Skip to main content

Anonymous Credit Tokens
draft-schlesinger-cfrg-act-00

Document Type Active Internet-Draft (individual)
Authors Samuel Schlesinger , Jonathan Katz
Last updated 2025-08-18
RFC stream (None)
Intended RFC status (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-schlesinger-cfrg-act-00
Network Working Group                                     S. Schlesinger
Internet-Draft                                                   J. Katz
Intended status: Informational                                    Google
Expires: 19 February 2026                                 18 August 2025

                        Anonymous Credit Tokens
                     draft-schlesinger-cfrg-act-00

Abstract

   This document specifies Anonymous Credit Tokens (ACT), a privacy-
   preserving authentication protocol that enables numerical credit
   systems without tracking individual clients.  Based on keyed-
   verification anonymous credentials and privately verifiable BBS-style
   signatures, the protocol allows issuers to grant tokens containing
   credits that clients can later spend anonymously with that issuer.

   The protocol's key features include: (1) unlinkable transactions -
   the issuer cannot correlate credit issuance with spending, or link
   multiple spends by the same client, (2) partial spending - clients
   can spend a portion of their credits and receive anonymous change,
   and (3) double-spend prevention through cryptographic nullifiers that
   preserve privacy while ensuring each token is used only once.

   Anonymous Credit Tokens are designed for modern web services
   requiring rate limiting, usage-based billing, or resource allocation
   while respecting user privacy.  Example applications include rate
   limiting and API credits.

   This document is a product of the Crypto Forum Research Group (CFRG)
   in the IRTF.

About This Document

   This note is to be removed before publishing as an RFC.

   The latest revision of this draft can be found at
   https://SamuelSchlesinger.github.io/draft-act/draft-schlesinger-cfrg-
   act.html.  Status information for this document may be found at
   https://datatracker.ietf.org/doc/draft-schlesinger-cfrg-act/.

   Discussion of this document takes place on the Crypto Forum Research
   Group mailing list (mailto:cfrg@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/browse/cfrg.  Subscribe at
   https://www.ietf.org/mailman/listinfo/cfrg/.

Schlesinger & Katz      Expires 19 February 2026                [Page 1]
Internet-Draft                     ACT                       August 2025

   Source for this draft and an issue tracker can be found at
   https://github.com/SamuelSchlesinger/draft-act.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 19 February 2026.

Copyright Notice

   Copyright (c) 2025 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
     1.1.  Key Properties  . . . . . . . . . . . . . . . . . . . . .   4
     1.2.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . .   5
     1.3.  Protocol Overview . . . . . . . . . . . . . . . . . . . .   5
     1.4.  Design Goals  . . . . . . . . . . . . . . . . . . . . . .   6
     1.5.  Relation to Existing Work . . . . . . . . . . . . . . . .   6
   2.  Conventions and Definitions . . . . . . . . . . . . . . . . .   7
     2.1.  Notation  . . . . . . . . . . . . . . . . . . . . . . . .   7
     2.2.  Data Types  . . . . . . . . . . . . . . . . . . . . . . .   7
     2.3.  Cryptographic Parameters  . . . . . . . . . . . . . . . .   7
   3.  Protocol Specification  . . . . . . . . . . . . . . . . . . .   8
     3.1.  System Parameters . . . . . . . . . . . . . . . . . . . .   8
     3.2.  Key Generation  . . . . . . . . . . . . . . . . . . . . .  10
     3.3.  Token Issuance  . . . . . . . . . . . . . . . . . . . . .  10
       3.3.1.  Client: Issuance Request  . . . . . . . . . . . . . .  10

Schlesinger & Katz      Expires 19 February 2026                [Page 2]
Internet-Draft                     ACT                       August 2025

       3.3.2.  Issuer: Issuance Response . . . . . . . . . . . . . .  11
       3.3.3.  Client: Token Verification  . . . . . . . . . . . . .  12
     3.4.  Token Spending  . . . . . . . . . . . . . . . . . . . . .  13
       3.4.1.  Client: Spend Proof Generation  . . . . . . . . . . .  13
       3.4.2.  Issuer: Spend Verification and Refund . . . . . . . .  16
       3.4.3.  Refund Issuance . . . . . . . . . . . . . . . . . . .  17
       3.4.4.  Client: Refund Token Construction . . . . . . . . . .  18
       3.4.5.  Spend Proof Verification  . . . . . . . . . . . . . .  19
     3.5.  Cryptographic Primitives  . . . . . . . . . . . . . . . .  21
       3.5.1.  Protocol Version  . . . . . . . . . . . . . . . . . .  21
       3.5.2.  Hash Function and Fiat-Shamir Transform . . . . . . .  21
       3.5.3.  Encoding Functions  . . . . . . . . . . . . . . . . .  23
       3.5.4.  Binary Decomposition  . . . . . . . . . . . . . . . .  23
       3.5.5.  Scalar Conversion . . . . . . . . . . . . . . . . . .  24
   4.  Protocol Messages and Wire Format . . . . . . . . . . . . . .  25
     4.1.  Message Encoding  . . . . . . . . . . . . . . . . . . . .  25
       4.1.1.  Issuance Request Message  . . . . . . . . . . . . . .  25
       4.1.2.  Issuance Response Message . . . . . . . . . . . . . .  25
       4.1.3.  Spend Proof Message . . . . . . . . . . . . . . . . .  26
       4.1.4.  Refund Message  . . . . . . . . . . . . . . . . . . .  26
     4.2.  Error Responses . . . . . . . . . . . . . . . . . . . . .  26
     4.3.  Protocol Flow . . . . . . . . . . . . . . . . . . . . . .  27
       4.3.1.  Example Usage Scenario  . . . . . . . . . . . . . . .  27
   5.  Implementation Considerations . . . . . . . . . . . . . . . .  28
     5.1.  Nullifier Management  . . . . . . . . . . . . . . . . . .  28
     5.2.  Constant-Time Operations  . . . . . . . . . . . . . . . .  28
     5.3.  Randomness Generation . . . . . . . . . . . . . . . . . .  29
       5.3.1.  RNG Requirements  . . . . . . . . . . . . . . . . . .  29
       5.3.2.  Nonce Generation  . . . . . . . . . . . . . . . . . .  29
     5.4.  Point Validation  . . . . . . . . . . . . . . . . . . . .  29
     5.5.  Error Handling  . . . . . . . . . . . . . . . . . . . . .  30
       5.5.1.  Error Codes . . . . . . . . . . . . . . . . . . . . .  30
     5.6.  Parameter Selection . . . . . . . . . . . . . . . . . . .  31
       5.6.1.  Performance Characteristics . . . . . . . . . . . . .  31
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  33
     6.1.  Security Model and Definitions  . . . . . . . . . . . . .  33
       6.1.1.  Threat Model  . . . . . . . . . . . . . . . . . . . .  33
       6.1.2.  Security Properties . . . . . . . . . . . . . . . . .  33
     6.2.  Cryptographic Assumptions . . . . . . . . . . . . . . . .  33
     6.3.  Privacy Properties  . . . . . . . . . . . . . . . . . . .  34
     6.4.  Security Properties . . . . . . . . . . . . . . . . . . .  34
     6.5.  Implementation Vulnerabilities and Mitigations  . . . . .  34
       6.5.1.  Critical Security Requirements  . . . . . . . . . . .  34
     6.6.  Known Attack Scenarios  . . . . . . . . . . . . . . . . .  37
       6.6.1.  1.  Parallel Spend Attack . . . . . . . . . . . . . .  37
       6.6.2.  2.  Balance Inflation Attack  . . . . . . . . . . . .  37
       6.6.3.  3.  Token Linking Attack  . . . . . . . . . . . . . .  37
     6.7.  Protocol Composition and State Management . . . . . . . .  38

Schlesinger & Katz      Expires 19 February 2026                [Page 3]
Internet-Draft                     ACT                       August 2025

       6.7.1.  State Management Requirements . . . . . . . . . . . .  38
       6.7.2.  Session Management  . . . . . . . . . . . . . . . . .  38
       6.7.3.  Version Negotiation . . . . . . . . . . . . . . . . .  38
     6.8.  Quantum Resistance  . . . . . . . . . . . . . . . . . . .  38
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  39
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  39
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  39
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  39
   Appendix A.  Test Vectors . . . . . . . . . . . . . . . . . . . .  40
   Appendix B.  Implementation Status  . . . . . . . . . . . . . . .  40
     B.1.  anonymous-credit-tokens . . . . . . . . . . . . . . . . .  40
   Appendix C.  Terminology Glossary . . . . . . . . . . . . . . . .  40
   Appendix D.  Acknowledgments  . . . . . . . . . . . . . . . . . .  41
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  42

1.  Introduction

   Modern web services face a fundamental tension between operational
   needs and user privacy.  Services need to implement rate limiting to
   prevent abuse, charge for API usage to sustain operations, and
   allocate computational resources fairly.  However, traditional
   approaches require tracking client identities and creating detailed
   logs of client behavior, raising significant privacy concerns in an
   era of increasing data protection awareness and regulation.

