Skip to main content

KangarooTwelve and TurboSHAKE
draft-irtf-cfrg-kangarootwelve-10

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Active".
Authors Benoît Viguier , David Wong , Gilles Van Assche , Quynh Dang , Joan Daemen
Last updated 2023-03-27 (Latest revision 2023-02-17)
Replaces draft-viguier-kangarootwelve
RFC stream Internet Research Task Force (IRTF)
Formats
Additional resources Mailing list discussion
Stream IRTF state Active RG Document
Consensus boilerplate Yes
Document shepherd Nick Sullivan
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to Nick Sullivan <nick@cloudflare.com>
draft-irtf-cfrg-kangarootwelve-10
Crypto Forum                                                  B. Viguier
Internet-Draft                                             ABN AMRO Bank
Intended status: Informational                              D. Wong, Ed.
Expires: 28 September 2023                                     O(1) Labs
                                                      G. Van Assche, Ed.
                                                      STMicroelectronics
                                                            Q. Dang, Ed.
                                                                    NIST
                                                          J. Daemen, Ed.
                                                      Radboud University
                                                           27 March 2023

                     KangarooTwelve and TurboSHAKE
                   draft-irtf-cfrg-kangarootwelve-10

Abstract

   This document defines three eXtendable Output Functions (XOF), hash
   functions with output of arbitrary length, named TurboSHAKE128,
   TurboSHAKE256 and KangarooTwelve.

   All three functions provide efficient and secure hashing primitive,
   and the latter is able to exploit the parallelism of the
   implementation in a scalable way.

   This document builds up on the definitions of the permutations and of
   the sponge construction in [FIPS 202], and is meant to serve as a
   stable reference and an implementation guide.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 28 September 2023.

Viguier, et al.         Expires 28 September 2023               [Page 1]
Internet-Draft               KangarooTwelve                   March 2023

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Conventions . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  TurboSHAKE  . . . . . . . . . . . . . . . . . . . . . . . . .   4
     2.1.  Interface . . . . . . . . . . . . . . . . . . . . . . . .   4
     2.2.  Specifications  . . . . . . . . . . . . . . . . . . . . .   5
   3.  KangarooTwelve: Tree hashing over TurboSHAKE128 . . . . . . .   7
     3.1.  Interface . . . . . . . . . . . . . . . . . . . . . . . .   7
     3.2.  Specification . . . . . . . . . . . . . . . . . . . . . .   8
     3.3.  length_encode( x )  . . . . . . . . . . . . . . . . . . .  10
   4.  Test vectors  . . . . . . . . . . . . . . . . . . . . . . . .  10
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  16
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  17
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  17
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  17
   Appendix A.  Pseudocode . . . . . . . . . . . . . . . . . . . . .  18
     A.1.  Keccak-p[1600,n_r=12] . . . . . . . . . . . . . . . . . .  18
     A.2.  TurboSHAKE128 . . . . . . . . . . . . . . . . . . . . . .  20
     A.3.  KangarooTwelve  . . . . . . . . . . . . . . . . . . . . .  20
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  21

1.  Introduction

   This document defines the TurboSHAKE128, TurboSHAKE256 [TURBOSHAKE]
   and KangarooTwelve [K12] eXtendable Output Functions (XOF), i.e., a
   hash function generalization that can return an output of arbitrary
   length.  Both TurboSHAKE128 and TurboSHAKE256 are based on a Keccak-p
   permutation specified in [FIPS202] and have a higher speed than the
   SHA-3 and SHAKE functions.

Viguier, et al.         Expires 28 September 2023               [Page 2]
Internet-Draft               KangarooTwelve                   March 2023

   TurboSHAKE is a sponge function family that makes use of Keccak-
   p[n_r=12,b=1600], a round-reduced version of the permutation used in
   SHA-3.  Similarly to the SHAKE's, it proposes two security strength:
   128 bits for TurboSHAKE128 and 256 bits for TurboSHAKE256.  Halving
   the number of rounds compared to the original SHAKE functions makes
   TurboSHAKE roughly two times faster.

   The SHA-3 and SHAKE functions process data in a serial manner and are
   strongly limited in exploiting available parallelism in modern CPU
   architectures.  Similar to ParallelHash [SP800-185], KangarooTwelve
   splits the input message into fragments.  It then applies
   TurboSHAKE128 on each of them separately before applying
   TurboSHAKE128 again on the combination of the first fragment and the
   digests.  It makes use of Sakura coding for ensuring soundness of the
   tree hashing mode [SAKURA].  The use of TurboSHAKE128 in
   KangarooTwelve makes it faster than ParallelHash.

   The security of TurboSHAKE128, TurboSHAKE256 and KangarooTwelve
   builds up on the scrutiny that Keccak has received since its
   publication [KECCAK_CRYPTANALYSIS][TURBOSHAKE].

   With respect to [FIPS202] and [SP800-185] functions, TurboSHAKE128,
   TurboSHAKE256 and KangarooTwelve feature the following advantages:

   *  Unlike SHA3-224, SHA3-256, SHA3-384, SHA3-512, the TurboSHAKE and
      KangarooTwelve functions have an extendable output.

   *  Unlike any [FIPS202] defined function, similarly to functions
      defined in [SP800-185], KangarooTwelve allows the use of a
      customization string.

   *  Unlike any [FIPS202] and [SP800-185] functions but ParallelHash,
      KangarooTwelve exploits available parallelism.

   *  Unlike ParallelHash, KangarooTwelve does not have overhead when
      processing short messages.

