Route Leak Prevention using Roles in Update and Open messages
draft-ietf-idr-bgp-open-policy-06

Document Type Active Internet-Draft (idr WG)
Last updated 2019-07-08
Replaces draft-ymbk-idr-bgp-open-policy
Stream IETF
Intended RFC status Proposed Standard
Formats plain text xml pdf htmlized bibtex
Stream WG state WG Document
Other - see Comment Log
Document shepherd No shepherd assigned
IESG IESG state I-D Exists
Consensus Boilerplate Yes
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                          A. Azimov
Internet-Draft                                              E. Bogomazov
Intended status: Standards Track                             Qrator Labs
Expires: January 9, 2020                                         R. Bush
                                      Internet Initiative Japan & Arrcus
                                                                K. Patel
                                                            Arrcus, Inc.
                                                               K. Sriram
                                                                 US NIST
                                                            July 8, 2019

     Route Leak Prevention using Roles in Update and Open messages
                   draft-ietf-idr-bgp-open-policy-06

Abstract

   Route Leaks are the propagation of BGP prefixes which violate
   assumptions of BGP topology relationships; e.g. passing a route
   learned from one peer to another peer or to a transit provider,
   passing a route learned from one transit provider to another transit
   provider or to a peer.  Today, approaches to leak prevention rely on
   marking routes by operator configuration, with no check that the
   configuration corresponds to that of the BGP neighbor, or enforcement
   that the two BGP speakers agree on the relationship.  This document
   enhances BGP OPEN to establish agreement of the (peer, customer,
   provider, Route Server, Route Server client) relationship of two
   neighboring BGP speakers to enforce appropriate configuration on both
   sides.  Propagated routes are then marked with an OTC attribute
   according to the agreed relationship, allowing both prevention and
   detection of route leaks.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute

Azimov, et al.           Expires January 9, 2020                [Page 1]
Internet-Draft            Route Leak Prevention                July 2019

   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 9, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Peering Relationships . . . . . . . . . . . . . . . . . . . .   3
   3.  BGP Role  . . . . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Role capability . . . . . . . . . . . . . . . . . . . . . . .   4
   5.  Role correctness  . . . . . . . . . . . . . . . . . . . . . .   5
     5.1.  Strict mode . . . . . . . . . . . . . . . . . . . . . . .   5
   6.  BGP Only To Customer attribute  . . . . . . . . . . . . . . .   6
   7.  Enforcement . . . . . . . . . . . . . . . . . . . . . . . . .   6
   8.  Additional Considerations . . . . . . . . . . . . . . . . . .   7
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   10. Security Considerations . . . . . . . . . . . . . . . . . . .   8
   11. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   8
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     12.1.  Normative References . . . . . . . . . . . . . . . . . .   8
     12.2.  Informative References . . . . . . . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

Azimov, et al.           Expires January 9, 2020                [Page 2]
Internet-Draft            Route Leak Prevention                July 2019

1.  Introduction

   BGP route leaks are BGP route(s) which were learned from transit
   provider or peer and then announced to another provider or peer.  See
   [RFC7908].  These are usually the result of misconfigured or absent
   BGP route filtering or lack of coordination between two BGP speakers.

   The mechanism proposed in
   [I-D.ietf-idr-route-leak-detection-mitigation] uses large-communities
   to attempt detection of route leaks.  While signaling using
   communities is easy to implement, ut relies on operator maintained
   policy configuration which is too easily, and too often,
   misconfigured.  Another problem may occur if the community signal is
   stripped, accidentally or maliciously.

   This document provides configuration automation using 'BGP roles',
   which are negotiated using a new BGP Capability Code in OPEN message,
   [RFC5492] Sec 4.  Either or both BGP speakers MAY be configured to
   require that this capability be agreed for the BGP OPEN to succeed.

   A new BGP Path Attribute is specified that SHOULD be automatically
   configured using BGP roles.  This attribute prevents networks from
   creating leaks, and detects leaks created by third-parties.

