Skip to main content

Anonymous Rate-Limited Credentials
draft-yun-cfrg-arc-00

Document Type Active Internet-Draft (individual)
Authors Cathie Yun , Christopher A. Wood
Last updated 2025-02-05
RFC stream (None)
Intended RFC status (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-yun-cfrg-arc-00
Network Working Group                                             C. Yun
Internet-Draft                                                C. A. Wood
Intended status: Informational                               Apple, Inc.
Expires: 9 August 2025                                   5 February 2025

                   Anonymous Rate-Limited Credentials
                         draft-yun-cfrg-arc-00

Abstract

   This document specifies the Anonymous Rate-Limited Credential (ARC)
   protocol, a specialization of keyed-verification anonymous
   credentials with support for rate limiting.  ARC credentials can be
   presented from client to server up to some fixed number of times,
   where each presentation is cryptographically bound to client secrets
   and application-specific public information, such that each
   presentation is unlinkable from the others as well as the original
   credential creation.  ARC is useful in applications where a server
   needs to throttle or rate-limit access from anonymous clients.

About This Document

   This note is to be removed before publishing as an RFC.

   The latest revision of this draft can be found at https://chris-
   wood.github.io/draft-arc/draft-yun-cfrg-arc.html.  Status information
   for this document may be found at https://datatracker.ietf.org/doc/
   draft-yun-cfrg-arc/.

   Discussion of this document takes place on the Crypto Forum mailing
   list (mailto:cfrg@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/browse/cfrg.  Subscribe at
   https://www.ietf.org/mailman/listinfo/cfrg/.

   Source for this draft and an issue tracker can be found at
   https://github.com/chris-wood/draft-arc.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

Yun & Wood                Expires 9 August 2025                 [Page 1]
Internet-Draft                     ARC                     February 2025

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 9 August 2025.

Copyright Notice

   Copyright (c) 2025 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Conventions and Definitions . . . . . . . . . . . . . . . . .   3
     2.1.  Notation and Terminology  . . . . . . . . . . . . . . . .   4
   3.  Preliminaries . . . . . . . . . . . . . . . . . . . . . . . .   5
     3.1.  Prime-Order Group . . . . . . . . . . . . . . . . . . . .   5
   4.  ARC Protocol  . . . . . . . . . . . . . . . . . . . . . . . .   7
     4.1.  Key Generation  . . . . . . . . . . . . . . . . . . . . .   7
     4.2.  Issuance  . . . . . . . . . . . . . . . . . . . . . . . .   8
       4.2.1.  Credential Request  . . . . . . . . . . . . . . . . .   9
       4.2.2.  Credential Response . . . . . . . . . . . . . . . . .  11
       4.2.3.  Finalize Credential . . . . . . . . . . . . . . . . .  12
     4.3.  Presentation  . . . . . . . . . . . . . . . . . . . . . .  14
       4.3.1.  Presentation State  . . . . . . . . . . . . . . . . .  14
       4.3.2.  Presentation Construction . . . . . . . . . . . . . .  15
       4.3.3.  Presentation Verification . . . . . . . . . . . . . .  17
   5.  Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . .  19
     5.1.  Schnorr Compiler  . . . . . . . . . . . . . . . . . . . .  19
       5.1.1.  Prover  . . . . . . . . . . . . . . . . . . . . . . .  19
       5.1.2.  Verifier  . . . . . . . . . . . . . . . . . . . . . .  23
     5.2.  CredentialRequest Proof . . . . . . . . . . . . . . . . .  25
       5.2.1.  CredentialRequest Proof Creation  . . . . . . . . . .  25
       5.2.2.  CredentialRequest Proof Verification  . . . . . . . .  26
     5.3.  CredentialResponse Proof  . . . . . . . . . . . . . . . .  27
       5.3.1.  CredentialResponse Proof Creation . . . . . . . . . .  28
       5.3.2.  CredentialResponse Proof Verification . . . . . . . .  30
     5.4.  Presentation Proof  . . . . . . . . . . . . . . . . . . .  32
       5.4.1.  Presentation Proof Creation . . . . . . . . . . . . .  32
       5.4.2.  Presentation Proof Verification . . . . . . . . . . .  34

Yun & Wood                Expires 9 August 2025                 [Page 2]
Internet-Draft                     ARC                     February 2025

   6.  Ciphersuites  . . . . . . . . . . . . . . . . . . . . . . . .  35
     6.1.  ARC(P-384)  . . . . . . . . . . . . . . . . . . . . . . .  36
     6.2.  Random Scalar Generation  . . . . . . . . . . . . . . . .  37
       6.2.1.  Rejection Sampling  . . . . . . . . . . . . . . . . .  37
       6.2.2.  Random Number Generation Using Extra Random Bits  . .  37
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  37
     7.1.  Credential Issuance Unlinkability . . . . . . . . . . . .  38
     7.2.  Presentation Unlinkability  . . . . . . . . . . . . . . .  38
     7.3.  Timing Leaks  . . . . . . . . . . . . . . . . . . . . . .  39
   8.  Alternatives considered . . . . . . . . . . . . . . . . . . .  39
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  39
   10. Test Vectors  . . . . . . . . . . . . . . . . . . . . . . . .  39
     10.1.  ARCV1-P384 . . . . . . . . . . . . . . . . . . . . . . .  39
   11. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  42
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  42
     12.1.  Normative References . . . . . . . . . . . . . . . . . .  42
     12.2.  Informative References . . . . . . . . . . . . . . . . .  43
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  44

1.  Introduction

   This document specifies the Anonymous Rate-Limited Credential (ARC)
   protocol, a specialization of keyed-verification anonymous
   credentials with support for rate limiting.

   ARC is privately verifiable (keyed-verification), yet differs from
   similar token-based protocols in that each credential can be
   presented multiple times without violating unlinkability of different
   presentations.  Servers issue credentials to clients that are
   cryptographically bound to client secrets and some public
   information.  Afterwards, clients can present this credential to the
   server up to some fixed number of times, where each presentation
   provides proof that it was derived from a valid (previously issued)
   credential and bound to some public information.  Each presentation
   is pairwise unlinkable, meaning the server cannot link any two
   presentations to the same client credential, nor can the server link
   a presentation to the preceding credential issuance flow.  Notably,
   the maximum number of presentations from a credential is fixed by the
   application.

   ARC is useful in settings where applications require a fixed number
   of zero-knowledge proofs about client secrets that can also be
   cryptographically bound to some public information.  This capability
   lets servers use credentials in applications that need throttled or
   rate-limited access from anonymous clients.

2.  Conventions and Definitions

Yun & Wood                Expires 9 August 2025                 [Page 3]
Internet-Draft                     ARC                     February 2025

2.1.  Notation and Terminology

   The following functions and notation are used throughout the
   document.