   Anonymous Credit Tokens (ACT) helps to resolve this tension by
   providing a cryptographic protocol that enables credit-based systems
   without client tracking.  Built on keyed-verification anonymous
   credentials [KVAC] and privately verifiable BBS-style signatures
   [BBS], the protocol allows services to issue, track, and spend
   credits while maintaining client privacy.

1.1.  Key Properties

   The protocol provides four essential properties that make it suitable
   for privacy-preserving credit systems:

   1.  *Unlinkability*: The issuer cannot link credit issuance to
       spending, or connect multiple transactions by the same client.
       This property is information-theoretic, not merely computational.

   2.  *Partial Spending*: Clients can spend any amount up to their
       balance and receive anonymous change without revealing their
       previous or current balance, enabling flexible spending.

   3.  *Double-Spend Prevention*: Cryptographic nullifiers ensure each
       token is used only once, without linking it to issuance.

Schlesinger & Katz      Expires 19 February 2026                [Page 4]
Internet-Draft                     ACT                       August 2025

   4.  *Balance Privacy*: During spending, only the amount being spent
       is revealed, not the total balance in the token, protecting
       clients from balance-based profiling.

   5.  *Performance*: The protocol's operations are performant enough to
       make it useful in modern web systems.  This protocol has
       performance characteristics which make it suitable for a large
       number of applications.

1.2.  Use Cases

   Anonymous Credit Tokens can be applied to various scenarios:

   *  *Rate Limiting*: Services can issue daily credit allowances that
      clients spend anonymously for API calls or resource access.

   *  *API Credits*: API providers can sell credit packages that
      developers use to pay for API requests without creating a detailed
      usage history linked to their identity.  This enables:

      -  Pre-paid API access without requiring credit cards for each
         transaction

      -  Anonymous API usage for privacy-sensitive applications

      -  Usage-based billing without tracking individual request
         patterns

      -  Protection against competitive analysis through usage
         monitoring

1.3.  Protocol Overview

   The protocol involves two parties: an issuer (typically a service
   provider) and clients (typically users of the service).  The
   interaction follows three main phases:

   1.  *Setup*: The issuer generates a key pair and publishes the public
       key.

   2.  *Issuance*: A client requests credits from the issuer.  The
       issuer creates a blind signature on the credit value and a
       client-chosen nullifier, producing a credit token.

Schlesinger & Katz      Expires 19 February 2026                [Page 5]
Internet-Draft                     ACT                       August 2025

   3.  *Spending*: To spend credits, the client reveals a nullifier and
       proves possession of a valid token associated with that nullifier
       having sufficient balance.  The issuer verifies the proof, checks
       the nullifier hasn't been used before, and issues a new token
       (which remains hidden from the issuer) for any remaining balance.

1.4.  Design Goals

   The protocol is designed with the following goals:

   *  *Privacy*: The issuer cannot link credit tokens to specific
      clients or link multiple transactions by the same client.

   *  *Security*: Clients cannot spend more credits than they possess or
      use the same credits multiple times.

   *  *Efficiency*: All operations should be computationally efficient,
      suitable for high-volume web services.

   *  *Simplicity*: The protocol should be straightforward to implement
      and integrate into existing systems relative to other comparable
      solutions.

1.5.  Relation to Existing Work

   This protocol builds upon several cryptographic primitives:

   *  *BBS Signatures* [BBS]: The core signature scheme that enables
      efficient proofs of possession.  We use a variant that is
      privately verifiable, which avoids the need for pairings and makes
      our protocol more efficient.

   *  *Sigma Protocols* [ORRU-SIGMA]: The zero-knowledge proof framework
      used for spending proofs.

   *  *Fiat-Shamir Transform* [ORRU-FS]: The technique to make the
      interactive proofs non-interactive.

   The protocol can be viewed as a specialized instantiation of keyed-
   verification anonymous credentials [KVAC] optimized for numerical
   values and partial spending.

Schlesinger & Katz      Expires 19 February 2026                [Page 6]
Internet-Draft                     ACT                       August 2025

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.1.  Notation

   This document uses the following notation:

   *  ||: Concatenation of byte strings

   *  x <- S: Sampling x uniformly from the set S

   *  x := y: Assignment of the value y to the variable x

   *  [n]: The set of integers {0, 1, ..., n-1}

   *  |x|: The length of byte string x

   *  0x prefix: Hexadecimal values

   *  We use additive notation for group operations, so group elements
      are added together like a + b and scalar multiplication of a group
      element by a scalar is written as a * n, with group element a and
      scalar n.

2.2.  Data Types

   The protocol uses the following data types:

   *  *Scalar*: An integer modulo the group order q

   *  *Element*: An element of the Ristretto255 group

   *  *ByteString*: A sequence of bytes

2.3.  Cryptographic Parameters

   The protocol uses the Ristretto group [RFC9496], which provides a
   prime-order group abstraction over Curve25519.  It would be easy to
   adapt this approach to using any other prime order group based on the
   contents of this document.  The key parameters are:

   *  *q*: The prime order of the group (2^252 +
      27742317777372353535851937790883648493)

Schlesinger & Katz      Expires 19 February 2026                [Page 7]
Internet-Draft                     ACT                       August 2025

   *  *G*: The standard generator of the Ristretto group

   *  *L*: The bit length for credit values

3.  Protocol Specification

3.1.  System Parameters

   The protocol requires the following system parameters:

Parameters:
  - G: Generator of the Ristretto group
  - H1, H2, H3: Additional generators for commitments
  - L: Bit length for credit values (configurable, must satisfy L <= 252)

   The generators H1, H2, and H3 MUST be generated deterministically
   from a nothing-up-my-sleeve value to ensure they are independent of
   each other and of G.  This prevents attacks whereby malicious
   parameters could compromise security.  Note that these generators are
   independent of the choice of L.

Schlesinger & Katz      Expires 19 February 2026                [Page 8]
Internet-Draft                     ACT                       August 2025

   GenerateParameters(domain_separator):
     Input:
       - domain_separator: ByteString identifying the deployment
     Output:
       - params: System parameters (H1, H2, H3)

     Steps:
       1. seed = BLAKE3(LengthPrefixed(domain_separator))
       2. counter = 0
       3. H1 = HashToRistretto255(seed, counter++)
       4. H2 = HashToRistretto255(seed, counter++)
       5. H3 = HashToRistretto255(seed, counter++)
       6. return (H1, H2, H3)

   HashToRistretto255(seed, counter):
     Input:
       - seed: 32-byte seed value
       - counter: Integer counter for domain separation
     Output:
       - P: A valid Ristretto255 point

     Steps:
       1. hasher = BLAKE3.new()
       2. hasher.update(LengthPrefixed(domain_separator))
       3. hasher.update(LengthPrefixed(seed))
       4. hasher.update(LengthPrefixed(counter.to_le_bytes(4)))
       5. uniform_bytes = hasher.finalize_xof(64)
       6. P = OneWayMap(uniform_bytes)
       7. return P

   The domain_separator MUST be unique for each deployment to ensure
   cryptographic isolation between different services.  The domain
   separator SHOULD follow this structured format:

domain_separator = "ACT-v1:" || organization || ":" || service || ":" || deployment_id || ":" || version

   Where:

   *  organization: A unique identifier for the organization (e.g.,
      "example-corp", "acme-inc")

   *  service: The specific service or application name (e.g., "payment-
      api", "rate-limiter")

   *  deployment_id: The deployment environment (e.g., "production",
      "staging", "us-west-1")

Schlesinger & Katz      Expires 19 February 2026                [Page 9]
Internet-Draft                     ACT                       August 2025

   *  version: An ISO 8601 date (YYYY-MM-DD) indicating when parameters
      were generated

   Example: "ACT-v1:example-corp:payment-api:production:2024-01-15"

   This structured format ensures: 1.  Protocol identification through
   the "ACT-v1:" prefix 2.  Organizational namespace isolation 3.
   Service-level separation within organizations 4.  Environment
   isolation (production vs staging) 5.  Version tracking for parameter
   updates

   Using generic or unstructured domain separators creates security
   risks through parameter collision and MUST NOT be used.  When
   parameters need to be updated (e.g., for security reasons or protocol
   upgrades), a new version date MUST be used, creating entirely new
   parameters.