   *  The permutation in the TurboSHAKE functions has half the number of
      rounds compared to the one in the SHA-3 and SHAKE functions,
      making it faster than any function defined in [FIPS202].
      KangarooTwelve immediately benefits from the same speed up,
      improving over [FIPS202] and [SP800-185].

1.1.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Viguier, et al.         Expires 28 September 2023               [Page 3]
Internet-Draft               KangarooTwelve                   March 2023

   The following notations are used throughout the document:

   `...`  denotes a string of bytes given in hexadecimal.  For example,
      `0B 80`.

   |s|  denotes the length of a byte string `s`.  For example, |`FF FF`|
      = 2.

   `00`^b  denotes a byte string consisting of the concatenation of b
      bytes `00`. For example, `00`^7 = `00 00 00 00 00 00 00`.

   `00`^0  denotes the empty byte-string.

   a||b  denotes the concatenation of two strings a and b.  For example,
      `10`||`F1` = `10 F1`

   s[n:m]  denotes the selection of bytes from n (inclusive) to m
      (exclusive) of a string s.  The indexing of a byte-string starts
      at 0.  For example, for s = `A5 C6 D7`, s[0:1] = `A5` and s[1:3] =
      `C6 D7`.

   s[n:]  denotes the selection of bytes from n to the end of a string
      s.  For example, for s = `A5 C6 D7`, s[0:] = `A5 C6 D7` and s[2:]
      = `D7`.

   In the following, x and y are byte strings of equal length:

   x^=y  denotes x takes the value x XOR y.

   x & y  denotes x AND y.

   In the following, x and y are integers:

   x+=y  denotes x takes the value x + y.

   x-=y  denotes x takes the value x - y.

   x**y  denotes the exponentiation of x by y.

2.  TurboSHAKE

2.1.  Interface

   TurboSHAKE is a family of eXtendable Output Functions (XOF).  This
   document focuses on only two instances, namely, TurboSHAKE128 and
   TurboSHAKE256, although the original definition includes a wider
   range of instances parameterized by their capacity [TURBOSHAKE].

Viguier, et al.         Expires 28 September 2023               [Page 4]
Internet-Draft               KangarooTwelve                   March 2023

   An instance of TurboSHAKE takes as parameters a byte-string M, an
   OPTIONAL byte D and a positive integer L where

   M  byte-string, is the Message and

   D  byte in the range [`01`, `02`, ... , `7F`], is an OPTIONAL Domain
      separation byte and

   L  positive integer, the requested number of output bytes.

   By default, the Domain separation byte is `1F`. For an API that does
   not support a domain separation byte, D MUST be the `1F`.

2.2.  Specifications

   TurboSHAKE makes use of the permutation Keccak-p[1600,n_r=12], i.e.,
   the permutation used in SHAKE and SHA-3 functions reduced to its last
   n_r=12 rounds and specified in FIPS 202, Sections 3.3 and 3.4
   [FIPS202].  KP denotes this permutation.

   Similarly to SHAKE128, TurboSHAKE128 is a sponge function calling
   this permutation KP with a rate of 168 bytes or 1344 bits.  It
   follows that TurboSHAKE128 has a capacity of 1600 - 1344 = 256 bits
   or 32 bytes.  Respectively to SHAKE256, TurboSHAKE256 makes use of a
   rate of 136 bytes or 1088 bits, and has a capacity of 512 bits or 64
   bytes.

                            +-------------+--------------+
                            |    Rate     |   Capacity   |
           +----------------+-------------+--------------+
           | TurboSHAKE128  |  168 Bytes  |   32 Bytes   |
           |                |             |              |
           | TurboSHAKE256  |  136 Bytes  |   64 Bytes   |
           +----------------+-------------+--------------+

   We now describe the operations inside TurboSHAKE128.

   *  First the input M' is formed by appending the domain separation
      byte D to the message M.

   *  Non-multiple of 168-bytes-length M' are padded with zeroes to the
      next multiple of 168 bytes while M' multiple of 168 bytes are kept
      as is.  Then a byte `80` is XORed to the last byte of the padded
      input M' and the resulting string is split into a sequence of
      168-byte blocks.

   *  M' never has a length of 0 bytes due to the presence of the domain
      separation byte.

Viguier, et al.         Expires 28 September 2023               [Page 5]
Internet-Draft               KangarooTwelve                   March 2023

   *  As defined by the sponge construction, the process operates on a
      state and consists of two phases: the absorbing phase that
      processes the padded input M' and the squeezing phase that
      produces the output.

   *  In the absorbing phase the state is initialized to all-zero.  The
      message blocks are XORed into the first 168 bytes of the state.
      Each block absorbed is followed with an application of KP to the
      state.

   *  In the squeezing phase output is formed by taking the first 168
      bytes of the state, repeated as many times as necessary until
      outputByteLen bytes are obtained, interleaved with the application
      of KP to the state.

   TurboSHAKE256 performs the same steps but makes use of 136-byte
   blocks with respect to padding, absorbing, and squeezing phases.

   The definition of the TurboSHAKE functions equivalently implements
   the pad10*1 rule.  While M can be empty, the D byte always present
   and is in the `01`-`7F` range.  This last byte serves as domain
   separation and integrates the first bit of padding of the pad10*1
   rule (hence it cannot be `00`).  Additionally, it must leave room for
   the second bit of padding (hence it cannot have the MSB set to 1),
   should it be the last byte of the block.  For more details, refer to
   Section 6.1 of [K12] and Section 3 of [TURBOSHAKE].

