elimination . . . . . . . . .  12
   5.  CCDR Deployment Consideration . . . . . . . . . . . . . . . .  14
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
   8.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  15
   9.  Acknowledgement . . . . . . . . . . . . . . . . . . . . . . .  15
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  15
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  15
     10.2.  Informative References . . . . . . . . . . . . . . . . .  16
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16
Show full document text