   The OneWayMap function is defined in [RFC9496] Section 4.3.4, which
   provides a cryptographically secure mapping from uniformly random
   byte strings to valid Ristretto255 points.

3.2.  Key Generation

   The issuer generates a key pair as follows:

   KeyGen():
     Input: None
     Output:
       - sk: Private key (Scalar)
       - pk: Public key (Group Element)

     Steps:
       1. x <- Zq
       2. W = G * x
       3. sk = x
       4. pk = W
       5. return (sk, pk)

3.3.  Token Issuance

   The issuance protocol is an interactive protocol between a client and
   the issuer:

3.3.1.  Client: Issuance Request

Schlesinger & Katz      Expires 19 February 2026               [Page 10]
Internet-Draft                     ACT                       August 2025

   IssueRequest():
     Output:
       - request: Issuance request
       - state: Client state for later verification

     Steps:
       1. k <- Zq  // Nullifier (will prevent double-spending)
       2. r <- Zq  // Blinding factor
       3. K = H2 * k + H3 * r
       4. // Generate proof of knowledge of k, r
       5. k' <- Zq
       6. r' <- Zq
       7. K1 = H2 * k' + H3 * r'
       8. transcript = CreateTranscript("request")
       9. AddToTranscript(transcript, K)
       10. AddToTranscript(transcript, K1)
       11. gamma = GetChallenge(transcript)
       12. k_bar = k' + gamma * k
       13. r_bar = r' + gamma * r
       14. request = (K, gamma, k_bar, r_bar)
       15. state = (k, r)
       16. return (request, state)

3.3.2.  Issuer: Issuance Response

Schlesinger & Katz      Expires 19 February 2026               [Page 11]
Internet-Draft                     ACT                       August 2025

   Issue(sk, request, c):
     Input:
       - sk: Issuer's private key
       - request: Client's issuance request
       - c: Credit amount to issue (c > 0)
     Output:
       - response: Issuance response or INVALID

     Steps:
       1. Parse request as (K, gamma, k_bar, r_bar)
       2. // Verify proof of knowledge
       3. K1 = H2 * k_bar + H3 * r_bar - K * gamma
       4. transcript = CreateTranscript("request")
       5. AddToTranscript(transcript, K)
       6. AddToTranscript(transcript, K1)
       7. if GetChallenge(transcript) != gamma:
       8.     return INVALID
       9. // Create BBS signature on (c, k, r)
       10. e <- Zq
       11. A = (G + H1 * c + K) * (1/(e + sk))  // K = H2 * k + H3 * r
       12. // Generate proof of correct computation
       13. alpha <- Zq
       14. Y_A = A * alpha
       15. Y_G = G * alpha
       16. X_A = G + H1 * c + K
       17. X_G = G * e + pk
       18. transcript_resp = CreateTranscript("respond")
       19. AddToTranscript(transcript_resp, c)
       20. AddToTranscript(transcript_resp, e)
       21. AddToTranscript(transcript_resp, A)
       22. AddToTranscript(transcript_resp, X_A)
       23. AddToTranscript(transcript_resp, X_G)
       24. AddToTranscript(transcript_resp, Y_A)
       25. AddToTranscript(transcript_resp, Y_G)
       26. gamma_resp = GetChallenge(transcript_resp)
       27. z = gamma_resp * (sk + e) + alpha
       28. response = (A, e, gamma_resp, z, c)
       29. return response

3.3.3.  Client: Token Verification

Schlesinger & Katz      Expires 19 February 2026               [Page 12]
Internet-Draft                     ACT                       August 2025

   VerifyIssuance(pk, request, response, state):
     Input:
       - pk: Issuer's public key
       - request: The issuance request sent
       - response: Issuer's response
       - state: Client state from request generation
     Output:
       - token: Credit token or INVALID

     Steps:
       1. Parse request as (K, gamma, k_bar, r_bar)
       2. Parse response as (A, e, gamma_resp, z, c)
       3. Parse state as (k, r)
       4. // Verify proof
       6. X_A = G + H1 * c + K
       7. X_G = G * e + pk
       8. Y_A = A * z - X_A * gamma_resp
       9. Y_G = G * z - X_G * gamma_resp
       10. transcript_resp = CreateTranscript("respond")
       11. AddToTranscript(transcript_resp, c)
       12. AddToTranscript(transcript_resp, e)
       13. AddToTranscript(transcript_resp, A)
       14. AddToTranscript(transcript_resp, X_A)
       15. AddToTranscript(transcript_resp, X_G)
       16. AddToTranscript(transcript_resp, Y_A)
       17. AddToTranscript(transcript_resp, Y_G)
       18. if GetChallenge(transcript_resp) != gamma_resp:
       19.     return INVALID
       20. token = (A, e, k, r, c)
       21. return token

3.4.  Token Spending

   The spending protocol allows a client to spend s credits from a token
   containing c credits (where 0 < s <= c):

3.4.1.  Client: Spend Proof Generation

ProveSpend(token, s):
  Input:
    - token: Credit token (A, e, k, r, c)
    - s: Amount to spend (0 < s <= c)
  Output:
    - proof: Spend proof
    - state: Client state for receiving change

  Steps:
    1. // Randomize the signature

Schlesinger & Katz      Expires 19 February 2026               [Page 13]
Internet-Draft                     ACT                       August 2025

    2. r1, r2 <- Zq
    3. B = G + H1 * c + H2 * k + H3 * r
    4. A' = A * (r1 * r2)
    5. B_bar = B * r1
    6. r3 = 1/r1

    7. // Generate initial proof components
    8. c' <- Zq
    9. r' <- Zq
    10. e' <- Zq
    11. r2' <- Zq
    12. r3' <- Zq

    13. // Compute first round messages
    14. A1 = A' * e' + B_bar * r2'
    15. A2 = B_bar * r3' + H1 * c' + H3 * r'

    16. // Decompose c - s into bits
    17. m = c - s
    18. (i[0], ..., i[L-1]) = BitDecompose(m)  // See Section 3.7

    19. // Create commitments for each bit
    20. k* <- Zq
    21. s[0] <- Zq
    22. Com[0] = H1 * i[0] + H2 * k* + H3 * s[0]
    23. For j = 1 to L-1:
    24.     s[j] <- Zq
    25.     Com[j] = H1 * i[j] + H3 * s[j]

    26. // Initialize range proof arrays
    27. C = array[L][2]
    28. C' = array[L][2]
    29. gamma0 = array[L]
    30. z = array[L][2]

    31. // Process bit 0 (with k* component)
    32. C[0][0] = Com[0]
    33. C[0][1] = Com[0] - H1
    34. k0' <- Zq
    35. s_prime = array[L]
    36. s_prime[0] <- Zq
    37. gamma0[0] <- Zq
    38. w0 <- Zq
    39. z[0] <- Zq

    40. if i[0] == 0:
    41.     C'[0][0] = H2 * k0' + H3 * s_prime[0]
    42.     C'[0][1] = H2 * w0 + H3 * z[0] - C[0][1] * gamma0[0]

Schlesinger & Katz      Expires 19 February 2026               [Page 14]
Internet-Draft                     ACT                       August 2025

