Skip to main content

BGP Link-State Extensions for Seamless BFD
draft-ietf-idr-bgp-ls-sbfd-extensions-10

Document Type Active Internet-Draft (idr WG)
Authors Zhenbin Li , Shunwan Zhuang , Ketan Talaulikar , Sam Aldrin , Jeff Tantsura , Greg Mirsky
Last updated 2022-05-09 (Latest revision 2022-05-05)
Replaces draft-li-idr-bgp-ls-sbfd-extensions
Stream Internet Engineering Task Force (IETF)
Intended RFC status Proposed Standard
Formats plain text htmlized pdfized bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Jeffrey Haas
Shepherd write-up Show Last changed 2022-05-02
IESG IESG state RFC Ed Queue
Action Holders
(None)
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Alvaro Retana
Send notices to shares@ndzh.com, jhaas@pfrc.org, jhaas@juniper.net; jie.dong@huawei.com;
IANA IANA review state IANA OK - Actions Needed
IANA action state RFC-Ed-Ack
RFC Editor RFC Editor state EDIT
Details
draft-ietf-idr-bgp-ls-sbfd-extensions-10
Inter-Domain Routing                                               Z. Li
Internet-Draft                                                 S. Zhuang
Intended status: Standards Track                                  Huawei
Expires: November 6, 2022                             K. Talaulikar, Ed.
                                                              Arrcus Inc
                                                               S. Aldrin
                                                             Google, Inc
                                                             J. Tantsura
                                                               Microsoft
                                                               G. Mirsky
                                                                Ericsson
                                                             May 5, 2022

               BGP Link-State Extensions for Seamless BFD
                draft-ietf-idr-bgp-ls-sbfd-extensions-10

Abstract

   Seamless Bidirectional Forwarding Detection (S-BFD) defines a
   simplified mechanism to use Bidirectional Forwarding Detection (BFD)
   with large portions of negotiation aspects eliminated, thus providing
   benefits such as quick provisioning as well as improved control and
   flexibility to network nodes initiating the path monitoring.  The
   link-state routing protocols (IS-IS and OSPF) have been extended to
   advertise the Seamless BFD (S-BFD) Discriminators.

   This document defines extensions to the BGP Link-state address-family
   to carry the S-BFD Discriminators' information via BGP.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 6, 2022.

Li, et al.              Expires November 6, 2022                [Page 1]
Internet-Draft         BGP-LS Extensions for S-BFD              May 2022

Copyright Notice

   Copyright (c) 2022 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
     2.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
   3.  BGP-LS Extensions for S-BFD Discriminator . . . . . . . . . .   3
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   4
   5.  Manageability Considerations  . . . . . . . . . . . . . . . .   5
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   5
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   5
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   6
     8.2.  Informative References  . . . . . . . . . . . . . . . . .   6
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   7

1.  Introduction

   Seamless Bidirectional Forwarding Detection (S-BFD) [RFC7880] defines
   a simplified mechanism to use Bidirectional Forwarding Detection
   (BFD) [RFC5880] with large portions of negotiation aspects
   eliminated, thus providing benefits such as quick provisioning as
   well as improved control and flexibility to network nodes initiating
   the path monitoring.

   For monitoring of a service path end-to-end via S-BFD, the headend
   node (i.e.  Initiator) needs to know the S-BFD Discriminator of the
   destination/tail-end node (i.e.  Responder) of that service.  The
   link-state routing protocols (IS-IS [RFC7883] and OSPF [RFC7884])
   have been extended to advertise the S-BFD Discriminators.  With this,
   an Initiator can learn the S-BFD discriminator for all Responders
   within its IGP area/level, or optionally within the domain.  With
   networks being divided into multiple IGP domains for scaling and

Li, et al.              Expires November 6, 2022                [Page 2]
Internet-Draft         BGP-LS Extensions for S-BFD              May 2022

   operational considerations, the service endpoints that require end to
   end S-BFD monitoring often span across IGP domains.

   BGP Link-State (BGP-LS) [RFC7752] enables the collection and
   distribution of IGP link-state topology information via BGP sessions
   across IGP areas/levels and domains.  The S-BFD discriminator(s) of a
   node can thus be distributed along with the topology information via
   BGP-LS across IGP domains and even across multiple Autonomous Systems
   (AS) within an administrative domain.

   This document defines extensions to BGP-LS for carrying the S-BFD
   Discriminators information.

2.  Terminology

   This memo makes use of the terms defined in [RFC7880].

2.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  BGP-LS Extensions for S-BFD Discriminator

   BGP-LS [RFC7752] specifies the Node Network Layer Reachability
   Information (NLRI) for the advertisement of nodes and their
   attributes using the BGP-LS Attribute.  The S-BFD discriminators of a
   node are considered a node-level attribute and advertised as such.

   This document defines a new BGP-LS Attribute TLV called the S-BFD
   Discriminators TLV and its format is as follows:

Li, et al.              Expires November 6, 2022                [Page 3]
Internet-Draft         BGP-LS Extensions for S-BFD              May 2022

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Discriminator 1                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Discriminator 2 (Optional)                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               ...                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Discriminator n (Optional)                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 1: S-BFD Discriminators TLV

     where:

   o  Type: 1032

   o  Length: variable.  It MUST be a minimum of 4 octets and increments
      by 4 octets for each additional discriminator.

   o  Discriminator n: 4 octets each, carrying an S-BFD local
      discriminator value of the node.  At least one discriminator MUST
      be included in the TLV.

