Skip to main content

Use cases of Application-aware Networking (APN) in Edge Computing
draft-liu-apn-edge-usecase-04

Document Type Expired Internet-Draft (individual)
Expired & archived
Authors Peng Liu , Zongpeng Du , Shuping Peng , Zhenbin Li
Last updated 2022-06-16 (Latest revision 2021-12-13)
RFC stream (None)
Intended RFC status (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state Expired
Telechat date (None)
Responsible AD (None)
Send notices to (None)

This Internet-Draft is no longer active. A copy of the expired Internet-Draft is available in these formats:

Abstract

The ever-emerging new services are imposing more and more highly demanding requirements on the network. However, the current deployments could not fully accommodate those requirements due to limited capabilities. For example, it is difficult to utilize the traditional centralized deployment mode to meet the low-latency demand of some latency-sensitive applications. Moreover, the total amount of centralized service data is growing exponentially, which brings great pressure on the network bandwidth. There has been a clear trend that decentralized sites comprising of computing and storage resources are deployed at various locations to provide services. In particular, when the sites are deployed at the network edge, i.e. the Edge Computing, it can better handle the business needs of the users nearby, which provides the possibilities to provide differentiated network and computing services. In order to achieve the full benefits of the edge computing, it actually implies a precondition that the network should be aware of the applications' requirements in order to steer their traffic to the network paths that can satisfy their requirements. Application-aware networking (APN) aims to accommodate the edge services' needs, fully releasing the benefits of the edge computing. This document describes the various application scenarios in edge computing to which the APN can be beneficial, including augmented reality, cloud gaming and remote control, which empowers the video business, users interaction business and user-device interaction business. In those scenarios, APN can identify the specific requirements of edge computing applications on the network, process close to the users, provide SLA guaranteed network services such as low latency and high reliability.

Authors

Peng Liu
Zongpeng Du
Shuping Peng
Zhenbin Li

(Note: The e-mail addresses provided for the authors of this Internet-Draft may no longer be valid.)