2.  Peering Relationships

   Despite uses of words such as "Customer," "Peer." etc.; these are not
   business relationships, who pays whom, etc.  These are common terms
   to represent restrictions on BGP route propagation, sometimes known
   as the Gao-Rexford model [cite].

   A Provider:  MAY send to a customer all available prefixes.

   A Customer:  MAY send to a provider their own prefixes and prefixes
      learned from any of their customers.  A customer MUST NOT send to
      a provider prefixes learned from its peers, from other providers,
      or from Route Servers.

   A Route Server (RS)  MAY send to a RS Client all available prefixes.

   A Route Server Client (RS-client)  MAY send to an RS its own prefixes
      and prefixes learned from its customers.  A RS-client MUST NOT
      send to an RS prefixes learned from peers, from its providers, or
      from other RS(s).

   A Peer:  MAY send to a peer its own prefixes and prefixes learned
      from its customers.  A peer MUST NOT send to a peer prefixes
      learned from other peers, from its providers, or from RS(s).

Azimov, et al.           Expires January 9, 2020                [Page 3]
Internet-Draft            Route Leak Prevention                July 2019

   Of course, any BGP speaker may apply policy to reduce what is
   announced, and a recipient may apply policy to reduce the set of
   routes they accept.  Violation of the above rules may result in route
   leaks so MUST not be allowed.  Automatic enforment of these rules
   should significantly reduce configuration mistakes.  While these
   enforcing the above rules will address most BGP peering scenarios,
   their configuration isn't part of BGP itself; therefore requiring
   configuration of ingress and egress prefix filters is still strongly
   advised.

3.  BGP Role

   BGP Role is new configuration option that SHOULD be configured on
   each BGP session.  It reflects the real-world agreement between two
   BGP speakers about their relationship.

   Allowed Role values for eBGP sessions are:

   o  Provider - sender is a transit provider to neighbor;

   o  Customer - sender is transit customer of neighbor;

   o  RS - sender is a Route Server, usually at internet exchange point
      (IX)

   o  RS-Client - sender is client of RS

   o  Peer - sender and neighbor are peers;

   Since BGP Role reflects the relationship between two BGP speakers, it
   could also be used for more than route leak mitigation.

4.  Role capability

   The TLV (type, length, value) of the BGP Role capability are:

   o  Type - <TBD1>;

   o  Length - 1 (octet);

   o  Value - integer corresponding to speaker' BGP Role.

Azimov, et al.           Expires January 9, 2020                [Page 4]
Internet-Draft            Route Leak Prevention                July 2019

                      +-------+---------------------+
                      | Value | Role name           |
                      +-------+---------------------+
                      |   0   | Sender is Provider  |
                      |   1   | Sender is RS        |
                      |   2   | Sender is RS-Client |
                      |   3   | Sender is Customer  |
                      |   4   | Sender is Peer      |
                      +-------+---------------------+

                    Table 1: Predefined BGP Role Values

5.  Role correctness

   Section 3 described how BGP Role encodes the relationship between two
   BGP speakers.  But the mere presence of BGP Role doesn't
   automatically guarantee role agreement between two BGP peers.

   To enforce correctness, the BGP Role check is used with a set of
   constrains on how speakers' BGP Roles MUST correspond.  Of course,
   each speaker MUST announce and accept the BGP Role capability in the
   BGP OPEN message exchange.

   If a speaker receives a BGP Role capability, it MUST check the value
   of the received capability with its own BGP Role (if it is set).  The
   allowed pairings are (first a sender's Role, second the receiver's
   Role):

                      +-------------+---------------+
                      | Sender Role | Receiver Role |
                      +-------------+---------------+
                      | Provider    | Customer      |
                      | Customer    | Provider      |
                      | RS          | RS-Client     |
                      | RS-Client   | RS            |
                      | Peer        | Peer          |
                      +-------------+---------------+

                    Table 2: Allowed Role Capabilities

   If the Role pair is not in the above table, a speaker MUST send a
   Role Mismatch Notification (code 2, sub-code <TBD2>).