    43. else:
    44.     C'[0][0] = H2 * w0 + H3 * z[0] - C[0][0] * gamma0[0]
    45.     C'[0][1] = H2 * k0' + H3 * s_prime[0]

    46. // Process remaining bits
    47. For j = 1 to L-1:
    48.     C[j][0] = Com[j]
    49.     C[j][1] = Com[j] - H1
    50.     s_prime[j] <- Zq
    51.     gamma0[j] <- Zq
    52.     z[j] <- Zq
    53.
    54.     if i[j] == 0:
    55.         C'[j][0] = H3 * s_prime[j]
    56.         C'[j][1] = H3 * z[j] - C[j][1] * gamma0[j]
    57.     else:
    58.         C'[j][0] = H3 * z[j] - C[j][0] * gamma0[j]
    59.         C'[j][1] = H3 * s_prime[j]

    60. // Compute K' commitment
    61. K' = Sum(Com[j] * 2^j for j in [L])
    62. r* = Sum(s[j] * 2^j for j in [L])
    63. k' <- Zq
    64. s' <- Zq
    65. C = H1 * (-c') + H2 * k' + H3 * s'

    66. // Generate challenge using transcript
    67. transcript = CreateTranscript("spend")
    68. AddToTranscript(transcript, k)
    69. AddToTranscript(transcript, A')
    70. AddToTranscript(transcript, B_bar)
    71. AddToTranscript(transcript, A1)
    72. AddToTranscript(transcript, A2)
    73. For j = 0 to L-1:
    74.     AddToTranscript(transcript, Com[j])
    75. For j = 0 to L-1:
    76.     AddToTranscript(transcript, C'[j][0])
    77.     AddToTranscript(transcript, C'[j][1])
    78. AddToTranscript(transcript, C)
    79. gamma = GetChallenge(transcript)

    80. // Compute responses
    81. e_bar = -gamma * e + e'
    82. r2_bar = gamma * r2 + r2'
    83. r3_bar = gamma * r3 + r3'
    84. c_bar = -gamma * c + c'
    85. r_bar = -gamma * r + r'

Schlesinger & Katz      Expires 19 February 2026               [Page 15]
Internet-Draft                     ACT                       August 2025

    86. // Complete range proof responses
    87. z_final = array[L][2]
    88. gamma0_final = array[L]
    89.
    90. // For bit 0
    91. if i[0] == 0:
    92.     gamma0_final[0] = gamma - gamma0[0]
    94.     w00 = gamma0_final[0] * k* + k0'
    95.     w01 = w0
    96.     z_final[0][0] = gamma0_final[0] * s[0] + s_prime[0]
    97.     z_final[0][1] = z[0]
    98. else:
    99.     gamma0_final[0] = gamma0[0]
    100.    w00 = w0
    101.    w01 = (gamma - gamma_final[0]) * k* + k'[0]
    102.    z_final[0][0] = z[0]
    103.    z_final[0][1] = (gamma - gamma0_final[0]) * s[0] + s_prime[0]

    104. // For remaining bits
    105. For j = 1 to L-1:
    106.     if i[j] == 0:
    107.         gamma0_final[j] = gamma - gamma0[j]
    108.         z_final[j][0] = gamma0_final[j] * s[j] + s_prime[j]
    109.         z_final[j][1] = z[j]
    110.     else:
    111.         gamma0_final[j] = gamma0[j]
    112.         z_final[j][0] = z[j]
    113.         z_final[j][1] = (gamma - gamma0_final[j]) * s[j] + s_prime[j]

    114. k_bar = gamma * k* + k'
    115. s_bar = gamma * r* + s'

    116. // Construct proof
    117. proof = (k, s, A', B_bar, Com, gamma, e_bar,
    118.          r2_bar, r3_bar, c_bar, r_bar,
    119.          w00, w01, gamma0_final, z_final,
    120.          k_bar, s_bar)
    121. state = (k*, r*, m)
    122. return (proof, state)

3.4.2.  Issuer: Spend Verification and Refund

Schlesinger & Katz      Expires 19 February 2026               [Page 16]
Internet-Draft                     ACT                       August 2025

   VerifyAndRefund(sk, proof):
     Input:
       - sk: Issuer's private key
       - proof: Client's spend proof
     Output:
       - refund: Refund for remaining credits or INVALID

     Steps:
       1. Parse proof and extract nullifier k
       2. // Check nullifier hasn't been used
       3. if k in used_nullifiers:
       4.     return INVALID
       5. // Verify the proof (see Section 3.5.2)
       6. if not VerifySpendProof(sk, proof):
       7.     return INVALID
       8. // Record nullifier
       9. used_nullifiers.add(k)
       10. // Issue refund for remaining balance
       11. K' = Sum(Com[j] * 2^j for j in [L])
       12. refund = IssueRefund(sk, K')
       13. return refund

3.4.3.  Refund Issuance

   After verifying a spend proof, the issuer creates a refund token for
   the remaining balance:

Schlesinger & Katz      Expires 19 February 2026               [Page 17]
Internet-Draft                     ACT                       August 2025

   IssueRefund(sk, K'):
     Input:
       - sk: Issuer's private key
       - K': Commitment to remaining balance and new nullifier
     Output:
       - refund: Refund response

     Steps:
       1. // Create new BBS signature on remaining balance
       2. e* <- Zq
       3. X_A* = G + K'
       4. A* = X_A* * (1/(e* + sk))

       5. // Generate proof of correct computation
       6. alpha <- Zq
       7. Y_A = A* * alpha
       8. Y_G = G * alpha
       9. X_G = G * e* + pk

       10. // Create challenge using transcript
       11. transcript = CreateTranscript("refund")
       12. AddToTranscript(transcript, e*)
       13. AddToTranscript(transcript, A*)
       14. AddToTranscript(transcript, X_A*)
       15. AddToTranscript(transcript, X_G)
       16. AddToTranscript(transcript, Y_A)
       17. AddToTranscript(transcript, Y_G)
       18. gamma = GetChallenge(transcript)

       19. // Compute response
       20. z = gamma * (sk + e*) + alpha

       21. refund = (A*, e*, gamma, z)
       22. return refund

3.4.4.  Client: Refund Token Construction

   The client verifies the refund and constructs a new credit token:

Schlesinger & Katz      Expires 19 February 2026               [Page 18]
Internet-Draft                     ACT                       August 2025

   ConstructRefundToken(pk, spend_proof, refund, state):
     Input:
       - pk: Issuer's public key
       - spend_proof: The spend proof sent to issuer
       - refund: Issuer's refund response
       - state: Client state (k*, r*, m)
     Output:
       - token: New credit token or INVALID

     Steps:
       1. Parse refund as (A*, e*, gamma, z)
       2. Parse state as (k*, r*, m)

       3. // Reconstruct commitment
       4. K' = Sum(spend_proof.Com[j] * 2^j for j in [L])
       5. X_A* = G + K'
       6. X_G = G * e* + pk

       7. // Verify proof
       8. Y_A = A* * z + X_A* * (-gamma)
       9. Y_G = G * z + X_G * (-gamma)

       10. // Check challenge using transcript
       11. transcript = CreateTranscript("refund")
       12. AddToTranscript(transcript, e*)
       13. AddToTranscript(transcript, A*)
       14. AddToTranscript(transcript, X_A*)
       15. AddToTranscript(transcript, X_G)
       16. AddToTranscript(transcript, Y_A)
       17. AddToTranscript(transcript, Y_G)
       18. if GetChallenge(transcript) != gamma:
       19.     return INVALID

       20. // Construct new token
       21. token = (A*, e*, k*, r*, m)
       22. return token

3.4.5.  Spend Proof Verification

   The issuer verifies a spend proof as follows:

VerifySpendProof(sk, proof):
  Input:
    - sk: Issuer's private key
    - proof: Spend proof from client
  Output:
    - valid: Boolean indicating if proof is valid

Schlesinger & Katz      Expires 19 February 2026               [Page 19]
Internet-Draft                     ACT                       August 2025

  Steps:
    1. Parse proof as (k, s, A', B_bar, Com, gamma, e_bar,
                      r2_bar, r3_bar, c_bar, r_bar, w00, w01,
                      gamma0, z, k_bar, s_bar)

