Distributed SFC control operation
draft-bernardos-sfc-distributed-control-operation-01

Document Type Active Internet-Draft (individual)
Last updated 2020-09-01
Stream (None)
Intended RFC status (None)
Formats plain text pdf htmlized (tools) htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
SFC WG                                                     CJ. Bernardos
Internet-Draft                                                      UC3M
Intended status: Experimental                                  A. Mourad
Expires: March 5, 2021                                      InterDigital
                                                       September 1, 2020

                   Distributed SFC control operation
          draft-bernardos-sfc-distributed-control-operation-01

Abstract

   Service function chaining (SFC) allows the instantiation of an
   ordered set of service functions and subsequent "steering" of traffic
   through them.  In order to set up and maintain SFC instances, a
   control plane is required, which typically is centralized.  In
   certain environments, such as fog computing ones, such centralized
   control might not be feasible, calling for distributed SFC control
   solutions.  This document describes a general framework for
   distributed SFC operation.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 5, 2021.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Bernardos & Mourad        Expires March 5, 2021                 [Page 1]
Internet-Draft      Distributed SFC control operation     September 2020

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Problem statement . . . . . . . . . . . . . . . . . . . . . .   5
   4.  Distributed SFC control operation . . . . . . . . . . . . . .   7
     4.1.  P-CTRL taking over C-CTRL . . . . . . . . . . . . . . . .   8
       4.1.1.  P-CTRL taking over C-CTRL due to a local monitoring
               event . . . . . . . . . . . . . . . . . . . . . . . .   8
       4.1.2.  P-CTRL taking over C-CTRL due to a C-CTRL failure . .  10
       4.1.3.  C-CTRL gaining back control . . . . . . . . . . . . .  12
     4.2.  Inter P-CTRL seamless handover  . . . . . . . . . . . . .  13
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  14
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  14
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  14
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  15

1.  Introduction

   Virtualization of functions provides operators with tools to deploy
   new services much faster, as compared to the traditional use of
   monolithic and tightly integrated dedicated machinery.  As a natural
   next step, mobile network operators need to re-think how to evolve
   their existing network infrastructures and how to deploy new ones to
   address the challenges posed by the increasing customers' demands, as
   well as by the huge competition among operators.  All these changes
   are triggering the need for a modification in the way operators and
   infrastructure providers operate their networks, as they need to
   significantly reduce the costs incurred in deploying a new service
   and operating it.  Some of the mechanisms that are being considered
   and already adopted by operators include: sharing of network
   infrastructure to reduce costs, virtualization of core servers
   running in data centers as a way of supporting their load-aware
   elastic dimensioning, and dynamic energy policies to reduce the
   monthly electricity bill.  However, this has proved to be tough to
   put in practice, and not enough.  Indeed, it is not easy to deploy
Show full document text