   A pseudocode version is available as follows:

Viguier, et al.         Expires 28 September 2023               [Page 6]
Internet-Draft               KangarooTwelve                   March 2023

     TurboSHAKE128(message, separationByte, outputByteLen):
       offset = 0
       state = `00`^200
       input = message || separationByte

       # === Absorb complete blocks ===
       while offset < |input| - 168
           state ^= input[offset : offset + 168] || `00`^32
           state = KP(state)
           offset += 168

       # === Absorb last block and treatment of padding ===
       LastBlockLength = |input| - offset
       state ^= input[offset:] || `00`^(200-LastBlockLength)
       state ^= `00`^167 || `80` || `00`^32
       state = KP(state)

       # === Squeeze ===
       output = `00`^0
       while outputByteLen > 168
           output = output || state[0:168]
           outputByteLen -= 168
           state = KP(state)

       output = output || state[0:outputByteLen]

       return output
       end

3.  KangarooTwelve: Tree hashing over TurboSHAKE128

3.1.  Interface

   KangarooTwelve is an eXtendable Output Function (XOF).  It takes as
   parameters two byte-strings (M, C) and a positive integer L where

   M  byte-string, is the Message and

   C  byte-string, is an OPTIONAL Customization string and

   L  positive integer, the requested number of output bytes.

   The Customization string MAY serve as domain separation.  It is
   typically a short string such as a name or an identifier (e.g.  URI,
   ODI...)

Viguier, et al.         Expires 28 September 2023               [Page 7]
Internet-Draft               KangarooTwelve                   March 2023

   By default, the Customization string is the empty string.  For an API
   that does not support a customization string parameter, C MUST be the
   empty string.

3.2.  Specification

   On top of the sponge function TurboSHAKE128, KangarooTwelve uses a
   Sakura-compatible tree hash mode [SAKURA].  First, merge M and the
   OPTIONAL C to a single input string S in a reversible way.
   length_encode( |C| ) gives the length in bytes of C as a byte-string.
   See Section 3.3.

               S = M || C || length_encode( |C| )

   Then, split S into n chunks of 8192 bytes.

               S = S_0 || .. || S_(n-1)
               |S_0| = .. = |S_(n-2)| = 8192 bytes
               |S_(n-1)| <= 8192 bytes

   From S_1 .. S_(n-1), compute the 32-byte Chaining Values CV_1 ..
   CV_(n-1).  In order to be optimally efficient, this computation
   SHOULD exploit the parallelism available on the platform such as SIMD
   instructions.

                   CV_i    = TurboSHAKE128( S_i, `0B`, 32 )

   Compute the final node: FinalNode.

   *  If |S| <= 8192 bytes, FinalNode = S

   *  Otherwise compute FinalNode as follows:

               FinalNode = S_0 || `03 00 00 00 00 00 00 00`
               FinalNode = FinalNode || CV_1
                   ..
               FinalNode = FinalNode || CV_(n-1)
               FinalNode = FinalNode || length_encode(n-1)
               FinalNode = FinalNode || `FF FF`

   Finally, KangarooTwelve output is retrieved:

   *  If |S| <= 8192 bytes, from TurboSHAKE128( FinalNode, `07`, L )

         KangarooTwelve( M, C, L ) = TurboSHAKE128( FinalNode, `07`, L )

   *  Otherwise from TurboSHAKE128( FinalNode, `06`, L )

Viguier, et al.         Expires 28 September 2023               [Page 8]
Internet-Draft               KangarooTwelve                   March 2023

         KangarooTwelve( M, C, L ) = TurboSHAKE128( FinalNode, `06`, L )

   The following figure illustrates the computation flow of
   KangarooTwelve for |S| <= 8192 bytes:

           +--------------+  TurboSHAKE128(.., `07`, L)
           |      S       |----------------------------->  output
           +--------------+

   The following figure illustrates the computation flow of
   KangarooTwelve for |S| > 8192 bytes and where TurboSHAKE128 and
   length_encode( x ) are abbreviated as respectively TSHK128 and l_e( x
   ) :

                                   +--------------+
                                   |     S_0      |
                                   +--------------+
                                         ||
                                   +--------------+
                                   | `03`||`00`^7 |
                                   +--------------+
                                         ||
 +---------+  TSHK128(..,`0B`,32)  +--------------+
 |   S_1   |---------------------->|     CV_1     |
 +---------+                       +--------------+
                                         ||
 +---------+  TSHK128(..,`0B`,32)  +--------------+
 |   S_2   |---------------------->|     CV_2     |
 +---------+                       +--------------+
                                         ||
                ...                      ...
                                         ||
 +---------+  TSHK128(..,`0B`,32)  +--------------+
 | S_(n-1) |----------------------->|   CV_(n-1)   |
 +---------+                       +--------------+
                                         ||
                                   +--------------+
                                   |  l_e( n-1 )  |
                                   +--------------+
                                         ||
                                   +--------------+
                                   |   `FF FF`    |
                                   +--------------+
                                          | TSHK128(.., `06`, L)
                                          +-------------------->  output

   A pseudocode version is provided in Appendix A.3.

Viguier, et al.         Expires 28 September 2023               [Page 9]
Internet-Draft               KangarooTwelve                   March 2023

   The table below gathers the values of the domain separation bytes
   used by the tree hash mode:

           +--------------------+------------------+
           |   Type             |       Byte       |
           +--------------------+------------------+
           |  SingleNode        |       `07`       |
           |                    |                  |
           |  IntermediateNode  |       `0B`       |
           |                    |                  |
           |  FinalNode         |       `06`       |
           +--------------------+------------------+

3.3.  length_encode( x )

   The function length_encode takes as inputs a non negative integer x <
   256**255 and outputs a string of bytes x_(n-1) || .. || x_0 || n
   where

                x = sum from i=0..n-1 of 256**i * x_i

   and where n is the smallest non-negative integer such that x <
   256**n.  n is also the length of x_(n-1) || .. || x_0.