   *  concat(x0, ..., xN): Concatenation of byte strings.  For example,
      concat(0x01, 0x0203, 0x040506) = 0x010203040506.

   *  bytes_to_int and int_to_bytes: Convert a byte string to and from a
      non-negative integer. bytes_to_int and int_to_bytes are
      implemented as OS2IP and I2OSP as described in [RFC8017],
      respectively.  Note that these functions operate on byte strings
      in big-endian byte order.

   *  random_integer_uniform(M, N): Generate a random, uniformly
      distributed integer R between M inclusive and N exclusive, i.e., M
      <= R < N.

   *  random_integer_uniform_excluding_set(M, N, S): Generate a random,
      uniformly distributed integer R between M inclusive and N
      exclusive, i.e., M <= R < N, such that R does not exist in the set
      of integers S.

   All algorithms and procedures described in this document are laid out
   in a Python-like pseudocode.  Each function takes a set of inputs and
   parameters and produces a set of output values.  Parameters become
   constant values once the protocol variant and the ciphersuite are
   fixed.

   The notation T U[N] refers to an array called U containing N items of
   type T.  The type opaque means one single byte of uninterpreted data.
   Items of the array are zero-indexed and referred as U[j] such that 0
   <= j < N.  The notation {T} refers to a set consisting of elements of
   type T.  For any object x, we write len(x) to denote its length in
   bytes.

   String values such as "CredentialRequest", "CredentialResponse",
   "Presentation", and "Tag" are ASCII string literals.

   The following terms are used throughout this document.

   *  Client: Protocol initiator.  Creates a credential request, and
      uses the corresponding server response to make a credential.  The
      client can make multiple presentations of this credential.

Yun & Wood                Expires 9 August 2025                 [Page 4]
Internet-Draft                     ARC                     February 2025

   *  Server: Computes a response to a credential request, with its
      server private keys.  Later the server can verify the client's
      presentations with its private keys.  Learns nothing about the
      client's secret attributes, and cannot link a client's request/
      response and presentation steps.

3.  Preliminaries

   The construction in this document has one primary dependency:

   *  Group: A prime-order group implementing the API described below in
      Section 3.1.  See Section 6 for specific instances of groups.

3.1.  Prime-Order Group

   In this document, we assume the construction of an additive, prime-
   order group Group for performing all mathematical operations.  In
   prime-order groups, any element (other than the identity) can
   generate the other elements of the group.  Usually, one element is
   fixed and defined as the group generator.  In the ARC setting, there
   are two fixed generator elements (generatorG, generatorH).  Such
   groups are uniquely determined by the choice of the prime p that
   defines the order of the group.  (There may, however, exist different
   representations of the group for a single p.  Section 6 lists
   specific groups which indicate both order and representation.)

   The fundamental group operation is addition + with identity element
   I.  For any elements A and B of the group, A + B = B + A is also a
   member of the group.  Also, for any A in the group, there exists an
   element -A such that A + (-A) = (-A) + A = I.  Scalar multiplication
   by r is equivalent to the repeated application of the group operation
   on an element A with itself r-1 times, this is denoted as r*A = A +
   ... + A.  For any element A, p*A=I.  The case when the scalar
   multiplication is performed on the group generator is denoted as
   ScalarMultGen(r).  Given two elements A and B, the discrete logarithm
   problem is to find an integer k such that B = k*A.  Thus, k is the
   discrete logarithm of B with respect to the base A.  The set of
   scalars corresponds to GF(p), a prime field of order p, and are
   represented as the set of integers defined by {0, 1, ..., p-1}. This
   document uses types Element and Scalar to denote elements of the
   group and its set of scalars, respectively.

   We now detail a number of member functions that can be invoked on a
   prime-order group.

   *  Order(): Outputs the order of the group (i.e. p).

   *  Identity(): Outputs the identity element of the group (i.e. I).

Yun & Wood                Expires 9 August 2025                 [Page 5]
Internet-Draft                     ARC                     February 2025

   *  Generator(): Outputs the fixed generator of the group.

   *  HashToGroup(x, info): Deterministically maps an array of bytes x
      with domain separation value info to an element of Group.  The map
      must ensure that, for any adversary receiving R = HashToGroup(x,
      info), it is computationally difficult to reverse the mapping.
      Security properties of this function are described in
      [I-D.irtf-cfrg-hash-to-curve].

   *  HashToScalar(x, info): Deterministically maps an array of bytes x
      with domain separation value info to an element in GF(p).
      Security properties of this function are described in
      [I-D.irtf-cfrg-hash-to-curve], Section 10.5.

   *  RandomScalar(): Chooses at random a non-zero element in GF(p).

   *  ScalarInverse(s): Returns the inverse of input Scalar s on GF(p).

   *  SerializeElement(A): Maps an Element A to a canonical byte array
      buf of fixed length Ne.

   *  DeserializeElement(buf): Attempts to map a byte array buf to an
      Element A, and fails if the input is not the valid canonical byte
      representation of an element of the group.  This function can
      raise a DeserializeError if deserialization fails or A is the
      identity element of the group; see Section 6 for group-specific
      input validation steps.

   *  SerializeScalar(s): Maps a Scalar s to a canonical byte array buf
      of fixed length Ns.

   *  DeserializeScalar(buf): Attempts to map a byte array buf to a
      Scalar s.  This function can raise a DeserializeError if
      deserialization fails; see Section 6 for group-specific input
      validation steps.

   For each group, there exists two distinct generators, generatorG and
   generatorH, generatorG = G.Generator() and generatorH =
   G.HashToGroup(G.SerializeElement(generatorG), "generatorH").  The
   group member functions GeneratorG() and GeneratorH() are shorthand
   for returning generatorG and generatorH, respectively.

   Section 6 contains details for the implementation of this interface
   for different prime-order groups instantiated over elliptic curves.

Yun & Wood                Expires 9 August 2025                 [Page 6]
Internet-Draft                     ARC                     February 2025

4.  ARC Protocol

   The ARC protocol is a two-party protocol run between client and
   server consisting of three distinct phases:

   1.  Key generation.  In this phase, the server generates its private
       and public keys to be used for the remaining phases.  This phase
       is described in Section 4.1.

   2.  Credential issuance.  In this phase, the client and server
       interact to issue the client a credential that is
       cryptographically bound to client secrets.  This phase is
       described in Section 4.2.

   3.  Presentation.  In this phase, the client uses the credential to
       create a "presentation" to the server, where the server learns
       nothing more than whether or not the presentation is valid and
       corresponds to some previously issued credential, without
       learning which credential it corresponds to.  This phase is
       described in Section 4.3.

