Signaling Entropy Label Capability and Entropy Readable Label Depth Using IS-IS
draft-ietf-isis-mpls-elc-12

The information below is for an old version of the document
Document Type Active Internet-Draft (lsr WG)
Last updated 2020-05-21 (latest revision 2020-04-28)
Replaces draft-xu-isis-mpls-elc, draft-ietf-idr-bgp-ls-segment-routing-rld
Stream IETF
Intended RFC status Proposed Standard
Formats pdf htmlized (tools) htmlized bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Acee Lindem
Shepherd write-up Show (last changed 2020-02-29)
IESG IESG state IESG Evaluation::Revised I-D Needed
Consensus Boilerplate Yes
Telechat date
Has enough positions to pass.
Responsible AD Alvaro Retana
Send notices to Acee Lindem <acee@cisco.com>, aretana.ietf@gmail.com
IANA IANA review state IANA OK - Actions Needed
Network Working Group                                              X. Xu
Internet-Draft                                               Alibaba Inc
Intended status: Standards Track                                 S. Kini
Expires: October 30, 2020
                                                               P. Psenak
                                                             C. Filsfils
                                                            S. Litkowski
                                                     Cisco Systems, Inc.
                                                                M. Bocci
                                                                   Nokia
                                                          April 28, 2020

  Signaling Entropy Label Capability and Entropy Readable Label Depth
                              Using IS-IS
                      draft-ietf-isis-mpls-elc-12

Abstract

   Multiprotocol Label Switching (MPLS) has defined a mechanism to load-
   balance traffic flows using Entropy Labels (EL).  An ingress Label
   Switching Router (LSR) cannot insert ELs for packets going into a
   given Label Switched Path (LSP) unless an egress LSR has indicated
   via signaling that it has the capability to process ELs, referred to
   as the Entropy Label Capability (ELC), on that tunnel.  In addition,
   it would be useful for ingress LSRs to know each LSR's capability for
   reading the maximum label stack depth and performing EL-based load-
   balancing, referred to as Entropy Readable Label Depth (ERLD).  This
   document defines a mechanism to signal these two capabilities using
   IS-IS.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on October 30, 2020.

Xu, et al.              Expires October 30, 2020                [Page 1]
Internet-Draft     Signaling ELC and ERLD using IS-IS         April 2020

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Advertising ELC Using IS-IS . . . . . . . . . . . . . . . . .   3
   4.  Advertising ERLD Using IS-IS  . . . . . . . . . . . . . . . .   4
   5.  Signaling ELC and ERLD in BGP-LS  . . . . . . . . . . . . . .   4
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   4
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   5
   8.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .   5
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   6
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     10.1.  Normative References . . . . . . . . . . . . . . . . . .   6
     10.2.  Informative References . . . . . . . . . . . . . . . . .   7
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   7

1.  Introduction

   [RFC6790] describes a method to load-balance Multiprotocol Label
   Switching (MPLS) traffic flows using Entropy Labels (EL).  It also
   introduces the concept of Entropy Label Capability (ELC) and defines
   the signaling of this capability via MPLS signaling protocols.
   Recently, mechanisms have been defined to signal labels via link-
   state Interior Gateway Protocols (IGP) such as IS-IS [RFC8667].  This
   draft defines a mechanism to signal the ELC using IS-IS.

   In cases where LSPs are used (e.g., SR-MPLS [RFC8660], it would be
   useful for ingress LSRs to know each intermediate LSR's capability of
   reading the maximum label stack depth and performing EL-based load-
   balancing.  This capability, referred to as Entropy Readable Label
   Depth (ERLD) as defined in [RFC8662] may be used by ingress LSRs to
Show full document text