   As example, length_encode(0) = `00`, length_encode(12) = `0C 01` and
   length_encode(65538) = `01 00 02 03`

   A pseudocode version is as follows.

     length_encode(x):
       S = `00`^0

       while x > 0
           S = x mod 256 || S
           x = x / 256

       S = S || length(S)

       return S
       end

4.  Test vectors

   Test vectors are based on the repetition of the pattern `00 01 .. FA`
   with a specific length. ptn(n) defines a string by repeating the
   pattern `00 01 .. FA` as many times as necessary and truncated to n
   bytes e.g.

Viguier, et al.         Expires 28 September 2023              [Page 10]
Internet-Draft               KangarooTwelve                   March 2023

       Pattern for a length of 17 bytes:
       ptn(17) =
         `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10`

       Pattern for a length of 17**2 bytes:
       ptn(17**2) =
         `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
          10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
          20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
          30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
          40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
          50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
          60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
          70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
          80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
          90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
          A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
          B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
          C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
          D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
          E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
          F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA
          00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
          10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
          20 21 22 23 24 25`

     TurboSHAKE128(M=`00`^0, D=`07`, 32):
       `5A 22 3A D3 0B 3B 8C 66 A2 43 04 8C FC ED 43 0F
        54 E7 52 92 87 D1 51 50 B9 73 13 3A DF AC 6A 2F`

     TurboSHAKE128(M=`00`^0, D=`07`, 64):
       `5A 22 3A D3 0B 3B 8C 66 A2 43 04 8C FC ED 43 0F
        54 E7 52 92 87 D1 51 50 B9 73 13 3A DF AC 6A 2F
        FE 27 08 E7 30 61 E0 9A 40 00 16 8B A9 C8 CA 18
        13 19 8F 7B BE D4 98 4B 41 85 F2 C2 58 0E E6 23`

     TurboSHAKE128(M=`00`^0, D=`07`, 10032), last 32 bytes:
       `75 93 A2 80 20 A3 C4 AE 0D 60 5F D6 1F 5E B5 6E
        CC D2 7C C3 D1 2F F0 9F 78 36 97 72 A4 60 C5 5D`

     TurboSHAKE128(M=ptn(1 bytes), D=`07`, 32):
       `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
        3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5`

     TurboSHAKE128(M=ptn(17 bytes), D=`07`, 32):
       `AC BD 4A A5 75 07 04 3B CE E5 5A D3 F4 85 04 D8
        15 E7 07 FE 82 EE 3D AD 6D 58 52 C8 92 0B 90 5E`

Viguier, et al.         Expires 28 September 2023              [Page 11]
Internet-Draft               KangarooTwelve                   March 2023

     TurboSHAKE128(M=ptn(17**2 bytes), D=`07`, 32):
       `7A 4D E8 B1 D9 27 A6 82 B9 29 61 01 03 F0 E9 64
        55 9B D7 45 42 CF AD 74 0E E3 D9 B0 36 46 9E 0A`

     TurboSHAKE128(M=ptn(17**3 bytes), D=`07`, 32):
       `74 52 ED 0E D8 60 AA 8F E8 E7 96 99 EC E3 24 F8
        D9 32 71 46 36 10 DA 76 80 1E BC EE 4F CA FE 42`

     TurboSHAKE128(M=ptn(17**4 bytes), D=`07`, 32):
       `CA 5F 1F 3E EA C9 92 CD C2 AB EB CA 0E 21 67 65
        DB F7 79 C3 C1 09 46 05 5A 94 AB 32 72 57 35 22`

     TurboSHAKE128(M=ptn(17**5 bytes), D=`07`, 32):
       `E9 88 19 3F B9 11 9F 11 CD 34 46 79 14 E2 A2 6D
        A9 BD F9 6C 8B EF 07 6A EE AD 1A 89 7B 86 63 83`

     TurboSHAKE128(M=ptn(17**6 bytes), D=`07`, 32):
       `9C 0F FB 98 7E EE ED AD FA 55 94 89 87 75 6D 09
        0B 67 CC B6 12 36 E3 06 AC 8A 24 DE 1D 0A F7 74`

     TurboSHAKE128(M=`00`^0, D=`06`, 32):
       `C7 90 29 30 6B FA 2F 17 83 6A 3D 65 16 D5 56 63
        40 FE A6 EB 1A 11 39 AD 90 0B 41 24 3C 49 4B 37`

     TurboSHAKE128(M=`00`^0, D=`0B`, 32):
       `8B 03 5A B8 F8 EA 7B 41 02 17 16 74 58 33 2E 46
        F5 4B E4 FF 83 54 BA F3 68 71 04 A6 D2 4B 0E AB`

     TurboSHAKE128(M=`00`^0, D=`06`, 32):
       `C7 90 29 30 6B FA 2F 17 83 6A 3D 65 16 D5 56 63
        40 FE A6 EB 1A 11 39 AD 90 0B 41 24 3C 49 4B 37`

     TurboSHAKE128(M=`FF`, D=`06`, 32):
       `8E C9 C6 64 65 ED 0D 4A 6C 35 D1 35 06 71 8D 68
        7A 25 CB 05 C7 4C CA 1E 42 50 1A BD 83 87 4A 67`