   This protocol bears resemblance to anonymous token protocols, such as
   those built on Blind RSA [BLIND-RSA] and Oblivious Pseudorandom
   Functions [OPRFS] with one critical distinction: unlike anonymous
   tokens, an anonymous credential can be used multiple times to create
   unlinkable presentations (up to the fixed presentation limit).  This
   means that a single issuance invocation can drive multiple
   presentation invocations, whereas with anonymous tokens, each
   presentation invocation requires exactly one issuance invocation.  As
   a result, credentials are generally longer lived than tokens.
   Applications configure the credential presentation limit after the
   credential is issued such that client and server agree on the limit
   during presentation.  Servers are responsible for ensuring this limit
   is not exceeded.  Clients that exceed the agreed-upon presentation
   limit break the unlinkability guarantees provided by the protocol.

   The rest of this section describes the three phases of the ARC
   protocol.

4.1.  Key Generation

   In the key generation phase, the server generates its private and
   public keys, denoted ServerPrivateKey and ServerPublicKey, as
   follows.

Yun & Wood                Expires 9 August 2025                 [Page 7]
Internet-Draft                     ARC                     February 2025

Input: None
Output:
- ServerPrivateKey:
  - x0: Scalar
  - x1: Scalar
  - x2: Scalar
  - x0Blinding: Scalar
- ServerPublicKey:
  - X0: Element
  - X1: Element
  - X2: Element

Parameters
- Group G

def SetupServer():
  x0 = G.RandomScalar()
  x1 = G.RandomScalar()
  x2 = G.RandomScalar()
  x0Blinding = G.RandomScalar()
  X0 = x0 * G.GeneratorG() + x0Blinding * G.GeneratorH()
  X1 = x1 * G.GeneratorH()
  X2 = x2 * G.GeneratorH()
  return ServerPrivateKey(x0, x1, x2, x0Blinding), ServerPublicKey(X0, X1, X2)

   The server public keys can be serialized as follows:

   struct {
     uint8 X0[Ne]; // G.SerializeElement(X0)
     uint8 X1[Ne]; // G.SerializeElement(X1)
     uint8 X2[Ne]; // G.SerializeElement(X2)
   } ServerPublicKey;

   The length of this encoded response structure is NserverPublicKey =
   3*Ne.

4.2.  Issuance

   The purpose of the issuance phase is for the client and server to
   cooperatively compute a credential that is cryptographically bound to
   the client's secrets.  Clients do not choose these secrets; they are
   computed by the protocol.

   The issuance phase of the protocol requires clients to know the
   server public key a priori, as well as an arbitrary, application-
   specific request context.  It requires no other input.  It consists
   of three distinct steps:

Yun & Wood                Expires 9 August 2025                 [Page 8]
Internet-Draft                     ARC                     February 2025

   1.  The client generates and sends a credential request to the
       server.  This credential request contains a proof that the
       request is valid with respect to the client's secrets and request
       context.  See Section 4.2.1 for details about this step.

   2.  The server validates the credential request.  If valid, it
       computes a credential response with the server private keys.  The
       response includes a proof that the credential response is valid
       with respect to the server keys.  The server sends the response
       to the client.  See Section 4.2.2 for details about this step.

   3.  The client finalizes the credential by processing the server
       response.  If valid, this step yields a credential that can then
       be used in the presentation phase of the protocol.  See
       Section 4.2.3 for details about this step.

   Each of these steps are described in the following subsections.

4.2.1.  Credential Request

   Given a request context, the process for creating a credential
   request is as follows:

Yun & Wood                Expires 9 August 2025                 [Page 9]
Internet-Draft                     ARC                     February 2025

(clientSecrets, request) = CredentialRequest(requestContext)

Inputs:
- requestContext: Data, context for the credential request

Outputs:
- request:
  - m1Enc: Element, first encrypted secret.
  - m2Enc: Element, second encrypted secret.
  - requestProof: ZKProof, a proof of correct generation of m1Enc and m2Enc.
- clientSecrets:
  - m1: Scalar, first secret.
  - m2: Scalar, second secret.
  - r1: Scalar, blinding factor for first secret.
  - r2: Scalar, blinding factor for second secret.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()

def CredentialRequest(requestContext):
  m1 = G.RandomScalar()
  m2 = G.HashToScalar(requestContext, "requestContext")
  r1 = G.RandomScalar()
  r2 = G.RandomScalar()
  m1Enc = m1 * generatorG + r1 * generatorH
  m2Enc = m2 * generatorG + r2 * generatorH
  requestProof = MakeCredentialRequestProof(m1, m2, r1, r2, m1Enc, m2Enc)
  request = (m1Enc, m2Enc, requestProof)
  clientSecrets = (m1, m2, r1, r2)
  return (clientSecrets, request)

   See Section 5.2 for more details on the generation of the credential
   request proof.

   The resulting request can be serialized as follows.

   struct {
     uint8 m1Enc[Ne];
     uint8 m2Enc[Ne];
     uint8 challenge[Ns];
     uint8 response0[Ns];
     uint8 response1[Ns];
     uint8 response2[Ns];
     uint8 response3[Ns];
   } CredentialRequest;

Yun & Wood                Expires 9 August 2025                [Page 10]
Internet-Draft                     ARC                     February 2025

   The length of this encoded request structure is Nrequest = 2*Ne +
   5*Ns.

4.2.2.  Credential Response

   Given a credential request and server public and private keys, the
   process for creating a credential response is as follows.

   response = CredentialResponse(serverPrivateKey, serverPublicKey, request)

   Inputs:
   - serverPrivateKey:
     - x0: Scalar (private), server private key 0.
     - x1: Scalar (private), server private key 1.
     - x2: Scalar (private), server private key 2.
     - x0Blinding: Scalar (private), blinding value for x0.
   - serverPublicKey:
     - X0: Element, server public key 0.
     - X1: Element, server public key 1.
     - X2: Element, server public key 2.
   - request:
     - m1Enc: Element, first encrypted secret.
     - m2Enc: Element, second encrypted secret.
     - requestProof: ZKProof, a proof of correct generation of m1Enc and m2Enc.

   Outputs:
   - U: Element, a randomized generator for the response, `b*G`.
   - encUPrime: Element, encrypted UPrime.
   - X0Aux: Element, auxiliary point for X0.
   - X1Aux: Element, auxiliary point for X1.
   - X2Aux: Element, auxiliary point for X2.
   - HAux: Element, auxiliary point for generatorH.
   - responseProof: ZKProof, a proof of correct generation of
     U, encUPrime, server public keys, and auxiliary points.

