Packet expiration time in 6LoWPAN Routing Header
draft-lijo-6lo-expiration-time-02

Document Type Active Internet-Draft (individual)
Last updated 2017-03-13
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
6lo                                                          Lijo Thomas
Internet-Draft                                                     C-DAC
Intended status: Standards Track                               P. Akshay
Expires: September 14, 2017                  Indian Institute of Science
                                                      Satish Anamalamudi
                                         Huaiyin Institute of Technology
                                                             S.V.R.Anand
                                                            Malati Hegde
                                             Indian Institute of Science
                                                              C. Perkins
                                                               Futurewei
                                                          March 13, 2017

            Packet expiration time in 6LoWPAN Routing Header
                   draft-lijo-6lo-expiration-time-02

Abstract

   This document specifies a new type to the 6LoWPAN Dispatch Page 1 for
   carrying the expiration time of data packets within the 6LoWPAN
   routing header.  The expiration time is useful in making forwarding
   and scheduling decisions for time critical IoT M2M applications that
   need deterministic delay guarantees over constrained networks and
   operate within time-synchronized networks.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 14, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Lijo Thomas, et al.    Expires September 14, 2017               [Page 1]
Internet-Draft             6lo Expiration Time                March 2017

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  6LoRHE Generic Format . . . . . . . . . . . . . . . . . . . .   3
   4.  Deadline-6LoRH Description  . . . . . . . . . . . . . . . . .   3
   5.  Deadline-6LoRH Format . . . . . . . . . . . . . . . . . . . .   4
   6.  Deadline-6LoRH in Three Network Scenarios . . . . . . . . . .   6
     6.1.  Scenario 1: Endpoints in the same DODAG (N1) in non-
           storing mode. . . . . . . . . . . . . . . . . . . . . . .   6
     6.2.  Scenario 2: Endpoints in Networks with Dissimilar L2
           Technologies. . . . . . . . . . . . . . . . . . . . . . .   7
     6.3.  Scenario 3: Packet transmission across different DODAGs
           (N1 to N2). . . . . . . . . . . . . . . . . . . . . . . .   8
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  10
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  10
     10.2.  Informative References . . . . . . . . . . . . . . . . .  11
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   Low Power and Lossy Networks (LLNs) are likely to be employed for
   implementing real time industrial applications that require end-to-
   end delay guarantees [I-D.grossman-detnet-use-cases].  A
   Deterministic Network typically requires that data packets generated
   by the senders have to reach the receivers within strict time bounds.
   Intermediate nodes use the expiration time information to make
   appropriate packet forwarding and scheduling decisions to meet the
Show full document text