    2. // Check A' is not identity
    3. if A' == Identity:
    4.     return false

    5. // Compute issuer's view of signature
    6. A_bar = A' * sk
    7. H1_prime = G + H2 * k

    8. // Verify sigma protocol
    9. A1 = A' * e_bar + B_bar * r2_bar - A_bar * gamma
    10. A2 = B_bar * r3_bar + H1 * c_bar + H3 * r_bar - H1_prime * gamma

    11. // Initialize arrays for range proof verification
    12. gamma1 = array[L]
    13. C = array[L][2]
    14. C' = array[L][2]

    15. // Process bit 0 (with k* component)
    16. gamma1[0] = gamma - gamma0[0]
    17. C[0][0] = Com[0]
    18. C[0][1] = Com[0] - H1
    19. C'[0][0] = H2 * w00 + H3 * z[0][0] - C[0][0] * gamma0[0]
    20. C'[0][1] = H2 * w01 + H3 * z[0][1] - C[0][1] * gamma1[0]

    21. // Verify remaining bits
    22. For j = 1 to L-1:
    23.     gamma1[j] = gamma - gamma0[j]
    24.     C[j][0] = Com[j]
    25.     C[j][1] = Com[j] - H1
    26.     C'[j][0] = H3 * z[j][0] - C[j][0] * gamma0[j]
    27.     C'[j][1] = H3 * z[j][1] - C[j][1] * gamma1[j]

    28. // Verify final commitment
    29. K' = Sum(Com[j] * 2^j for j in [L])
    30. Com_total = H1 * s + K'
    31. C_final = H1 * (-c_bar) + H2 * k_bar + H3 * s_bar - Com_total * gamma

    32. // Recompute challenge using transcript
    33. transcript = CreateTranscript("spend")
    34. AddToTranscript(transcript, k)
    35. AddToTranscript(transcript, A')
    36. AddToTranscript(transcript, B_bar)
    37. AddToTranscript(transcript, A1)

Schlesinger & Katz      Expires 19 February 2026               [Page 20]
Internet-Draft                     ACT                       August 2025

    38. AddToTranscript(transcript, A2)
    39. For j = 0 to L-1:
    40.     AddToTranscript(transcript, Com[j])
    41. For j = 0 to L-1:
    42.     AddToTranscript(transcript, C'[j][0])
    43.     AddToTranscript(transcript, C'[j][1])
    44. AddToTranscript(transcript, C_final)
    45. gamma_check = GetChallenge(transcript)

    46. // Verify challenge matches
    47. if gamma != gamma_check:
    48.     return false

    49. return true

3.5.  Cryptographic Primitives

3.5.1.  Protocol Version

   The protocol version string for domain separation is:

   PROTOCOL_VERSION = "curve25519-ristretto anonymous-credits v1.0"

   This version string MUST be used consistently across all
   implementations for interoperability.  The curve specification is
   included to prevent cross-curve attacks and ensure implementations
   using different curves cannot accidentally interact.

3.5.2.  Hash Function and Fiat-Shamir Transform

   The protocol uses BLAKE3 [BLAKE3] as the underlying hash function for
   the Fiat-Shamir transform [ORRU-FS].  Following the sigma protocol
   framework [ORRU-SIGMA], challenges are generated using a transcript
   that accumulates all protocol messages:

Schlesinger & Katz      Expires 19 February 2026               [Page 21]
Internet-Draft                     ACT                       August 2025

   CreateTranscript(label):
     Input:
       - label: ASCII string identifying the proof type
     Output:
       - transcript: A new transcript object

     Steps:
       1. hasher = BLAKE3.new()
       2. hasher.update(LengthPrefixed(PROTOCOL_VERSION))
       3. hasher.update(LengthPrefixed(Encode(H1)))
       4. hasher.update(LengthPrefixed(Encode(H2)))
       5. hasher.update(LengthPrefixed(Encode(H3)))
       6. hasher.update(LengthPrefixed(label))
       7. return transcript with hasher

   AddToTranscript(transcript, value):
     Input:
       - transcript: Existing transcript
       - value: Element or Scalar to add

     Steps:
       1. encoded = Encode(value)
       2. transcript.hasher.update(LengthPrefixed(encoded))

   GetChallenge(transcript):
     Input:
       - transcript: Completed transcript
     Output:
       - challenge: Scalar challenge value

     Steps:
       1. hash = transcript.hasher.output(64)  // 64 bytes of output
       3. challenge = from_little_endian_bytes(hash) mod q
       4. return challenge

   This approach ensures:

   *  Domain separation through the label and protocol version

   *  Inclusion of all public parameters to prevent parameter
      substitution attacks

   *  Proper ordering with length prefixes to prevent ambiguity

   *  Deterministic challenge generation from the complete transcript

Schlesinger & Katz      Expires 19 February 2026               [Page 22]
Internet-Draft                     ACT                       August 2025

3.5.3.  Encoding Functions

   Elements and scalars are encoded as follows:

Encode(value):
  Input:
    - value: Element or Scalar
  Output:
    - encoding: ByteString

  Steps:
    1. If value is an Element:
    2.     return value.compress()  // 32 bytes, compressed Ristretto point
    3. If value is a Scalar:
    4.     return value.to_bytes_le()  // 32 bytes, little-endian

   The following function provides consistent length-prefixing for hash
   inputs:

LengthPrefixed(data):
  Input:
    - data: ByteString to be length-prefixed
  Output:
    - prefixed: ByteString with length prefix

  Steps:
    1. length = len(data)
    2. return length.to_be_bytes(8) || data  // 8-byte big-endian length prefix

   Note: Implementations MAY use standard serialization formats (e.g.
   CBOR) for complex structures, but MUST ensure deterministic encoding
   for hash inputs.

3.5.4.  Binary Decomposition

   To decompose a scalar into its binary representation:

Schlesinger & Katz      Expires 19 February 2026               [Page 23]
Internet-Draft                     ACT                       August 2025

   BitDecompose(s):
     Input:
       - s: Scalar value
     Output:
       - bits: Array of L scalars (each 0 or 1)

     Steps:
       1. bytes = s.to_bytes_le()  // 32 bytes, little-endian
       2. For i = 0 to L-1:
       3.     byte_index = i / 8
       4.     bit_position = i % 8
       5.     bit = (bytes[byte_index] >> bit_position) & 1
       6.     bits[i] = Scalar(bit)
       7. return bits

   Note: This algorithm produces bits in LSB-first order (i.e., bits[0]
   is the least significant bit).  The algorithm works for any L < 252,
   as the scalar is represented in 32 bytes (256 bits), which
   accommodates the full range of the Ristretto group order.

3.5.5.  Scalar Conversion

   Converting between credit amounts and scalars:

Schlesinger & Katz      Expires 19 February 2026               [Page 24]
Internet-Draft                     ACT                       August 2025

   CreditToScalar(amount):
     Input:
       - amount: Integer credit amount (0 <= amount < 2^L)
     Output:
       - s: Scalar representation

     Steps:
       1. if amount >= 2^L:
       2.     return ERROR
       3. return Scalar(amount)

   ScalarToCredit(s):
     Input:
       - s: Scalar value
     Output:
       - amount: Integer credit amount or ERROR

     Steps:
       1. bytes = s.to_bytes_le()
       2. // Check high bytes are zero
       3. For i = 16 to 31:
       4.     if bytes[i] != 0:
       5.         return ERROR
       6. amount = bytes[0..15] as u128
       7. return amount

4.  Protocol Messages and Wire Format

4.1.  Message Encoding

   All protocol messages SHOULD be encoded using deterministic CBOR (RFC
   8949) for interoperability.  The following sections define the
   structure of each message type.