   Parameters:
   - G: Group
   - generatorG: Element, equivalent to G.GeneratorG()
   - generatorH: Element, equivalent to G.GeneratorH()

   Exceptions:
   - VerifyError, raised when response verification fails

   def CredentialResponse(serverPrivateKeys, serverPublicKey, request):
     if VerifyCredentialRequestProof(request) == false:
       raise VerifyError

     b = G.RandomScalar()

Yun & Wood                Expires 9 August 2025                [Page 11]
Internet-Draft                     ARC                     February 2025

     U = b * generatorG
     encUPrime = b * (serverPublicKey.X0 +
           serverPrivateKeys.x1 * request.m1Enc +
           serverPrivateKeys.x2 * request.m2Enc)
     X0Aux = b * serverPrivateKeys.x0Blinding * generatorH
     X1Aux = b * serverPublicKey.X1
     X2Aux = b * serverPublicKey.X2
     HAux = b * generatorH

     responseProof = MakeCredentialResponseProof(serverPrivateKey,
       serverPublicKey, request, b, U, encUPrime, X0Aux, X1Aux, X2Aux, HAux)
     return (U, encUPrime, X0Aux, X1Aux, X2Aux, HAux, responseProof)

   The resulting response can be serialized as follows.  See Section 5.3
   for more details on the generation of the credential response proof.

   struct {
     uint8 U[Ne];
     uint8 encUPrime[Ne];
     uint8 X0Aux[Ne];
     uint8 X1Aux[Ne];
     uint8 X2Aux[Ne];
     uint8 HAux[Ne];
     uint8 challenge[Ns];
     uint8 response0[Ns];
     uint8 response1[Ns];
     uint8 response2[Ns];
     uint8 response3[Ns];
     uint8 response4[Ns];
     uint8 response5[Ns];
     uint8 response6[Ns];
   }

   The length of this encoded response structure is Nresponse = 6*Ne +
   8*Ns.

4.2.3.  Finalize Credential

   Given a credential request and response, server public keys, and the
   client secrets produced when creating a credential request, the
   process for finalizing the issuance flow and creating a credential is
   as follows.

Yun & Wood                Expires 9 August 2025                [Page 12]
Internet-Draft                     ARC                     February 2025

credential = FinalizeCredential(clientSecrets, serverPublicKey, request, response)

Inputs:
- clientSecrets:
  - m1: Scalar, first secret.
  - m2: Scalar, second secret.
  - r1: Scalar, blinding factor for first secret.
  - r2: Scalar, blinding factor for second secret.
- serverPublicKey: ServerPublicKey, shared with the client out-of-band
- request:
  - m1Enc: Element, first encrypted secret.
  - m2Enc: Element, second encrypted secret.
  - requestProof: ZKProof, a proof of correct generation of m1Enc and m2Enc.
- response:
  - U: Element, a randomized generator for the response. `b*G`.
  - encUPrime: Element, encrypted UPrime.
  - X0Aux: Element, auxiliary point for X0.
  - X1Aux: Element, auxiliary point for X1.
  - X2Aux: Element, auxiliary point for X2.
  - HAux: Element, auxiliary point for generatorH.
  - responseProof: ZKProof, a proof of correct generation of U, encUPrime, server public keys, and auxiliary points.

Outputs:
- credential:
  - m1: Scalar, client's first secret.
  - U: Element, a randomized generator for the response. `b*G`.
  - UPrime: Element, the MAC over the server's private keys and the client's secret secrets.
  - X1: Element, server public key 1.

Exceptions:
- VerifyError, raised when response verification fails

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()

def FinalizeCredential(clientSecrets, serverPublicKey, request, response):
  if VerifyCredentialResponseProof(serverPublicKey, response, request) == false:
    raise VerifyError
  UPrime = response.encUPrime - response.X0Aux - clientSecrets.r1 * response.X1Aux - clientSecrets.r2 * response.X2Aux
  return (clientSecrets.m1, response.U, UPrime, serverPublicKey.X1)

Yun & Wood                Expires 9 August 2025                [Page 13]
Internet-Draft                     ARC                     February 2025

4.3.  Presentation

   The purpose of the presentation phase is for the client to create a
   "presentation" to the server which can be verified using the server
   private key.  This phase is non-interactive, i.e., there is no state
   stored between client and server in order to produce and then verify
   a presentation.  Client and server agree upon a fixed limit of
   presentations in order to create and verify presentations;
   presentations will not verify correctly if the client and server use
   different limits.

   This phase consists of three steps:

   1.  The client creates a presentation state for a given presentation
       context and presentation limit.  This state is used to produce a
       fixed amount of presentations.

   2.  The client creates a presentation from the presentation state and
       sends it to the server.  The presentation is cryptographically
       bound to the state's presentation context, and contains proof
       that the presentation is valid with respect to the presentation
       context.  Moreover, the presentation contains proof that the
       nonce (an integer) associated with this presentation is within
       the presentation limit.

   3.  The server verifies the presentation with respect to the
       presentation context and presentation limit.

   Details for each each of these steps are in the following
   subsections.

4.3.1.  Presentation State

   Presentation state is used to track the number of presentations for a
   given credential.  This state is important for ARC's unlinkability
   goals: reuse of state can break unlinkability properties of
   credential presentations.  State is initialized with a credential,
   presentation context, and presentation limit.  It is then mutated
   after each presentation construction (as described in Section 4.3.2).

Yun & Wood                Expires 9 August 2025                [Page 14]
Internet-Draft                     ARC                     February 2025

state = MakePresentationState(credential, presentationContext, presentationLimit)

Inputs:
- credential:
  - m1: Scalar, client's first secret.
  - U: Element, a randomized generator for the response `b*G`.
  - UPrime: Element, the MAC over the server's private keys and the client's secrets.
  - X1: Element, server public key 1.
- presentationContext: Data (public), used for presentation tag computation.
- presentationLimit: Integer, the fixed presentation limit.

Outputs:
- credential
- presentationContext: Data (public), used for presentation tag computation.
- presentationNonceSet: {Integer}, the set of nonces that have been used for this presentation
- presentationLimit: Integer, the fixed presentation limit.

def MakePresentationState(credential, presentationContext, presentationLimit):
  nonce = random_integer_uniform(0, presentationLimit)
  return PresentationState(credential, presentationContext, [nonce], presentationLimit)

4.3.2.  Presentation Construction

   Creating a presentation requires a credential, presentation context,
   and presentation limit.  This process is necessarily stateful on the
   client since the number of times a credential is used for a given
   presentation context cannot exceed the presentation limit; doing so
   would break presentation unlinkability, as two presentations created
   with the same nonce can be directly compared for equality (via the
   "tag").  As a result, the process for creating a presentation accepts
   as input a presentation state and then outputs an updated
   presentation state.

newState, nonce, presentation = Present(state)

Inputs:
state: input PresentationState
  - credential
  - presentationContext: Data (public), used for presentation tag computation.
  - presentationNonceSet: {Integer}, the set of nonces that have been used for this presentation
  - presentationLimit: Integer, the fixed presentation limit.

