Deadline-aware Transport Protocol
draft-shi-quic-dtp-00

Document Type Active Internet-Draft (individual)
Last updated 2019-11-16
Stream (None)
Intended RFC status (None)
Formats plain text pdf htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
QUIC                                                              H. Shi
Internet-Draft                                                    Y. Cui
Intended status: Informational                                    Z. Liu
Expires: May 20, 2020                                Tsinghua University
                                                       November 17, 2019

                   Deadline-aware Transport Protocol
                         draft-shi-quic-dtp-00

Abstract

   This document defines Deadline-aware Transport Protocol (DTP) to
   provide block-based deliver-before-deadline transmission.  The
   intention of this memo is to describe a mechanism to fulfill
   unreliable transmission based on QUIC as well as how to enhance
   timeliness of data delivery.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 20, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of

Shi, et al.               Expires May 20, 2020                  [Page 1]
Internet-Draft                     DTP                     November 2019

   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Conventions . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Motivation  . . . . . . . . . . . . . . . . . . . . . . . . .   2
   3.  Design of DTP . . . . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  Abstraction . . . . . . . . . . . . . . . . . . . . . . .   4
     3.2.  Architecture of DTP . . . . . . . . . . . . . . . . . . .   4
     3.3.  Deadline-aware Scheduler  . . . . . . . . . . . . . . . .   6
     3.4.  Deadline-aware Redundancy . . . . . . . . . . . . . . . .   6
     3.5.  Loss Detection and Congestion Control . . . . . . . . . .   7
   4.  Extension of QUIC . . . . . . . . . . . . . . . . . . . . . .   7
   5.  API of DTP  . . . . . . . . . . . . . . . . . . . . . . . . .   7
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  11
   8.  Normative References  . . . . . . . . . . . . . . . . . . . .  11
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  11

1.  Introduction

   Many emerging applications have the deadline requirement for their
   data transmission.  However, current transport layer protocol like
   TCP [RFC0793] and UDP [RFC0768] only provide primitive connection
   establishment and data sending service.  This document proposes a new
   transport protocol atop QUIC [QUIC] to deliver application data
   before end-to-end deadline.

1.1.  Conventions

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
   they appear in this document, are to be interpreted as described in
   [RFC2119].

2.  Motivation

   Many applications such as real-time media and online multiplayer
   gaming have requirements for their data to arrive before a certain
   time i.e., deadline.  For example, the end-to-end delay of video
   conferencing system should be below human perception (about 100ms) to
   enable smooth interaction among participants.  For Online multiplayer
   gaming, the server aggregates each player's actions every 60ms and
   distributes these information to other players so that each player's
   state can be kept in sync.

Shi, et al.               Expires May 20, 2020                  [Page 2]
Internet-Draft                     DTP                     November 2019

   These real-time applications have following common features:

   o  They tend to generate and process the data in block fashion.  Each
      block is a minimal data processing unit.  Missing a single byte of
Show full document text