4.1.1.  Issuance Request Message

   IssuanceRequestMsg = {
       1: bstr,  ; K (compressed Ristretto point, 32 bytes)
       2: bstr,  ; gamma (scalar, 32 bytes)
       3: bstr,  ; k_bar (scalar, 32 bytes)
       4: bstr   ; r_bar (scalar, 32 bytes)
   }

4.1.2.  Issuance Response Message

Schlesinger & Katz      Expires 19 February 2026               [Page 25]
Internet-Draft                     ACT                       August 2025

   IssuanceResponseMsg = {
       1: bstr,  ; A (compressed Ristretto point, 32 bytes)
       2: bstr,  ; e (scalar, 32 bytes)
       3: bstr,  ; gamma_resp (scalar, 32 bytes)
       4: bstr,  ; z (scalar, 32 bytes)
       5: bstr   ; c (scalar, 32 bytes)
   }

4.1.3.  Spend Proof Message

   SpendProofMsg = {
       1: bstr,           ; k (nullifier, 32 bytes)
       2: bstr,           ; s (spend amount, 32 bytes)
       3: bstr,           ; A' (compressed point, 32 bytes)
       4: bstr,           ; B_bar (compressed point, 32 bytes)
       5: [* bstr],       ; Com array (L compressed points)
       6: bstr,           ; gamma (scalar, 32 bytes)
       7: bstr,           ; e_bar (scalar, 32 bytes)
       8: bstr,           ; r2_bar (scalar, 32 bytes)
       9: bstr,           ; r3_bar (scalar, 32 bytes)
       10: bstr,          ; c_bar (scalar, 32 bytes)
       11: bstr,          ; r_bar (scalar, 32 bytes)
       12: bstr,          ; w00 (scalar, 32 bytes)
       13: bstr,          ; w01 (scalar, 32 bytes)
       14: [* bstr],      ; gamma0 array (L scalars)
       15: [* [bstr, bstr]], ; z array (L pairs of scalars)
       16: bstr,          ; k_bar (scalar, 32 bytes)
       17: bstr           ; s_bar (scalar, 32 bytes)
   }

4.1.4.  Refund Message

   RefundMsg = {
       1: bstr,  ; A* (compressed Ristretto point, 32 bytes)
       2: bstr,  ; e* (scalar, 32 bytes)
       3: bstr,  ; gamma (scalar, 32 bytes)
       4: bstr   ; z (scalar, 32 bytes)
   }

4.2.  Error Responses

   Error responses SHOULD use the following format:

   ErrorMsg = {
       1: uint,   ; error_code
       2: tstr    ; error_message (for debugging only)
   }

Schlesinger & Katz      Expires 19 February 2026               [Page 26]
Internet-Draft                     ACT                       August 2025

   Error codes are defined in Section 5.3.

4.3.  Protocol Flow

   The complete protocol flow with message types:

   Client                                          Issuer
     |                                               |
     |-- IssuanceRequestMsg ------------------------>|
     |                                               |
     |<-- IssuanceResponseMsg -----------------------|
     |                                               |
     | (client creates token)                        |
     |                                               |
     |-- SpendProofMsg ----------------------------->|
     |                                               |
     |<-- RefundMsg or ErrorMsg ---------------------|
     |                                               |

4.3.1.  Example Usage Scenario

   Consider an API service that sells credits in bundles of 1000:

   1.  *Purchase*: Alice buys 1000 API credits

       *  Alice generates a random nullifier k and blinding factor r

       *  Alice sends IssuanceRequestMsg to the service

       *  Service creates a BBS signature on (1000, k, r) and returns it

       *  Alice now has a token worth 1000 credits

   2.  *First API Call*: Alice makes an API call costing 50 credits

       *  Alice creates a SpendProofMsg proving she has ≥ 50 credits

       *  Alice reveals nullifier k to prevent double-spending

       *  Service verifies the proof and records k as used

       *  Service issues a RefundMsg for a new token worth 950 credits

       *  Alice generates new nullifier k' for the refund token

   3.  *Subsequent Calls*: Alice continues using the API

       *  Each call repeats the spend/refund process

Schlesinger & Katz      Expires 19 February 2026               [Page 27]
Internet-Draft                     ACT                       August 2025

       *  Each new token has a fresh nullifier

       *  The service cannot link Alice's calls together

   This example demonstrates how the protocol maintains privacy while
   preventing double-spending and enabling flexible partial payments.

5.  Implementation Considerations

5.1.  Nullifier Management

   Implementations MUST maintain a persistent database of used
   nullifiers to prevent double-spending.  The nullifier storage
   requirements grow linearly with the number of spent tokens.
   Implementations MAY use the following strategies to manage storage:

   1.  *Expiration*: If tokens have expiration dates, old nullifiers can
       be pruned.

   2.  *Sharding*: Nullifiers can be partitioned across multiple
       databases.

   3.  *Bloom Filters*: Probabilistic data structures can reduce memory
       usage with a small false-positive rate.

5.2.  Constant-Time Operations

   To prevent timing attacks, implementations MUST use constant-time
   operations for:

   *  Scalar arithmetic

   *  Point operations

   *  Conditional selections in range proofs

   In particular, the range proof generation MUST use constant-time
   conditional selection when choosing between bit values 0 and 1.  The
   following pattern should be used:

   ConstantTimeSelect(condition, value_if_true, value_if_false):
     // Returns value_if_true if condition is true (1),
     // value_if_false if condition is false (0)
     // Must execute in constant time regardless of condition

   This is critical in the range proof generation where bit values must
   not leak through timing channels.

Schlesinger & Katz      Expires 19 February 2026               [Page 28]
Internet-Draft                     ACT                       August 2025

5.3.  Randomness Generation

   The security of the protocol critically depends on the quality of
   random number generation.  Implementations MUST use cryptographically
   secure random number generators (CSPRNGs) for:

   *  Private key generation

   *  Blinding factors (r, k)

   *  Proof randomness (nonces)

5.3.1.  RNG Requirements

   1.  *Entropy Source*: Use OS-provided entropy (e.g., /dev/urandom on
       Unix systems)

   2.  *Fork Safety*: Reseed after fork() to prevent nonce reuse

   3.  *Backtracking Resistance*: Use forward-secure PRNGs when possible

5.3.2.  Nonce Generation

   Following [ORRU-SIGMA], nonces (the randomness used in proofs) MUST
   be generated with extreme care:

   1.  *Fresh Randomness*: Generate new nonces for every proof

   2.  *No Reuse*: Never reuse nonces across different proofs

   3.  *Full Entropy*: Use the full security parameter (256 bits) of
       randomness

   4.  *Zeroization*: Clear nonces from memory after use

   WARNING: Leakage of even a few bits of a nonce can allow complete
   recovery of the witness (secret values).  Implementations MUST use
   constant-time operations and secure memory handling for all nonce-
   related computations.

5.4.  Point Validation

   All Ristretto points received from external sources MUST be
   validated:

   1.  *Deserialization*: Verify the point deserializes to a valid
       Ristretto point

Schlesinger & Katz      Expires 19 February 2026               [Page 29]
Internet-Draft                     ACT                       August 2025

   2.  *Non-Identity*: Verify the point is not the identity element

   3.  *Subgroup Check*: Ristretto guarantees prime-order subgroup
       membership

   Example validation:

   ValidatePoint(P):
     1. If P fails to deserialize:
     2.     return INVALID
     3. If P == Identity:
     4.     return INVALID
     5. // Ristretto ensures prime-order subgroup membership
     6. return VALID

   All implementations MUST validate points at these locations:

   *  When receiving K in issuance request

   *  When receiving A in issuance response

   *  When receiving A' and B_bar in spend proof

   *  When receiving Com[j] commitments in spend proof

   *  When receiving A* in refund response

5.5.  Error Handling

   Implementations SHOULD NOT provide detailed error messages that could
   leak information about the verification process.  A single INVALID
   response should be returned for all verification failures.

5.5.1.  Error Codes

   While detailed error messages should not be exposed to untrusted
   parties, implementations MAY use the following internal error codes:

   *  INVALID_PROOF: Proof verification failed

   *  NULLIFIER_REUSE: Double-spend attempt detected

   *  MALFORMED_REQUEST: Request format is invalid

   *  INVALID_AMOUNT: Credit amount exceeds maximum (2^L - 1)

Schlesinger & Katz      Expires 19 February 2026               [Page 30]
Internet-Draft                     ACT                       August 2025

5.6.  Parameter Selection

   Implementations MUST choose L based on their maximum credit
   requirements and performance constraints.  Note that L MUST be less
   than 252 to fit within the Ristretto group order.

