Recommendations for RSVP-TE and Segment Routing LSP co-existence
draft-ietf-teas-sr-rsvp-coexistence-rec-04

Document Type Active Internet-Draft (teas WG)
Last updated 2018-07-15 (latest revision 2018-05-16)
Replaces draft-sitaraman-sr-rsvp-coexistence-rec
Stream IETF
Intended RFC status Informational
Formats plain text pdf html bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Lou Berger
Shepherd write-up Show (last changed 2017-11-28)
IESG IESG state RFC Ed Queue
Consensus Boilerplate Yes
Telechat date
Responsible AD Deborah Brungard
Send notices to Lou Berger <lberger@labn.net>
IANA IANA review state IANA OK - No Actions Needed
IANA action state No IC
RFC Editor RFC Editor state AUTH48
TEAS Working Group                                     H. Sitaraman, Ed.
Internet-Draft                                                 V. Beeram
Intended status: Informational                          Juniper Networks
Expires: November 17, 2018                                      I. Minei
                                                            Google, Inc.
                                                            S. Sivabalan
                                                     Cisco Systems, Inc.
                                                            May 16, 2018

    Recommendations for RSVP-TE and Segment Routing LSP co-existence
             draft-ietf-teas-sr-rsvp-coexistence-rec-04.txt

Abstract

   Operators are looking to introduce services over Segment Routing (SR)
   LSPs in networks running Resource Reservation Protocol (RSVP-TE)
   LSPs.  In some instances, operators are also migrating existing
   services from RSVP-TE to SR LSPs.  For example, there might be
   certain services that are well suited for SR and need to co-exist
   with RSVP-TE in the same network.  Such introduction or migration of
   traffic to SR might require co-existence with RSVP-TE in the same
   network for an extended period of time depending on the operator's
   intent.  The following document provides solution options for keeping
   the traffic engineering database consistent across the network,
   accounting for the different bandwidth utilization between SR and
   RSVP-TE.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 17, 2018.

Sitaraman, et al.       Expires November 17, 2018               [Page 1]
Internet-Draft       RSVP-TE and SR LSP co-existence            May 2018

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Conventions used in this document . . . . . . . . . . . . . .   3
   3.  Solution options  . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Static partitioning of bandwidth  . . . . . . . . . . . .   4
     3.2.  Centralized management of available capacity  . . . . . .   4
     3.3.  Flooding SR utilization in IGP  . . . . . . . . . . . . .   4
     3.4.  Running SR over RSVP-TE . . . . . . . . . . . . . . . . .   5
     3.5.  TED consistency by reflecting SR traffic  . . . . . . . .   5
   4.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   8
   5.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .   8
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  10
   Appendix A.  Multiplier value range . . . . . . . . . . . . . . .  11
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  11

1.  Introduction

   Introduction of SR [I-D.ietf-spring-segment-routing] in the same
   network domain as RSVP-TE [RFC3209] presents the problem of
   accounting for SR traffic and making RSVP-TE aware of the actual
   available bandwidth on the network links.  RSVP-TE is not aware of
   how much bandwidth is being consumed by SR services on the network
   links and hence both at computation time (for a distributed
   computation) and at signaling time RSVP-TE LSPs will incorrectly
   place loads.  This is true where RSVP-TE paths are distributed or
   centrally computed without a common entity managing both SR and RSVP-
   TE computation for the entire network domain.
Show full document text