Outputs:
- newState: updated PresentationState
- nonce: Integer, the nonce associated with this presentation.
- presentation:
  - U: Element, re-randomized from the U in the response.
  - UPrimeCommit: Element, a public key to the issued UPrime.

Yun & Wood                Expires 9 August 2025                [Page 15]
Internet-Draft                     ARC                     February 2025

  - m1Commit: Element, a public key to the client secret (m1).
  - tag: Element, the tag element used for enforcing the presentation limit.
  - presentationProof: ZKProof, a proof of correct generation of the presentation.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()

Exceptions:
- LimitExceededError, raised when the presentation count meets or exceeds the presentation limit for the given presentation context

def Present(state):
  if len(state.presentationNonceSet) >= state.presentationLimit:
    raise LimitExceededError

  a = G.RandomScalar()
  r = G.RandomScalar()
  z = G.RandomScalar()

  U = a * state.credential.U
  UPrime = a * state.credential.UPrime
  UPrimeCommit = UPrime + r * generatorG
  m1Commit = state.credential.m1 * U + z * generatorH

  # This step mutates the state by keeping track of
  # what nonces have already been spent.
  nonce = random_integer_uniform_excluding_set(0,
    state.presentationLimit, state.presentationNonceSet)
  state.presentationNonceSet.add(nonce)

  generatorT = G.HashToGroup(presentationContext, "Tag")
  tag = (credential.m1 + nonce)^(-1) * generatorT
  V = z * credential.X1 - r * generatorG
  m1Tag = state.credential.m1 * tag

  presentationProof = MakePresentationProof(U, UPrimeCommit, m1Commit, tag, generatorT, credential, V, r, z, nonce, m1Tag)

  presentation = (U, UPrimeCommit, m1Commit, tag, presentationProof)

  return state, nonce, presentation

   [[OPEN ISSUE: should the tag also fold in the presentation limit?]]

   The resulting presentation can be serialized as follows.  See
   Section 5.4 for more details on the generation of the presentation
   proof.

Yun & Wood                Expires 9 August 2025                [Page 16]
Internet-Draft                     ARC                     February 2025

   struct {
     uint8 U[Ne];
     uint8 UPrimeCommit[Ne];
     uint8 m1Commit[Ne];
     uint8 tag[Ne];
     uint8 challenge[Ns];
     uint8 response0[Ns];
     uint8 response1[Ns];
     uint8 response2[Ns];
     uint8 response3[Ns];
     uint8 response4[Ns];
   }

   The length of this structure is Npresentation = 4*Ne + 6*Ns.

4.3.3.  Presentation Verification

   The server processes the presentation by verifying the presentation
   proof against server-computed values, and performing a check that the
   presentation conforms to the presentation limit.

Yun & Wood                Expires 9 August 2025                [Page 17]
Internet-Draft                     ARC                     February 2025

validity = VerifyPresentation(serverPrivateKey, serverPublicKey, requestContext, presentationContext, nonce, presentation, presentationLimit)

Inputs:
- serverPrivateKey:
  - x0: Scalar (private), server private key 0.
  - x1: Scalar (private), server private key 1.
  - x2: Scalar (private), server private key 2.
  - x0Blinding: Scalar (private), blinding value for x0.
- serverPublicKey:
  - X0: Element, server public key 0.
  - X1: Element, server public key 1.
  - X2: Element, server public key 2.
- requestContext: Data, context for the credential request.
- presentationContext: Data (public), used for presentation tag computation.
- nonce: Integer, the nonce associated with this presentation.
- presentation:
  - U: Element, re-randomized from the U in the response.
  - UPrimeCommit: Element, a public key to the issued UPrime.
  - m1Commit: Element, a public key to the client secret (m1).
  - nonce: Integer, the nonce associated with this presentation.
  - tag: Element, the tag element used for enforcing the presentation limit.
  - presentationProof: ZKProof, a proof of correct generation of the presentation.
- presentationLimit: Integer, the fixed presentation limit.

Outputs:
- validity: Boolean, True if the presentation is valid, False otherwise.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()

Exceptions:
- InvalidNonceError, raised when the nonce associated with the presentation is invalid

def VerifyPresentation(serverPrivateKey, serverPublicKey, requestContext, presentationContext, nonce, presentation, presentationLimit):
  if nonce < 0 or nonce > presentationLimit:
    raise InvalidNonceError

  generatorT = G.HashToGroup(presentationContext, "Tag")
  m1Tag = generatorT - (nonce * presentation.tag)

  validity = VerifyPresentationProof(serverPrivateKey, serverPublicKey, requestContext, presentationContext, presentation, m1Tag)
  # Implementation-specific step: perform double-spending check on tag.
  # Implementation-specific step: store tag for future double-spending check.
  return validity

Yun & Wood                Expires 9 August 2025                [Page 18]
Internet-Draft                     ARC                     February 2025

   Implementation-specific steps: the server must perform a check that
   the tag (presentation.tag) has not previously been seen, to prevent
   double spending.  It then stores the tag for use in future double
   spending checks.  To reduce the overhead of performing double spend
   checks, the server can store and look up the tags corresponding to
   the associated requestContext and presentationContext values.

5.  Zero-Knowledge Proofs

   This section describes a Schnorr proof compiler that is used for the
   construction of other proofs needed throughout the ARC protocol.
   Section 5.1 describes the compiler, and the remaining sections
   describe how it is used for the purposes of producing ARC proofs.

5.1.  Schnorr Compiler

   The compiler specified in this section automates the Fiat-Shamir
   transform that is often used to transform interactive zero-knowledge
   proofs into non-interactive proofs such that they can be used to non-
   interactively prove various statements of importance in higher-level
   protocols, such as ARC.  The compiler consists of a prover and
   verifier role.  The prover constructs a transcript for the proof and
   then applies the Fiat-Shamir heuristic to generate the resulting
   challenge and response values.  The verifier reconstructs the same
   transcript to verify the proof.

   The prover and verifier roles are specified below in Section 5.1.1
   and Section 5.1.2, respectively.

5.1.1.  Prover

   The prover role consists of four functions:

   *  AppendScalar: This function adds a scalar representation to the
      transcript.

   *  AppendElement: This function adds an element representation to the
      transcript.

   *  Constrain: This function applies an explicit constraint to the
      proof, where the constraint is expressed as equality between some
      element and a linear combination of scalar and element
      representations.  An example constraint might be Z = aX + bY, for
      scalars a, b, and elements X, Y, Z.

   *  Prove: This function applies the Fiat-Shamir heuristic to the
      protocol transcript and set of constraints to produce a zero-
      knowledge proof that can be verified.