   The bit length L is configurable and determines the range of credit
   values (0 to 2^L - 1).  The choice of L involves several trade-offs:

   1.  *Range*: Larger L supports higher credit values

   2.  *Performance*: Proof size and verification time scale linearly
       with L

   3.  *Security*: L must be less than the bit length of the group order
       (252 bits for Ristretto)

   The implementation MUST enforce L < 252 to ensure proper scalar
   arithmetic within the group order.

5.6.1.  Performance Characteristics

   The protocol has the following computational complexity:

   *Notation for Operations:*

   *  *Group Operations*: Point additions in the Ristretto255 group
      (e.g., P + Q)

   *  *Group Exponentiations*: Scalar multiplication of group elements
      (e.g., P * s)

   *  *Scalar Additions/Multiplications*: Arithmetic operations modulo
      the group order q

   *  *Issuance*:

Schlesinger & Katz      Expires 19 February 2026               [Page 31]
Internet-Draft                     ACT                       August 2025

   +============+==========+===============+=========+===============+======+
   |Operation   |Group     |Group          |Scalar   |Scalar         |Hashes|
   |            |Operations|Exponentiations|Additions|Multiplications|      |
   +============+==========+===============+=========+===============+======+
   |Client      |2         |4              |2        |1              |1     |
   |Request     |          |               |         |               |      |
   +------------+----------+---------------+---------+---------------+------+
   |Issuer      |5         |8              |3        |1              |2     |
   |Response    |          |               |         |               |      |
   +------------+----------+---------------+---------+---------------+------+
   |Client      |5         |5              |0        |0              |1     |
   |Credit Token|          |               |         |               |      |
   |Construction|          |               |         |               |      |
   +------------+----------+---------------+---------+---------------+------+

                                  Table 1

   *  *Spending*:

    +============+==========+===============+=========+===============+
    |Operation   |Group     |Group          |Scalar   |Scalar         |
    |            |Operations|Exponentiations|Additions|Multiplications|
    +============+==========+===============+=========+===============+
    |Client      |17 + 4L   |27 + 8L        |13 + 5L  |12 + 3L        |
    |Request     |          |               |         |               |
    +------------+----------+---------------+---------+---------------+
    |Issuer      |16 + 4L   |24 + 5L        |4 + L    |1              |
    |Response    |          |               |         |               |
    +------------+----------+---------------+---------+---------------+
    |Client      |3         |5              |L        |L              |
    |Credit Token|          |               |         |               |
    |Construction|          |               |         |               |
    +------------+----------+---------------+---------+---------------+

                                  Table 2

   Note: L is the configurable bit length for credit values.

   *  *Storage*:

Schlesinger & Katz      Expires 19 February 2026               [Page 32]
Internet-Draft                     ACT                       August 2025

          +==========================+==========================+
          | Component                | Size                     |
          +==========================+==========================+
          | Token size               | 160 bytes (5 × 32 bytes) |
          +--------------------------+--------------------------+
          | Spend proof size         | 32 × (14 + 4L) bytes     |
          +--------------------------+--------------------------+
          | Nullifier database entry | 32 bytes per spent token |
          +--------------------------+--------------------------+

                                  Table 3

   Note: Token size is independent of L.

6.  Security Considerations

6.1.  Security Model and Definitions

6.1.1.  Threat Model

   We consider a setting with:

   *  Multiple issuers who can operate independently, though malicious
      issuers may collude with each other

   *  Potentially malicious clients who may attempt to spend more
      credits than they should (whether by forging tokens, spending more
      credits than a token has, or double-spending a token)

6.1.2.  Security Properties

   The protocol provides the following security guarantees:

   1.  *Unforgeability*: For an honest isser I, no probabilistic
       polynomial-time (PPT) adversary controlling a set of malicious
       clients and other malicious issuers can spend more credits than
       have been issued by I.

   2.  *Anonymity/Unlinkability*: For an honest client C, no adversary
       controlling a set of malicious issuers and other malicious
       clients can link a token issuance/refund to C with a token spend
       by C.  This property is information-theoretic in nature.

6.2.  Cryptographic Assumptions

   Security relies on:

Schlesinger & Katz      Expires 19 February 2026               [Page 33]
Internet-Draft                     ACT                       August 2025

   1.  *The q-SDH Assumption* in the Ristretto255 group.  We refer to
       [TZ23] for the formal definition.

   2.  *Random Oracle Model*: The BLAKE3 hash function H is modeled as a
       random oracle.

6.3.  Privacy Properties

   The protocol provides the following privacy guarantees:

   1.  *Unlinkability*: The issuer cannot link a token issuance/refund
       to a later spend of that token.

   However, the protocol does NOT provide:

   1.  *Network-Level Privacy*: IP addresses and network metadata can
       still link transactions.

   2.  *Amount Privacy*: The spent amount s is revealed to the issuer.

   3.  *Timing Privacy*: Transaction timing patterns could potentially
       be used for correlation.

6.4.  Security Properties

   The protocol ensures:

   1.  *Unforgeability*: Clients cannot spend more credits than they
       have been issued by the issuer.

6.5.  Implementation Vulnerabilities and Mitigations

6.5.1.  Critical Security Requirements

   1.  *RNG Failures*: Weak randomness can completely break the
       protocol's security.

       *Attack Vector*: Predictable or repeated nonces in proofs can
       allow complete recovery of secret values including private keys
       and token contents.

       *Mitigations*:

       *  MUST use cryptographically secure RNGs (e.g., OS-provided
          entropy sources)

       *  MUST reseed after fork() operations to prevent nonce reuse

Schlesinger & Katz      Expires 19 February 2026               [Page 34]
Internet-Draft                     ACT                       August 2025

       *  MUST implement forward-secure RNG state management

       *  SHOULD use separate RNG instances for different protocol
          components

       *  MUST zeroize RNG state on process termination

   2.  *Timing Attacks*: Variable-time operations can leak information
       about secret values.

       *Attack Vector*: Timing variations in scalar arithmetic or bit
       operations can reveal secret bit patterns, potentially exposing
       credit balances or allowing token forgery.

       *Mitigations*:

       *  MUST use constant-time scalar arithmetic libraries

       *  MUST use constant-time conditional selection for range proof
          conditionals

       *  MUST avoid early-exit conditions based on secret values

       *  Critical constant-time operations include:

          -  Scalar multiplication and addition

          -  Binary decomposition in range proofs

          -  Conditional assignments based on secret bits

          -  Challenge verification comparisons

   3.  *Nullifier Database Attacks*: Corruption or manipulation of the
       nullifier database enables double-spending.

       *Attack Vectors*:

       *  Database corruption allowing nullifier deletion

       *  Race conditions in concurrent nullifier checks

       *Mitigations*:

       *  MUST use ACID-compliant database transactions

       *  MUST check nullifier uniqueness within the same transaction as
          insertion

Schlesinger & Katz      Expires 19 February 2026               [Page 35]
Internet-Draft                     ACT                       August 2025

       *  SHOULD implement append-only audit logs for nullifier
          operations

       *  MUST implement proper database backup and recovery procedures

   4.  *Eavesdropping/Message Modification Attacks*: A network-level
       adversary can copy spend proofs or modify messages sent between
       an honest client and issuer.

       *Attack Vectors*:

       *  Eavesdropping and copying of proofs

       *  Message modifications causing protocol failure

       *Mitigations*:

       *  Client and issuer MUST use TLS 1.3 or above when
          communicating.

   5.  *State Management Vulnerabilities*: Improper state handling can
       lead to security breaches.

       *Attack Vectors*:

       *  State confusion between protocol sessions

       *  Memory disclosure of sensitive state

       *  Incomplete state cleanup

       *Mitigations*:

       *  MUST use separate state objects for each protocol session

       *  MUST zeroize all sensitive data (keys, nonces, intermediate
          values) after use

       *  SHOULD use memory protection mechanisms (e.g., mlock) for
          sensitive data

       *  MUST implement proper error handling that doesn't leak state
          information

       *  SHOULD use explicit state machines for protocol flow

   6.  *Concurrency and Race Conditions*: Parallel operations can
       introduce vulnerabilities.