     TurboSHAKE128(M=`FF FF FF`, D=`06`, 32):
       `3D 03 98 8B B5 9E 68 18 51 A1 92 F4 29 AE 03 98
        8E 8F 44 4B C0 60 36 A3 F1 A7 D2 CC D7 58 D1 74`

     TurboSHAKE128(M=`FF FF FF FF FF FF FF`, D=`06`, 32):
       `05 D9 AE 67 3D 5F 0E 48 BB 2B 57 E8 80 21 A1 A8
        3D 70 BA 85 92 3A A0 4C 12 E8 F6 5B A1 F9 45 95`

Viguier, et al.         Expires 28 September 2023              [Page 12]
Internet-Draft               KangarooTwelve                   March 2023

     TurboSHAKE256(M=`00`^0, D=`07`, 64):
       `4A 55 5B 06 EC F8 F1 53 8C CF 5C 95 15 D0 D0 49
        70 18 15 63 A6 23 81 C7 F0 C8 07 A6 D1 BD 9E 81
        97 80 4B FD E2 42 8B F7 29 61 EB 52 B4 18 9C 39
        1C EF 6F EE 66 3A 3C 1C E7 8B 88 25 5B C1 AC C3`

     TurboSHAKE256(M=`00`^0, D=`07`, 10032), last 32 bytes:
       `40 22 1A D7 34 F3 ED C1 B1 06 BA D5 0A 72 94 93
        15 B3 52 BA 39 AD 98 B5 B3 C2 30 11 63 AD AA D0`

     TurboSHAKE256(M=ptn(17 bytes), D=`07`, 64):
       `66 D3 78 DF E4 E9 02 AC 4E B7 8F 7C 2E 5A 14 F0
        2B C1 C8 49 E6 21 BA E6 65 79 6F B3 34 6E 6C 79
        75 70 5B B9 3C 00 F3 CA 8F 83 BC A4 79 F0 69 77
        AB 3A 60 F3 97 96 B1 36 53 8A AA E8 BC AC 85 44`

     TurboSHAKE256(M=ptn(17**2 bytes), D=`07`, 64):
       `C5 21 74 AB F2 82 95 E1 5D FB 37 B9 46 AC 36 BD
        3A 6B CC 98 C0 74 FC 25 19 9E 05 30 42 5C C5 ED
        D4 DF D4 3D C3 E7 E6 49 1A 13 17 98 30 C3 C7 50
        C9 23 7E 83 FD 9A 3F EC 46 03 FF 57 E4 22 2E F2`

     TurboSHAKE256(M=ptn(17**3 bytes), D=`07`, 64):
       `62 A5 A0 BF F0 64 26 D7 1A 7A 3E 9E 3F 2F D6 E2
        52 FF 3F C1 88 A6 A5 36 EC A4 5A 49 A3 43 7C B3
        BC 3A 0F 81 49 C8 50 E6 E7 F4 74 7A 70 62 7F D2
        30 30 41 C6 C3 36 30 F9 43 AD 92 F8 E1 FF 43 90`

     TurboSHAKE256(M=ptn(17**4 bytes), D=`07`, 64):
       `52 3C 06 47 18 2D 89 41 F0 DD 5C 5C 0A B6 2D 4F
        C2 95 61 61 53 96 BB 5B 9A 9D EB 02 2B 80 C5 BF
        2D 83 A3 BB 36 FF C0 4F AC 58 CF 11 49 C6 6D EC
        4A 59 52 6E 51 F2 95 96 D8 24 42 1A 4B 84 B4 4D`

     TurboSHAKE256(M=ptn(17**5 bytes), D=`07`, 64):
       `D1 14 A1 C1 A2 08 FF 05 FD 49 D0 9E E0 35 46 5D
        86 54 7E BA D8 E9 AF 4F 8E 87 53 70 57 3D 6B 7B
        B2 0A B9 60 63 5A B5 74 E2 21 95 EF 9D 17 1C 9A
        28 01 04 4B 6E 2E DF 27 2E 23 02 55 4B 3A 77 C9`

     TurboSHAKE256(M=ptn(17**6 bytes), D=`07`, 64):
       `1E 51 34 95 D6 16 98 75 B5 94 53 A5 94 E0 8A E2
        71 CA 20 E0 56 43 C8 8A 98 7B 5B 6A B4 23 ED E7
        24 0F 34 F2 B3 35 FA 94 BC 4B 0D 70 E3 1F B6 33
        B0 79 84 43 31 FE A4 2A 9C 4D 79 BB 8C 5F 9E 73`

     TurboSHAKE256(M=`00`^0, D=`0B`, 64):
       `C7 49 F7 FB 23 64 4A 02 1D 35 65 3D 1B FD F7 47

Viguier, et al.         Expires 28 September 2023              [Page 13]
Internet-Draft               KangarooTwelve                   March 2023

        CE CE 5F 97 39 F9 A3 44 AD 16 9F 10 90 6C 68 17
        C8 EE 12 78 4E 42 FF 57 81 4E FC 1C 89 87 89 D5
        E4 15 DB 49 05 2E A4 3A 09 90 1D 7A 82 A2 14 5C`

     TurboSHAKE256(M=`00`^0, D=`06`, 64):
       `FF 23 DC CD 62 16 8F 5A 44 46 52 49 A8 6D C1 0E
        8A AB 4B D2 6A 22 DE BF 23 48 02 0A 83 1C DB E1
        2C DD 36 A7 DD D3 1E 71 C0 1F 7C 97 A0 D4 C3 A0
        CC 1B 21 21 E6 B7 CE AB 38 87 A4 C9 A5 AF 8B 03`