Yun & Wood                Expires 9 August 2025                [Page 19]
Internet-Draft                     ARC                     February 2025

   These functions are defined in the following sub-sections.

   In addition, the prover role consists of the following state:

   *  label: Data, a value representing the context in which the proof
      will be used

   *  scalars: [Integer], An ordered set of representation of scalar
      variables to use in the proof.  Each scalar has a label associated
      with it, stored in a list called scalar_labels.

   *  elements: [Integer], An ordered set of representation of element
      variables to use in the proof.  Each element has a label
      associated with it, stored in a list called element_labels.

   *  constraints: a set of constraints, where each constraint consists
      of a constraint element and a linear combination of variables.

5.1.1.1.  AppendScalar

   AppendScalar(label, assignment)

   Inputs:
   - label: Data, Scalar variable label
   - assignment: Scalar variable

   Outputs:
   - Integer: Integer representation of the new scalar variable

   def AppendScalar(label, assignment):
     state.scalars.append(assignment)
     state.scalar_labels.append(label)
     return len(state.scalars) - 1

5.1.1.2.  AppendElement

Yun & Wood                Expires 9 August 2025                [Page 20]
Internet-Draft                     ARC                     February 2025

   AppendElement(label, assignment)

   Inputs:
   - label: Data, Element variable label
   - assignment: Element variable

   Outputs:
   - Integer: Integer representation of the new element variable

   def AppendElement(label, assignment):
     state.elements.append(assignment)
     state.element_labels.append(label)
     return len(state.elements) - 1

5.1.1.3.  Constrain

Constrain(result, linearCombination)

Inputs:
- result: Integer, representation of constraint element
- assignment: linear combination of scalar and element variable (representations)

def Constrain(label, linearCombination):
  state.constraints.append((result, linearCombination))

5.1.1.4.  Prove

   The Prove function is defined below.

Prove()

Outputs:
- ZKProof, a proof consisting of a challenge Scalar and then fixed number of response Scalar values

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()

Exceptions:
- InvalidVariableAllocationError, raised when the prover was incorrectly configured

def Prove():
  blindings = [G.RandomScalar() for i in range(len(state.scalars))]

  blinded_elements = []
  for (constraint_point, linear_combination) in state.constraints:
    if constraint_point.index > len(state.elements):

Yun & Wood                Expires 9 August 2025                [Page 21]
Internet-Draft                     ARC                     February 2025

      raise InvalidVariableAllocationError

    for (scalar_var, element_var) in linear_combination:
      if scalar_var.index > len(state.scalars):
        raise InvalidVariableAllocationError
      if element_var.index > len(state.elements):
        raise InvalidVariableAllocationError

    scalar_index = linear_combination[0][0]
    element_index = linear_combination[0][1]
    blinded_element = blindings[scalar_index] * state.elements[element_index]

    for i, pair in enumerate(linear_combination):
      if i > 0:
        scalar_index = pair[0]
        element_index = pair[1]
        blinded_element += blindings[scalar_index] * state.elements[element_index]

        blinded_elements.append(blinded_element)

  # Obtain a scalar challenge
  challenge = ComposeChallenge(state.label, state.elements, blinded_elements)

  # Compute response scalars from the challenge, scalars, and blindings.
  responses = []
  for (index, scalar) in enumerate(state.scalars):
    blinding = blindings[index]
    responses.append(blinding - challenge * scalar)

  return ZKProof(challenge, responses)

   The function ComposeChallenge is defined below.

Yun & Wood                Expires 9 August 2025                [Page 22]
Internet-Draft                     ARC                     February 2025

ComposeChallenge(label, elements, blinded_elements)

Inputs:
- label: Data, the proof label
- elements: [Element], ordered list of elements
- blinded_elements: [Element], ordered list of blinded elements

Outputs:
- challenge, Scalar

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()

def ComposeChallenge(label, elements, blinded_elements):
  challenge_input = Data() # Empty Data

  for element in elements:
    serialized_element = G.SerializeElement(element)
    challenge_input += I2OSP(len(serialized_element), 2) + serialized_element

  for blinded_element in blinded_elements:
    serialized_blinded_element = G.SerializeElement(blinded_element)
    challenge_input += I2OSP(len(serialized_blinded_element), 2) + serialized_blinded_element

  return G.HashToScalar(challenge_input, label)

5.1.2.  Verifier

   The verifier role consists of four functions:

   *  AppendScalar: This function adds a scalar representation to the
      transcript.

   *  AppendElement: This function adds an element representation to the
      transcript.

   *  Constrain: This function applies an explicit constraint to the
      proof, where the constraint is expressed as equality between some
      element and a linear combination of scalar and element
      representations.  An example constraint might be Z = aX + bY, for
      scalars a, b, and elements X, Y, Z.

   *  Verify: This function applies the Fiat-Shamir heuristic to verify
      the zero-knowledge proof.

Yun & Wood                Expires 9 August 2025                [Page 23]
Internet-Draft                     ARC                     February 2025

   AppendScalar and Verify are defined in the following sub-sections.
   AppendElement and Constrain matches the functionality used in the
   prover role.

5.1.2.1.  AppendScalar

   AppendScalar(label)

   Inputs:
   - label: Data, Scalar variable label

   Outputs:
   - Integer: Integer representation of the new scalar variable

   def AppendScalar(label):
     state.scalar_labels.append(label)
     return len(state.scalar_labels) - 1

5.1.2.2.  Verify

Yun & Wood                Expires 9 August 2025                [Page 24]
Internet-Draft                     ARC                     February 2025

Verify(proof)

Inputs:
- ZKProof, a proof consisting of a challenge Scalar and then fixed number of response Scalar values

Outputs:
- Boolean, True if the proof is valid, False otherwise.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()

Exceptions:
- InvalidVariableAllocationError, raised when the prover was incorrectly configured

def Verify(proof):
  if len(state.elements) != len(state.element_labels):
    raise InvalidVariableAllocationError

  blinded_elements = []
  for (constraint_element, linear_combination) in state.constraints:
    if constraint_element > len(state.elements):
      raise InvalidVariableAllocationError
    for (_, element_var) in linear_combination:
      if element_var > len(state.elements):
        raise InvalidVariableAllocationError

    challenge_element = proof.challenge * state.elements[constraint_element]
    for i, pair in enumerate(linear_combination):
      challenge_element += proof.responses[pair[0]] * state.elements[pair[1]]

    blinded_elements.append(challenge_element)

  challenge = ComposeChallenge(state.label, self.elements, blinded_elements)
  return challenge == proof.challenge

5.2.  CredentialRequest Proof

   The request proof is a proof of knowledge of (m1, m2, r1, r2) used to
   generate the encrypted request.  Statements to prove:

   1. m1Enc = m1 * generatorG + r1 * generatorH
   2. m2Enc = m2 * generatorG + r2 * generatorH

5.2.1.  CredentialRequest Proof Creation

Yun & Wood                Expires 9 August 2025                [Page 25]
Internet-Draft                     ARC                     February 2025

requestProof = MakeCredentialRequestProof(m1, m2, r1, r2, m1Enc, m2Enc)

Inputs:
- m1: Scalar, first secret.
- m2: Scalar, second secret.
- r1: Scalar, blinding factor for first secret.
- r2: Scalar, blinding factor for second secret.
- m1Enc: Element, first encrypted secret.
- m2Enc: Element, second encrypted secret.