5.1.  Strict mode

   A new BGP configuration option "strict mode" is defined with values
   of true or false.  If set to true, then the speaker MUST refuse to
   establish a BGP session with a neighbor which does not announce the

Azimov, et al.           Expires January 9, 2020                [Page 5]
Internet-Draft            Route Leak Prevention                July 2019

   BGP Role capability in the OPEN message.  If a speaker rejects a
   connection, it MUST send a Connection Rejected Notification [RFC4486]
   (Notification with error code 6, subcode 5).  By default, strict mode
   SHOULD be set to false for backward compatibility with BGP speakers
   that do not yet support this mechanism.

6.  BGP Only To Customer attribute

   The Only To Customer (OTC) BGP Attribute is a new optional,
   transitive BGP Path attribute with the Type Code <TBD3>.

   This four byte attribute MUST apply the following policy:

   1.  If a route with OTC attribute is received from Customer or RS-
       client - it's a route leak and MUST be rejected.

   2.  If a route with OTC attribute is received from Peer and its value
       isn't equal to the neighbor's ASN - it's a route leak and MUST be
       rejected.

   3.  If a route is received from a Provider, Peer or RS and the OTC
       attribute has not been set it MUST be added with value equal to
       AS number of the neighbor (sender).

   The egress policy MUST be:

   1.  A route with the OTC attribute set MUST NOT be sent to providers,
       peers, or RS(s).

   2.  If route is sent to customer or peer and the OTC attribute is not
       set it MUST be added with value equal to AS number of the sender.

   Once the OTC attribute has been set, it MUST be preserved unchanged.

7.  Enforcement

   Having the relationship unequivocally agreed between the two peers in
   BGP OPEN is critical; the BGP implementations enforce the
   relationship irrespective of operator policy configuration errors.

   Similarly, the application of that relationship on prefix propagation
   using OTC MUST BE enforced by the BGP implementations, and not
   exposed to user mis-configuration.

   As opposed to communities, BGP attributes may not be generally
   modified or filtered by the operator.  The router(s) enforce them.
   This is the desired property for the OTC marking.  Hence, this
   document specifies OTC as an attribute.

Azimov, et al.           Expires January 9, 2020                [Page 6]
Internet-Draft            Route Leak Prevention                July 2019

8.  Additional Considerations

   As the BGP Role reflects the peering relationship between neighbors,
   it might have other uses.  For example, BGP Role might affect route
   priority, or be used to distinguish borders of a network if a network
   consists of multiple ASs.  Though such uses may be worthwhile, they
   are not the goal of this document.  Note that such uses would require
   local policy control.

   As BGP role configuration results in automatic creation of inbound/
   outbound filters, existence of roles should be treated as existence
   of Import and Export policy.  [RFC8212]

   There are peering relationships which are 'complex'; e.g. when both
   parties are intentionally sending prefixes received from each other
   to their peers and/or upstreams.  If multiple BGP peerings can
   segregate the 'complex' parts of the relationship, the complex
   peering roles can be segregated into different BGP sessions, and
   normal BGP Roles MUST be used on the non-complex sessions.  No Roles
   SHOULD be configured on 'complex' BGP sessions, and OTC MUST be set
   by configuration on a per-prefix basis.  There can be no measures to
   check correctness of OTC use if Role is not configured.

9.  IANA Considerations

   This document defines a new Capability Codes option [to be removed
   upon publication: http://www.iana.org/assignments/capability-codes/
   capability-codes.xhtml] [RFC5492], named "BGP Role", assigned value
   <TBD1> . The length of this capability is 1.

   The BGP Role capability includes a Value field, for which IANA is
   requested to create and maintain a new sub-registry called "BGP Role
   Value".  Assignments consist of Value and corresponding Role name.
   Initially this registry is to be populated with the data in Table 1.
   Future assignments may be made by a standard action
   procedure[RFC5226].