   The S-BFD Discriminators TLV can be added to the BGP-LS Attribute
   associated with the Node NLRI that originates the corresponding
   underlying IGP TLV/sub-TLV as described below.  This information is
   derived from the protocol specific advertisements as follows:

   o  IS-IS, as defined by the S-BFD Discriminators sub-TLV in
      [RFC7883].

   o  OSPFv2/OSPFv3, as defined by the S-BFD Discriminator TLV in
      [RFC7884].

4.  IANA Considerations

   IANA is requested to permanently allocate the following code-point
   from the "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor,
   and Attribute TLVs" registry.  The column "IS-IS TLV/Sub-TLV" defined
   in the registry does not require any value and should be left empty.

Li, et al.              Expires November 6, 2022                [Page 4]
Internet-Draft         BGP-LS Extensions for S-BFD              May 2022

         +------------+--------------------------+---------------+
         | Code Point | Description              | Reference     |
         +------------+--------------------------+---------------+
         |   1032     | S-BFD Discriminators TLV | This document |
         +---------------+--------------------------+------------+

          Table 1: S-BFD Discriminators TLV Code-Point Allocation

5.  Manageability Considerations

   The new protocol extensions introduced in this document augment the
   existing IGP topology information that was distributed via BGP-LS
   [RFC7752].  Procedures and protocol extensions defined in this
   document do not affect the BGP protocol operations and management
   other than as discussed in the Manageability Considerations section
   of [RFC7752].  Specifically, the malformed NLRIs attribute tests in
   the Fault Management section of [RFC7752] now encompass the new TLV
   for the BGP-LS NLRI in this document.

6.  Security Considerations

   The new protocol extensions introduced in this document augment the
   existing IGP topology information that can be distributed via BGP-LS
   [RFC7752].  Procedures and protocol extensions defined in this
   document do not affect the BGP security model other than as discussed
   in the Security Considerations section of [RFC7752].  More
   specifically, the aspects related to limiting the nodes and consumers
   with which the topology information is shared via BGP-LS to trusted
   entities within an administrative domain.

   The TLV introduced in this document is used to propagate IGP defined
   information ([RFC7883] and [RFC7884]).  The TLV represents
   information used to set up S-BFD sessions.  The IGP instances
   originating this information are assumed to support any required
   security and authentication mechanisms (as described in [RFC7883] and
   [RFC7884]).

   Advertising the S-BFD Discriminators via BGP-LS makes it possible for
   attackers to initiate S-BFD sessions using the advertised
   information.  The vulnerabilities this poses and how to mitigate them
   are discussed in [RFC7880].

7.  Acknowledgements

   The authors would like to thank Nan Wu for his contributions to this
   work.  The authors would also like to thank Gunter Van De Velde and
   Thomas Fossati for their reviews.  The authors would also like to

Li, et al.              Expires November 6, 2022                [Page 5]
Internet-Draft         BGP-LS Extensions for S-BFD              May 2022

   thank Jeff Haas for his shepherd review and Alvaro Retana for his AD
   review of this document.

8.  References

8.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC7752]  Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
              S. Ray, "North-Bound Distribution of Link-State and
              Traffic Engineering (TE) Information Using BGP", RFC 7752,
              DOI 10.17487/RFC7752, March 2016,
              <https://www.rfc-editor.org/info/rfc7752>.

   [RFC7880]  Pignataro, C., Ward, D., Akiya, N., Bhatia, M., and S.
              Pallagatti, "Seamless Bidirectional Forwarding Detection
              (S-BFD)", RFC 7880, DOI 10.17487/RFC7880, July 2016,
              <https://www.rfc-editor.org/info/rfc7880>.

   [RFC7883]  Ginsberg, L., Akiya, N., and M. Chen, "Advertising
              Seamless Bidirectional Forwarding Detection (S-BFD)
              Discriminators in IS-IS", RFC 7883, DOI 10.17487/RFC7883,
              July 2016, <https://www.rfc-editor.org/info/rfc7883>.

   [RFC7884]  Pignataro, C., Bhatia, M., Aldrin, S., and T. Ranganath,
              "OSPF Extensions to Advertise Seamless Bidirectional
              Forwarding Detection (S-BFD) Target Discriminators",
              RFC 7884, DOI 10.17487/RFC7884, July 2016,
              <https://www.rfc-editor.org/info/rfc7884>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2.  Informative References

   [RFC5880]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
              (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
              <https://www.rfc-editor.org/info/rfc5880>.

Li, et al.              Expires November 6, 2022                [Page 6]
Internet-Draft         BGP-LS Extensions for S-BFD              May 2022

Authors' Addresses

   Zhenbin Li
   Huawei
   Huawei Bld., No.156 Beiqing Rd.
   Beijing  100095
   China

   Email: lizhenbin@huawei.com

   Shunwan Zhuang
   Huawei
   Huawei Bld., No.156 Beiqing Rd.
   Beijing  100095
   China

   Email: zhuangshunwan@huawei.com

   Ketan Talaulikar (editor)
   Arrcus Inc
   India

   Email: ketant.ietf@gmail.com

   Sam Aldrin
   Google, Inc

   Email: aldrin.ietf@gmail.com

   Jeff Tantsura
   Microsoft

   Email: jefftant.ietf@gmail.com

   Greg Mirsky
   Ericsson

   Email: gregimirsky@gmail.com

Li, et al.              Expires November 6, 2022                [Page 7]