Outputs:
- proof: ZKProof
  - challenge: Scalar, the challenge used in the proof of valid encryption.
  - response0: Scalar, the response corresponding to m1.
  - response1: Scalar, the response corresponding to m2.
  - response2: Scalar, the response corresponding to r1.
  - response3: Scalar, the response corresponding to r2.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()
- contextString: public input

def MakeCredentialRequestProof(m1, m2, r1, r2, m1Enc, m2Enc):
  prover = Prover(contextString + "CredentialRequest")

  m1Var = prover.AppendScalar("m1", m1)
  m2Var = prover.AppendScalar("m2", m2)
  r1Var = prover.AppendScalar("r1", r1)
  r2Var = prover.AppendScalar("r2", r2)

  genGVar = prover.AppendElement("genG", generatorG)
  genHVar = prover.AppendElement("genH", generatorH)
  m1EncVar = prover.AppendElement("m1Enc", m1Enc)
  m2EncVar = prover.AppendElement("m2Enc", m2Enc)

  # 1. m1Enc = m1 * generatorG + r1 * generatorH
  prover.Constrain(m1EncVar, [(m1Var, genGVar), (r1Var, genHVar)])

  # 2. m2Enc = m2 * generatorG + r2 * generatorH
  prover.Constrain(m2EncVar, [(m2Var, genGVar), (r2Var, genHVar)])

  return prover.Prove()

5.2.2.  CredentialRequest Proof Verification

Yun & Wood                Expires 9 August 2025                [Page 26]
Internet-Draft                     ARC                     February 2025

validity = VerifyCredentialRequestProof(request)

Inputs:
- request:
  - m1Enc: Element, first encrypted secret.
  - m2Enc: Element, second encrypted secret.
  - requestProof: ZKProof, a proof of correct generation of m1Enc and m2Enc.
    - challenge: Scalar, the challenge used in the proof of valid encryption.
    - response0: Scalar, the response corresponding to m1.
    - response1: Scalar, the response corresponding to m2.
    - response2: Scalar, the response corresponding to r1.
    - response3: Scalar, the response corresponding to r2.

Outputs:
- validity: Boolean, True if the proof verifies correctly, False otherwise.

Parameters:
- G: group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()
- contextString: public input

def VerifyCredentialRequestProof(request):
  verifier = Verifier(contextString + "CredentialRequest")

  m1Var = verifier.AppendScalar("m1")
  m2Var = verifier.AppendScalar("m2")
  r1Var = verifier.AppendScalar("r1")
  r2Var = verifier.AppendScalar("r2")

  genGVar = verifier.AppendElement("genG", generatorG)
  genHVar = verifier.AppendElement("genH", generatorH)
  m1EncVar = verifier.AppendElement("m1Enc", request.m1Enc)
  m2EncVar = verifier.AppendElement("m2Enc", request.m2Enc)

  # 1. m1Enc = m1 * generatorG + r1 * generatorH
  verifier.Constrain(m1EncVar, [(m1Var, genGVar), (r1Var, genHVar)])

  # 2. m2Enc = m2 * generatorG + r2 * generatorH
  verifier.Constrain(m2EncVar, [(m2Var, genGVar), (r2Var, genHVar)])

  return verifier.Verify(request.proof)

5.3.  CredentialResponse Proof

   The response proof is a proof of knowledge of (x0, x1, x2,
   x0Blinding, b) used in the server's CredentialResponse for the
   client's CredentialRequest.  Statements to prove:

Yun & Wood                Expires 9 August 2025                [Page 27]
Internet-Draft                     ARC                     February 2025

   1. X0 = x0 * generatorG + x0Blinding * generatorH
   2. X1 = x1 * generatorH
   3. X2 = x2 * generatorH
   4. X0Aux = b * x0Blinding * generatorH
     4a. HAux = b * generatorH
     4b: X0Aux = x0Blinding * HAux (= b * x0Blinding * generatorH)
   5. X1Aux = b * x1 * generatorH
     5a. X1Aux = b * X1 (X1 = x1 * generatorH)
     5b. X1Aux = t1 * generatorH (t1 = b * x1)
   6. X2Aux = b * x2 * generatorH
     6a. X2Aux = b * X2 (X2 = x2 * generatorH)
     6b. X2Aux = t2 * generatorH (t2 = b * x2)
   7. U = b * generatorG
   8. encUPrime = b * (X0 + x1 * Enc(m1) + x2 * Enc(m2))

5.3.1.  CredentialResponse Proof Creation

responseProof = MakeCredentialResponseProof(serverPrivateKey, serverPublicKey, request, b, U, encUPrime, X0Aux, X1Aux, X2Aux, HAux)

Inputs:
- serverPrivateKey:
  - x0: Scalar (private), server private key 0.
  - x1: Scalar (private), server private key 1.
  - x2: Scalar (private), server private key 2.
  - x0Blinding: Scalar (private), blinding value for x0.
- serverPublicKey:
  - X0: Element, server public key 0.
  - X1: Element, server public key 1.
  - X2: Element, server public key 2.
- request:
  - m1Enc: Element, first encrypted secret.
  - m2Enc: Element, second encrypted secret.
  - requestProof: ZKProof, a proof of correct generation of m1Enc and m2Enc.
- encUPrime: Element, encrypted UPrime.
- X0Aux: Element, auxiliary point for X0.
- X1Aux: Element, auxiliary point for X1.
- X2Aux: Element, auxiliary point for X2.
- HAux: Element, auxiliary point for generatorH.

Outputs:
- proof: ZKProof
  - challenge: Scalar, the challenge used in the proof of valid response.
  - response0: Scalar, the response corresponding to x0.
  - response1: Scalar, the response corresponding to x1.
  - response2: Scalar, the response corresponding to x2.
  - response3: Scalar, the response corresponding to x0Blinding.
  - response4: Scalar, the response corresponding to b.
  - response5: Scalar, the response corresponding to t1.