     TurboSHAKE256(M=`FF`, D=`06`, 64):
       `73 8D 7B 4E 37 D1 8B 7F 22 AD 1B 53 13 E3 57 E3
        DD 7D 07 05 6A 26 A3 03 C4 33 FA 35 33 45 52 80
        F4 F5 A7 D4 F7 00 EF B4 37 FE 6D 28 14 05 E0 7B
        E3 2A 0A 97 2E 22 E6 3A DC 1B 09 0D AE FE 00 4B`

     TurboSHAKE256(M=`FF FF FF`, D=`06`, 64):
       `E5 53 8C DD 28 30 2A 2E 81 E4 1F 65 FD 2A 40 52
        01 4D 0C D4 63 DF 67 1D 1E 51 0A 9D 95 C3 7D 71
        35 EF 27 28 43 0A 9E 31 70 04 F8 36 C9 A2 38 EF
        35 37 02 80 D0 3D CE 7F 06 12 F0 31 5B 3C BF 63`

     TurboSHAKE256(M=`FF FF FF FF FF FF FF`, D=`06`, 64):
       `B3 8B 8C 15 F4 A6 E8 0C D3 EC 64 5F 99 9F 64 98
        AA D7 A5 9A 48 9C 1D EE 29 70 8B 4F 8A 59 E1 24
        99 A9 6F 89 37 22 56 FE 52 2B 1B 97 47 2A DD 73
        69 15 BD 4D F9 3B 21 FF E5 97 21 7E B3 C2 C6 D9`

     KangarooTwelve(M=`00`^0, C=`00`^0, 32):
       `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
        3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5`

     KangarooTwelve(M=`00`^0, C=`00`^0, 64):
       `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
        3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5
        42 69 C0 56 B8 C8 2E 48 27 60 38 B6 D2 92 96 6C
        C0 7A 3D 46 45 27 2E 31 FF 38 50 81 39 EB 0A 71`

     KangarooTwelve(M=`00`^0, C=`00`^0, 10032), last 32 bytes:
       `E8 DC 56 36 42 F7 22 8C 84 68 4C 89 84 05 D3 A8
        34 79 91 58 C0 79 B1 28 80 27 7A 1D 28 E2 FF 6D`

     KangarooTwelve(M=ptn(1 bytes), C=`00`^0, 32):
       `2B DA 92 45 0E 8B 14 7F 8A 7C B6 29 E7 84 A0 58
        EF CA 7C F7 D8 21 8E 02 D3 45 DF AA 65 24 4A 1F`

     KangarooTwelve(M=ptn(17 bytes), C=`00`^0, 32):

Viguier, et al.         Expires 28 September 2023              [Page 14]
Internet-Draft               KangarooTwelve                   March 2023

       `6B F7 5F A2 23 91 98 DB 47 72 E3 64 78 F8 E1 9B
        0F 37 12 05 F6 A9 A9 3A 27 3F 51 DF 37 12 28 88`

     KangarooTwelve(M=ptn(17**2 bytes), C=`00`^0, 32):
       `0C 31 5E BC DE DB F6 14 26 DE 7D CF 8F B7 25 D1
        E7 46 75 D7 F5 32 7A 50 67 F3 67 B1 08 EC B6 7C`

     KangarooTwelve(M=ptn(17**3 bytes), C=`00`^0, 32):
       `CB 55 2E 2E C7 7D 99 10 70 1D 57 8B 45 7D DF 77
        2C 12 E3 22 E4 EE 7F E4 17 F9 2C 75 8F 0D 59 D0`

     KangarooTwelve(M=ptn(17**4 bytes), C=`00`^0, 32):
       `87 01 04 5E 22 20 53 45 FF 4D DA 05 55 5C BB 5C
        3A F1 A7 71 C2 B8 9B AE F3 7D B4 3D 99 98 B9 FE`

     KangarooTwelve(M=ptn(17**5 bytes), C=`00`^0, 32):
       `84 4D 61 09 33 B1 B9 96 3C BD EB 5A E3 B6 B0 5C
        C7 CB D6 7C EE DF 88 3E B6 78 A0 A8 E0 37 16 82`

     KangarooTwelve(M=ptn(17**6 bytes), C=`00`^0, 32):
       `3C 39 07 82 A8 A4 E8 9F A6 36 7F 72 FE AA F1 32
        55 C8 D9 58 78 48 1D 3C D8 CE 85 F5 8E 88 0A F8`

     KangarooTwelve(M=`00`^0, C=ptn(1 bytes), 32):
       `FA B6 58 DB 63 E9 4A 24 61 88 BF 7A F6 9A 13 30
        45 F4 6E E9 84 C5 6E 3C 33 28 CA AF 1A A1 A5 83`

     KangarooTwelve(M=`FF`, C=ptn(41 bytes), 32):
       `D8 48 C5 06 8C ED 73 6F 44 62 15 9B 98 67 FD 4C
        20 B8 08 AC C3 D5 BC 48 E0 B0 6B A0 A3 76 2E C4`

     KangarooTwelve(M=`FF FF FF`, C=ptn(41**2), 32):
       `C3 89 E5 00 9A E5 71 20 85 4C 2E 8C 64 67 0A C0
        13 58 CF 4C 1B AF 89 44 7A 72 42 34 DC 7C ED 74`

     KangarooTwelve(M=`FF FF FF FF FF FF FF`, C=ptn(41**3 bytes), 32):
       `75 D2 F8 6A 2E 64 45 66 72 6B 4F BC FC 56 57 B9
        DB CF 07 0C 7B 0D CA 06 45 0A B2 91 D7 44 3B CF`

5.  IANA Considerations

   None.