   This document defines new subcode, "Role Mismatch", assigned value
   <TBD2> in the OPEN Message Error subcodes registry [to be removed
   upon publication: http://www.iana.org/assignments/bgp-parameters/bgp-
   parameters.xhtml#bgp-parameters-6] [RFC4271].

   This document defines a new optional, transitive BGP Path Attributes
   option, named "Only To Customer", assigned value <TBD3> [To be
   removed upon publication: http://www.iana.org/assignments/bgp-
   parameters/bgp-parameters.xhtml#bgp-parameters-2] [RFC4271].  The
   length of this attribute is 0.

Azimov, et al.           Expires January 9, 2020                [Page 7]
Internet-Draft            Route Leak Prevention                July 2019

10.  Security Considerations

   This document proposes a mechanism for prevention of route leaks that
   are the result of BGP policy mis-configuration.

   Deliberate sending of a known conflicting BGP Role could be used to
   sabotage a BGP connection.  This is easily detectable.

   A misconfiguration in OTC setup may affect prefix propagation.  But
   the automation that is provided by BGP roles should make such
   misconfiguration unlikely.

11.  Acknowledgments

   The authors wish to thank Douglas Montgomery, Brian Dickson, Andrei
   Robachevsky, and Daniel Ginsburg for their contributions to a variant
   of this work.

12.  References

12.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
              Border Gateway Protocol 4 (BGP-4)", RFC 4271,
              DOI 10.17487/RFC4271, January 2006,
              <https://www.rfc-editor.org/info/rfc4271>.

   [RFC4486]  Chen, E. and V. Gillet, "Subcodes for BGP Cease
              Notification Message", RFC 4486, DOI 10.17487/RFC4486,
              April 2006, <https://www.rfc-editor.org/info/rfc4486>.

   [RFC5492]  Scudder, J. and R. Chandra, "Capabilities Advertisement
              with BGP-4", RFC 5492, DOI 10.17487/RFC5492, February
              2009, <https://www.rfc-editor.org/info/rfc5492>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Azimov, et al.           Expires January 9, 2020                [Page 8]
Internet-Draft            Route Leak Prevention                July 2019

12.2.  Informative References

   [I-D.ietf-idr-route-leak-detection-mitigation]
              Sriram, K. and A. Azimov, "Methods for Detection and
              Mitigation of BGP Route Leaks", draft-ietf-idr-route-leak-
              detection-mitigation-10 (work in progress), October 2018.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <https://www.rfc-editor.org/info/rfc5226>.

   [RFC7908]  Sriram, K., Montgomery, D., McPherson, D., Osterweil, E.,
              and B. Dickson, "Problem Definition and Classification of
              BGP Route Leaks", RFC 7908, DOI 10.17487/RFC7908, June
              2016, <https://www.rfc-editor.org/info/rfc7908>.

   [RFC8212]  Mauch, J., Snijders, J., and G. Hankins, "Default External
              BGP (EBGP) Route Propagation Behavior without Policies",
              RFC 8212, DOI 10.17487/RFC8212, July 2017,
              <https://www.rfc-editor.org/info/rfc8212>.

Authors' Addresses

   Alexander Azimov
   Qrator Labs

   Email: a.e.azimov@gmail.com

   Eugene Bogomazov
   Qrator Labs

   Email: eb@qrator.net

   Randy Bush
   Internet Initiative Japan & Arrcus

   Email: randy@psg.com

   Keyur Patel
   Arrcus, Inc.

   Email: keyur@arrcus.com

Azimov, et al.           Expires January 9, 2020                [Page 9]
Internet-Draft            Route Leak Prevention                July 2019

   Kotikalapudi Sriram
   US NIST

   Email: ksriram@nist.gov

Azimov, et al.           Expires January 9, 2020               [Page 10]