Schlesinger & Katz      Expires 19 February 2026               [Page 36]
Internet-Draft                     ACT                       August 2025

       *Attack Vectors*:

       *  TOCTOU (Time-of-check to time-of-use) vulnerabilities in
          nullifier checking

       *  Race conditions in balance updates

       *  Concurrent modification of shared state

       *Mitigations*:

       *  MUST use appropriate locking for all shared resources

       *  MUST perform nullifier check and insertion atomically

       *  SHOULD document thread-safety guarantees

       *  MUST ensure atomic read-modify-write for all critical
          operations

6.6.  Known Attack Scenarios

6.6.1.  1.  Parallel Spend Attack

   *Scenario*: A malicious client attempts to spend the same token
   multiple times by initiating parallel spend operations before any
   nullifier is recorded.

   *Prevention*: The issuer MUST ensure atomic nullifier checking and
   recording within a single database transaction.  Network-level rate
   limiting can provide additional protection.

6.6.2.  2.  Balance Inflation Attack

   *Scenario*: An attacker attempts to create a proof claiming to have
   more credits than actually issued by manipulating the range proof.

   *Prevention*: The cryptographic soundness of the range proof prevents
   this attack.

6.6.3.  3.  Token Linking Attack

   *Scenario*: An issuer attempts to link transactions by analyzing
   patterns in nullifiers, amounts, or timing.

   *Prevention*: Nullifiers are cryptographically random and unlinkable.
   However, implementations MAY add random delays and amount obfuscation
   where possible.

Schlesinger & Katz      Expires 19 February 2026               [Page 37]
Internet-Draft                     ACT                       August 2025

6.7.  Protocol Composition and State Management

6.7.1.  State Management Requirements

   Before they make a spend request or an issue request, the client MUST
   store their private state (the nullifier, the blinding factor, and
   the new balance) durably.

   For the issuer, the spend and refund operations MUST be treated as an
   atomic transaction.  However, even more is required.  If a nullifier
   associated with a given spend is persisted to the database, clients
   MUST be able to access the associated refund.  If they cannot access
   this, then they can lose access to the rest of their credits.  For
   performance reasons, an issuer SHOULD automatically clean these up
   after some expiry, but if they do so, they MUST inform the client of
   this policy so the client can ensure they can retry to retrieve the
   rest of their credits in time.  Issuers MAY implement functionality
   to notify the issuer that the refund request was processed, so they
   can delete the refund record.  It is not clear that this is worth the
   cost relative to just cleaning them up in bulk at some specified
   expiration date, however if you are memory constrained this could be
   useful.

6.7.2.  Session Management

   Each protocol session (issuance or spend/refund) MUST:

   *  Use fresh randomness

   *  Not reuse any random values across sessions

6.7.3.  Version Negotiation

   To support protocol evolution, implementations MAY include version
   negotiation in the initial handshake.  All parties MUST agree on the
   protocol version before proceeding.

6.8.  Quantum Resistance

   This protocol is NOT quantum-resistant.  The discrete logarithm
   problem can be solved efficiently by quantum computers using Shor's
   algorithm.  Organizations requiring long-term security should
   consider post-quantum alternatives.  However, user privacy is
   preserved even in the presence of a cryptographically relevant
   quantum computer.

Schlesinger & Katz      Expires 19 February 2026               [Page 38]
Internet-Draft                     ACT                       August 2025

7.  IANA Considerations

   This document has no IANA actions.

8.  References

8.1.  Normative References

   [BLAKE3]   "BLAKE3: One Function, Fast Everywhere", 9 January 2020,
              <https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/
              blake3.pdf>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/rfc/rfc2119>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

   [RFC8949]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", STD 94, RFC 8949,
              DOI 10.17487/RFC8949, December 2020,
              <https://www.rfc-editor.org/rfc/rfc8949>.

   [RFC9380]  Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R. S.,
              and C. A. Wood, "Hashing to Elliptic Curves", RFC 9380,
              DOI 10.17487/RFC9380, August 2023,
              <https://www.rfc-editor.org/rfc/rfc9380>.

   [RFC9496]  de Valence, H., Grigg, J., Hamburg, M., Lovecruft, I.,
              Tankersley, G., and F. Valsorda, "The ristretto255 and
              decaf448 Groups", RFC 9496, DOI 10.17487/RFC9496, December
              2023, <https://www.rfc-editor.org/rfc/rfc9496>.

8.2.  Informative References

   [BBS]      "Short Group Signatures", 2004,
              <https://crypto.stanford.edu/~dabo/pubs/papers/
              groupsigs.pdf>.

   [KVAC]     "Keyed-Verification Anonymous Credentials", 2014,
              <https://eprint.iacr.org/2013/516.pdf>.

   [ORRU-FS]  "The Fiat-Shamir Transform", 19 January 2025,
              <https://mmaker.github.io/draft-zkproof-sigma-protocols/
              draft-orru-zkproof-fiat-shamir.html>.

Schlesinger & Katz      Expires 19 February 2026               [Page 39]
Internet-Draft                     ACT                       August 2025

   [ORRU-SIGMA]
              "Sigma Protocols", 19 January 2025,
              <https://www.ietf.org/archive/id/draft-orru-zkproof-sigma-
              protocols-00.txt>.

   [RFC9474]  Denis, F., Jacobs, F., and C. A. Wood, "RSA Blind
              Signatures", RFC 9474, DOI 10.17487/RFC9474, October 2023,
              <https://www.rfc-editor.org/rfc/rfc9474>.

   [TZ23]     "Revisiting BBS Signatures", 2023,
              <https://eprint.iacr.org/2023/275>.

Appendix A.  Test Vectors

   This appendix provides test vectors for implementers to verify their
   implementations.  All values are encoded in hexadecimal.

   TODO

Appendix B.  Implementation Status

   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in RFC 7942.

B.1.  anonymous-credit-tokens

   Organization: Google

   Description: Reference implementation in Rust

   Maturity: Beta

   Coverage: Complete protocol implementation

   License: Apache 2.0

   Contact: sgschlesinger@gmail.com

   URL: https://github.com/SamuelSchlesinger/anonymous-credit-tokens

Appendix C.  Terminology Glossary

   This glossary provides quick definitions of key terms used throughout
   this document:

   *ACT (Anonymous Credit Tokens)*: The privacy-preserving
   authentication protocol specified in this document.

Schlesinger & Katz      Expires 19 February 2026               [Page 40]
Internet-Draft                     ACT                       August 2025

   *Blind Signature*: A cryptographic signature where the signer signs a
   message without seeing its content.

   *Refund*: The refund issued for the remaining balance after a partial
   spend.

   *Credit*: A numerical unit of authorization that can be spent by
   clients.

   *Domain Separator*: A unique string used to ensure cryptographic
   isolation between different deployments.

   *Element*: A point in the Ristretto255 elliptic curve group.

   *Issuer*: The entity that creates and signs credit tokens.

   *Nullifier*: A unique value revealed during spending that prevents
   double-spending of the same token.

   *Partial Spending*: The ability to spend less than the full value of
   a token and receive change.

   *Scalar*: An integer modulo the group order q, used in cryptographic
   operations.

   *Sigma Protocol*: An interactive zero-knowledge proof protocol
   following a commit-challenge-response pattern.

   *Token*: A cryptographic credential containing a BBS signature and
   associated data (A, e, k, r, c).

   *Unlinkability*: The property that transactions cannot be correlated
   with each other or with token issuance.

Appendix D.  Acknowledgments

   The authors would like to thank the Crypto Forum Research Group for
   their valuable feedback and suggestions.  Special thanks to the
   contributors who provided implementation guidance and security
   analysis.

   This work builds upon the foundational research in anonymous
   credentials and zero-knowledge proofs by numerous researchers in the
   cryptographic community, particularly the work on BBS signatures by
   Boneh, Boyen, and Shacham, and keyed-verification anonymous
   credentials by Chase, Meiklejohn, and Zaverucha.

Schlesinger & Katz      Expires 19 February 2026               [Page 41]
Internet-Draft                     ACT                       August 2025

Authors' Addresses

   Samuel Schlesinger
   Google
   Email: samschlesinger@google.com

   Jonathan Katz
   Google
   Email: jkcrypto@google.com

Schlesinger & Katz      Expires 19 February 2026               [Page 42]