Viguier, et al.         Expires 28 September 2023              [Page 15]
Internet-Draft               KangarooTwelve                   March 2023

6.  Security Considerations

   This document is meant to serve as a stable reference and an
   implementation guide for the KangarooTwelve and TurboSHAKE eXtendable
   Output Functions.  It relies on the cryptanalysis of Keccak and
   provides with the same security strength as their respective SHAKE
   functions.

                             +-------------------------------+
                             |        security claim         |
           +-----------------+-------------------------------+
           | TurboSHAKE128   |  128 bits (same as SHAKE128)  |
           |                 |                               |
           | KangarooTwelve  |  128 bits (same as SHAKE128)  |
           |                 |                               |
           | TurboSHAKE256   |  256 bits (same as SHAKE256)  |
           +-----------------+-------------------------------+

   To be more precise, KangarooTwelve is made of two layers:

   *  The inner function TurboSHAKE128.  This layer relies on
      cryptanalysis.  The TurboSHAKE128 function is exactly
      Keccak[r=1344, c=256] (as in SHAKE128) reduced to 12 rounds.  Any
      reduced-round cryptanalysis on Keccak is also a reduced-round
      cryptanalysis of TurboSHAKE128 (provided the number of rounds
      attacked is not higher than 12).

   *  The tree hashing over TurboSHAKE128.  This layer is a mode on top
      of TurboSHAKE128 that does not introduce any vulnerability thanks
      to the use of Sakura coding proven secure in [SAKURA].

   This reasoning is detailed and formalized in [K12].

   To achieve 128-bit security strength, the output L must be chosen
   long enough so that there are no generic attacks that violate 128-bit
   security.  So for 128-bit (second) preimage security the output
   should be at least 128 bits, for 128-bit of security against multi-
   target preimage attacks with T targets the output should be at least
   128+log_2(T) bits and for 128-bit collision security the output
   should be at least 256 bits.

   Furthermore, when the output length is at least 256 bits,
   KangarooTwelve achieves NIST's post-quantum security level 2
   [NISTPQ].

   Implementing a MAC with KangarooTwelve SHOULD use a HASH-then-MAC
   construction.  This document recommends a method called HopMAC,
   defined as follows:

Viguier, et al.         Expires 28 September 2023              [Page 16]
Internet-Draft               KangarooTwelve                   March 2023

      HopMAC(Key, M, C, L) = K12(Key, K12(M, C, 32), L)

   Similarly to HMAC, HopMAC consists of two calls: an inner call
   compressing the message M and the optional customization string C to
   a digest, and an outer call computing the tag from the key and the
   digest.

   Unlike HMAC, the inner call to KangarooTwelve in HopMAC is keyless
   and does not require additional protection against side channel
   attacks (SCA).  Consequently, in an implementation that has to
   protect the HopMAC key against SCA only the outer call does need
   protection, and this amounts to a single execution of the underlying
   permutation.

   In any case, KangarooTwelve MAY be used to compute a MAC with the key
   reversibly prepended or appended to the input.  For instance, one MAY
   compute a MAC on short messages simply calling KangarooTwelve with
   the key as the customization string, i.e., MAC = K12(M, Key, L).

7.  References

7.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [FIPS202]  National Institute of Standards and Technology, "FIPS PUB
              202 - SHA-3 Standard: Permutation-Based Hash and
              Extendable-Output Functions",
              WWW http://dx.doi.org/10.6028/NIST.FIPS.202, August 2015.

   [SP800-185]
              National Institute of Standards and Technology, "NIST
              Special Publication 800-185 SHA-3 Derived Functions:
              cSHAKE, KMAC, TupleHash and ParallelHash",
              WWW https://doi.org/10.6028/NIST.SP.800-185, December
              2016.

7.2.  Informative References

   [TURBOSHAKE]
              Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van
              Assche, G., Van Keer, R., and B. Viguier, "TurboSHAKE",
              WWW http://eprint.iacr.org/2023/342, March 2023.

Viguier, et al.         Expires 28 September 2023              [Page 17]
Internet-Draft               KangarooTwelve                   March 2023

   [K12]      Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van
              Keer, R., and B. Viguier, "KangarooTwelve: fast hashing
              based on Keccak-p", WWW https://link.springer.com/
              chapter/10.1007/978-3-319-93387-0_21,
              WWW http://eprint.iacr.org/2016/770.pdf, July 2018.

   [SAKURA]   Bertoni, G., Daemen, J., Peeters, M., and G. Van Assche,
              "Sakura: a flexible coding for tree hashing", WWW
              https://link.springer.com/
              chapter/10.1007/978-3-319-07536-5_14,
              WWW http://eprint.iacr.org/2013/231.pdf, June 2014.

   [KECCAK_CRYPTANALYSIS]
              Keccak Team, "Summary of Third-party cryptanalysis of
              Keccak", WWW https://www.keccak.team/third_party.html,
              2022.

   [XKCP]     Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., and
              R. Van Keer, "eXtended Keccak Code Package",
              WWW https://github.com/XKCP/XKCP, December 2022.

   [NISTPQ]   National Institute of Standards and Technology,
              "Submission Requirements and Evaluation Criteria for the
              Post-Quantum Cryptography Standardization Process", WWW 
              https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
              Cryptography/documents/call-for-proposals-final-dec-
              2016.pdf, December 2016.

