Postquantum Preshared Keys for IKEv2
draft-ietf-ipsecme-qr-ikev2-04

Document Type Active Internet-Draft (ipsecme WG)
Last updated 2018-07-18 (latest revision 2018-07-02)
Replaces draft-fluhrer-qr-ikev2
Stream IETF
Intended RFC status Proposed Standard
Formats plain text pdf html bibtex
Stream WG state In WG Last Call (wg milestone: May 2018 - IETF Last Call on pa... )
Document shepherd David Waltermire
IESG IESG state I-D Exists
Consensus Boilerplate Yes
Telechat date
Responsible AD (None)
Send notices to David Waltermire <david.waltermire@nist.gov>
Internet Engineering Task Force                               S. Fluhrer
Internet-Draft                                                 D. McGrew
Intended status: Standards Track                           P. Kampanakis
Expires: January 3, 2019                                   Cisco Systems
                                                              V. Smyslov
                                                              ELVIS-PLUS
                                                            July 2, 2018

                  Postquantum Preshared Keys for IKEv2
                     draft-ietf-ipsecme-qr-ikev2-04

Abstract

   The possibility of Quantum Computers pose a serious challenge to
   cryptography algorithms deployed widely today.  IKEv2 is one example
   of a cryptosystem that could be broken; someone storing VPN
   communications today could decrypt them at a later time when a
   Quantum Computer is available.  It is anticipated that IKEv2 will be
   extended to support quantum secure key exchange algorithms; however
   that is not likely to happen in the near term.  To address this
   problem before then, this document describes an extension of IKEv2 to
   allow it to be resistant to a Quantum Computer, by using preshared
   keys.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Fluhrer, et al.          Expires January 3, 2019                [Page 1]
Internet-Draft       Postquantum Security for IKEv2            July 2018

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Changes . . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.2.  Requirements Language . . . . . . . . . . . . . . . . . .   5
   2.  Assumptions . . . . . . . . . . . . . . . . . . . . . . . . .   5
   3.  Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . .   6
   4.  Upgrade procedure . . . . . . . . . . . . . . . . . . . . . .  10
   5.  PPK . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
     5.1.  PPK_ID format . . . . . . . . . . . . . . . . . . . . . .  11
     5.2.  Operational Considerations  . . . . . . . . . . . . . . .  12
       5.2.1.  PPK Distribution  . . . . . . . . . . . . . . . . . .  12
       5.2.2.  Group PPK . . . . . . . . . . . . . . . . . . . . . .  12
       5.2.3.  PPK-only Authentication . . . . . . . . . . . . . . .  13
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  16
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  16
     8.2.  Informational References  . . . . . . . . . . . . . . . .  16
   Appendix A.  Discussion and Rationale . . . . . . . . . . . . . .  17
   Appendix B.  Acknowledgements . . . . . . . . . . . . . . . . . .  18
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  18

1.  Introduction

   It is an open question whether or not it is feasible to build a
   Quantum Computer (and if so, when one might be implemented), but if
   it is, many of the cryptographic algorithms and protocols currently
   in use would be insecure.  A Quantum Computer would be able to solve
   DH and ECDH problems in polynomial time [I-D.hoffman-c2pq], and this
   would imply that the security of existing IKEv2 [RFC7296] systems
   would be compromised.  IKEv1 [RFC2409], when used with strong
   preshared keys, is not vulnerable to quantum attacks, because those
   keys are one of the inputs to the key derivation function.  If the
Show full document text