Algorithm Identifiers for HSS and XMSS for Use in the Internet X.509 Public Key Infrastructure
draft-vangeest-x509-hash-sigs-01

Document Type Active Internet-Draft (individual)
Last updated 2018-10-13
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                       D. Van Geest
Internet-Draft                                         ISARA Corporation
Intended status: Standards Track                              S. Fluhrer
Expires: April 16, 2019                                    Cisco Systems
                                                        October 13, 2018

  Algorithm Identifiers for HSS and XMSS for Use in the Internet X.509
                       Public Key Infrastructure
                    draft-vangeest-x509-hash-sigs-01

Abstract

   This document specifies algorithm identifiers and ASN.1 encoding
   formats for the Hierarchical Signature System (HSS), eXtended Merkle
   Signature Scheme (XMSS), and XMSS^MT, a multi-tree variant of XMSS.
   This specification applies to the Internet X.509 Public Key
   infrastructure (PKI) when digital signatures are used to sign
   certificates and certificate revocation lists (CRLs).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 16, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must

Van Geest & Fluhrer      Expires April 16, 2019                 [Page 1]
Internet-Draft       Hash-Based Signatures for X.509        October 2018

   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Subject Public Key Algorithms . . . . . . . . . . . . . . . .   3
     2.1.  HSS Public Keys . . . . . . . . . . . . . . . . . . . . .   3
     2.2.  XMSS Public Keys  . . . . . . . . . . . . . . . . . . . .   4
     2.3.  XMSS^MT Public Keys . . . . . . . . . . . . . . . . . . .   4
   3.  Key Usage Bits  . . . . . . . . . . . . . . . . . . . . . . .   5
   4.  Signature Algorithms  . . . . . . . . . . . . . . . . . . . .   5
     4.1.  HSS Signature Algorithm . . . . . . . . . . . . . . . . .   6
     4.2.  XMSS Signature Algorithm  . . . . . . . . . . . . . . . .   6
     4.3.  XMSS^MT Signature Algorithm . . . . . . . . . . . . . . .   7
   5.  ASN.1 Module  . . . . . . . . . . . . . . . . . . . . . . . .   7
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
     6.1.  Algorithm Security Considerations . . . . . . . . . . . .  10
     6.2.  Implementation Security Considerations  . . . . . . . . .  11
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  12
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14

1.  Introduction

   The Hierarchical Signature System (HSS) is described in
   [I-D.mcgrew-hash-sigs].

   The eXtended Merkle Signature Scheme (XMSS), and its multi-tree
   variant XMSS^MT, are described in [RFC8391].

   These signature algorithms are based on well-studied Hash Based
   Signature (HBS) schemes, which can withstand known attacks using
   quantum computers.  They combine Merkle Trees with One Time Signature
   (OTS) schemes in order to create signature systems which can sign a
   large but limited number of messages per private key.  The private
   keys are stateful; a key's state must be updated and persisted after
   signing to prevent reuse of OTS keys.  If an OTS key is reused,
   cryptographic security is not guaranteed for that key.

   Due to the statefulness of the private key and the limited number of
   signatures that can be created, these signature algorithms might not
   be appropriate for use in interactive protocols.  While the right
   selection of algorithm parameters would allow a private key to sign a
Show full document text