Appendix A.  Pseudocode

   The sub-sections of this appendix contain pseudocode definitions of
   KangarooTwelve.  A standalone Python version is also available in the
   Keccak Code Package [XKCP] and in [K12]

A.1.  Keccak-p[1600,n_r=12]

   KP(state):
     RC[0]  = `8B 80 00 80 00 00 00 00`
     RC[1]  = `8B 00 00 00 00 00 00 80`
     RC[2]  = `89 80 00 00 00 00 00 80`
     RC[3]  = `03 80 00 00 00 00 00 80`
     RC[4]  = `02 80 00 00 00 00 00 80`
     RC[5]  = `80 00 00 00 00 00 00 80`
     RC[6]  = `0A 80 00 00 00 00 00 00`
     RC[7]  = `0A 00 00 80 00 00 00 80`
     RC[8]  = `81 80 00 80 00 00 00 80`
     RC[9]  = `80 80 00 00 00 00 00 80`
     RC[10] = `01 00 00 80 00 00 00 00`

Viguier, et al.         Expires 28 September 2023              [Page 18]
Internet-Draft               KangarooTwelve                   March 2023

     RC[11] = `08 80 00 80 00 00 00 80`

     for x from 0 to 4
       for y from 0 to 4
         lanes[x][y] = state[8*(x+5*y):8*(x+5*y)+8]

     for round from 0 to 11
       # theta
       for x from 0 to 4
         C[x] = lanes[x][0]
         C[x] ^= lanes[x][1]
         C[x] ^= lanes[x][2]
         C[x] ^= lanes[x][3]
         C[x] ^= lanes[x][4]
       for x from 0 to 4
         D[x] = C[(x+4) mod 5] ^ ROL64(C[(x+1) mod 5], 1)
       for y from 0 to 4
         for x from 0 to 4
           lanes[x][y] = lanes[x][y]^D[x]

       # rho and pi
       (x, y) = (1, 0)
       current = lanes[x][y]
       for t from 0 to 23
         (x, y) = (y, (2*x+3*y) mod 5)
         (current, lanes[x][y]) =
             (lanes[x][y], ROL64(current, (t+1)*(t+2)/2))

       # chi
       for y from 0 to 4
         for x from 0 to 4
           T[x] = lanes[x][y]
         for x from 0 to 4
           lanes[x][y] = T[x] ^((not T[(x+1) mod 5]) & T[(x+2) mod 5])

       # iota
       lanes[0][0] ^= RC[round]

     state = `00`^0
     for x from 0 to 4
       for y from 0 to 4
         state = state || lanes[x][y]

     return state
     end

Viguier, et al.         Expires 28 September 2023              [Page 19]
Internet-Draft               KangarooTwelve                   March 2023

   where ROL64(x, y) is a rotation of the 'x' 64-bit word toward the
   bits with higher indexes by 'y' positions.  The 8-bytes byte-string x
   is interpreted as a 64-bit word in little-endian format.

A.2.  TurboSHAKE128

   TurboSHAKE128(message, separationByte, outputByteLen):
     offset = 0
     state = `00`^200
     input = message || separationByte

     # === Absorb complete blocks ===
     while offset < |input| - 168
         state ^= input[offset : offset + 168] || `00`^32
         state = KP(state)
         offset += 168

     # === Absorb last block and treatment of padding ===
     LastBlockLength = |input| - offset
     state ^= input[offset:] || `00`^(200-LastBlockLength)
     state ^= `00`^167 || `80` || `00`^32
     state = KP(state)

     # === Squeeze ===
     output = `00`^0
     while outputByteLen > 168
         output = output || state[0:168]
         outputByteLen -= 168
         state = KP(state)

     output = output || state[0:outputByteLen]

     return output

A.3.  KangarooTwelve

Viguier, et al.         Expires 28 September 2023              [Page 20]
Internet-Draft               KangarooTwelve                   March 2023

  KangarooTwelve(inputMessage, customString, outputByteLen):
    S = inputMessage || customString
    S = S || length_encode( |customString| )

    if |S| <= 8192
        return TurboSHAKE128(S, `07`, outputByteLen)
    else
        # === Kangaroo hopping ===
        FinalNode = S[0:8192] || `03` || `00`^7
        offset = 8192
        numBlock = 0
        while offset < |S|
            blockSize = min( |S| - offset, 8192)
            CV = TurboSHAKE128(S[offset : offset + blockSize], `0B`, 32)
            FinalNode = FinalNode || CV
            numBlock += 1
            offset   += blockSize

        FinalNode = FinalNode || length_encode( numBlock ) || `FF FF`

        return TurboSHAKE128(FinalNode, `06`, outputByteLen)
    end

Authors' Addresses

   Benoît Viguier
   ABN AMRO Bank
   Groenelaan 2
   Amstelveen
   Email: cs.ru.nl@viguier.nl

   David Wong (editor)
   O(1) Labs
   Email: davidwong.crypto@gmail.com

   Gilles Van Assche (editor)
   STMicroelectronics
   Email: gilles.vanassche@st.com

   Quynh Dang (editor)
   National Institute of Standards and Technology
   Email: quynh.dang@nist.gov

Viguier, et al.         Expires 28 September 2023              [Page 21]
Internet-Draft               KangarooTwelve                   March 2023

   Joan Daemen (editor)
   Radboud University
   Email: joan@cs.ru.nl

Viguier, et al.         Expires 28 September 2023              [Page 22]