Yun & Wood                Expires 9 August 2025                [Page 28]
Internet-Draft                     ARC                     February 2025

  - response6: Scalar, the response corresponding to t2.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()
- contextString: public input

def MakeCredentialResponseProof(serverPrivateKey, serverPublicKey, request, b, U, encUPrime, X0Aux, X1Aux, X2Aux, HAux):
  prover = Prover(contextString + "CredentialResponse")

  x0Var = prover.AppendScalar("x0", serverPrivateKey.x0)
  x1Var = prover.AppendScalar("x1", serverPrivateKey.x1)
  x2Var = prover.AppendScalar("x2", serverPrivateKey.x2)
  x0BlindingVar = prover.AppendScalar("x0Blinding", serverPrivateKey.x0Blinding)
  bVar = prover.AppendScalar("b", b)
  t1Var = prover.AppendScalar("t1", b * serverPrivateKey.x1)
  t2Var = prover.AppendScalar("t2", b * serverPrivateKey.x2)

  genGVar = prover.AppendElement("genG", generatorG)
  genHVar = prover.AppendElement("genH", generatorH)
  m1EncVar = prover.AppendElement("m1Enc", request.m1Enc)
  m2EncVar = prover.AppendElement("m2Enc", request.m2Enc)
  UVar = prover.AppendElement("U", U)
  encUPrimeVar = prover.AppendElement("encUPrime", encUPrime)
  X0Var = prover.AppendElement("X0", serverPublicKey.X0)
  X1Var = prover.AppendElement("X1", serverPublicKey.X1)
  X2Var = prover.AppendElement("X2", serverPublicKey.X2)
  X0AuxVar = prover.AppendElement("X0Aux", X0Aux)
  X1AuxVar = prover.AppendElement("X1Aux", X1Aux)
  X2AuxVar = prover.AppendElement("X2Aux", X2Aux)
  HAuxVar = prover.AppendElement("HAux", HAux)

  # 1. X0 = x0 * generatorG + x0Blinding * generatorH
  prover.Constrain(X0Var, [(x0Var, genGVar), (x0BlindingVar, genHVar)])
  # 2. 2. X1 = x1 * generatorH
  prover.Constrain(X1Var, [(x1Var, genHVar)])
  # 3. X2 = x2 * generatorH
  prover.Constrain(X2Var, [(x2Var, genHVar)])

  # 4. X0Aux = b * x0Blinding * generatorH
  # 4a. HAux = b * generatorH
  prover.Constrain(HAuxVar, [(bVar, genHVar)])
  # 4b: X0Aux = x0Blinding * HAux (= b * x0Blinding * generatorH)
  prover.Constrain(X0AuxVar, [(x0BlindingVar, HAuxVar)])

  #5. X1Aux = b * x1 * generatorH
  # 5a. X1Aux = b * X1 (X1 = x1 * generatorH)

Yun & Wood                Expires 9 August 2025                [Page 29]
Internet-Draft                     ARC                     February 2025

  prover.Constrain(X1AuxVar, [(t1Var, genHVar)])
  # 5b. X1Aux = t1 * generatorH (t1 = b * x1)
  prover.Constrain(X1AuxVar, [(bVar, X1Var)])

  # 6. X2Aux = b * x2 * generatorH
  # 6a. X2Aux = b * X2 (X2 = x2 * generatorH)
  prover.Constrain(X2AuxVar, [(bVar, X2Var)])
  # 6b. X2Aux = t2 * H (t2 = b * x2)
  prover.Constrain(X2AuxVar, [(t2Var, genHVar)])

  # 7. U = b * generatorG
  prover.Constrain(UVar, [(bVar, genGVar)])
  # 8. encUPrime = b * (X0 + x1 * Enc(m1) + x2 * Enc(m2))
  # simplified: encUPrime = b * X0 + t1 * m1Enc + t2 * m2Enc, since t1 = b * x1 and t2 = b * x2
  prover.Constrain(encUPrimeVar, [(bVar, X0Var), (t1Var, m1EncVar), (t2Var, m2EncVar)])

  return prover.Prove()

5.3.2.  CredentialResponse Proof Verification

validity = VerifyCredentialResponseProof(serverPublicKey, response, request)

Inputs:
- serverPublicKey:
  - X0: Element, server public key 0.
  - X1: Element, server public key 1.
  - X2: Element, server public key 2.
- response:
  - U: Element, a randomized generator for the response. `b*G`.
  - encUPrime: Element, encrypted UPrime.
  - X0Aux: Element, auxiliary point for X0.
  - X1Aux: Element, auxiliary point for X1.
  - X2Aux: Element, auxiliary point for X2.
  - HAux: Element, auxiliary point for generatorH.
  - responseProof: ZKProof, a proof of correct generation of U, encUPrime, server public keys, and auxiliary points.
    - challenge: Scalar, the challenge used in the proof of valid response.
    - response0: Scalar, the response corresponding to x0.
    - response1: Scalar, the response corresponding to x1.
    - response2: Scalar, the response corresponding to x2.
    - response3: Scalar, the response corresponding to x0Blinding.
    - response4: Scalar, the response corresponding to b.
    - response5: Scalar, the response corresponding to t1.
    - response6: Scalar, the response corresponding to t2.
- request:
  - m1Enc: Element, first encrypted secret.
  - m2Enc: Element, second encrypted secret.
  - requestProof: ZKProof, a proof of correct generation of m1Enc and m2Enc.

Yun & Wood                Expires 9 August 2025                [Page 30]
Internet-Draft                     ARC                     February 2025

Outputs:
- validity: Boolean, True if the proof verifies correctly, False otherwise.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()

def VerifyCredentialResponseProof(serverPublicKey, response, request):
  verifier = Verifier(contextString + "CredentialResponse")

  x0Var = verifier.AppendScalar("x0")
  x1Var = verifier.AppendScalar("x1")
  x2Var = verifier.AppendScalar("x2")
  x0BlindingVar = verifier.AppendScalar("x0Blinding")
  bVar = verifier.AppendScalar("b", b)
  t1Var = verifier.AppendScalar("t1")
  t2Var = verifier.AppendScalar("t2")

  genGVar = verifier.AppendElement("genG", generatorG)
  genHVar = verifier.AppendElement("genH", generatorH)
  m1EncVar = verifier.AppendElement("m1Enc", request.m1Enc)
  m2EncVar = verifier.AppendElement("m2Enc", request.m2Enc)
  UVar = verifier.AppendElement("U", response.U)
  encUPrimeVar = verifier.AppendElement("encUPrime", response.encUPrime)
  X0Var = verifier.AppendElement("X0", serverPublicKey.X0)
  X1Var = verifier.AppendElement("X1", serverPublicKey.X1)
  X2Var = verifier.AppendElement("X2", serverPublicKey.X2)
  X0AuxVar = verifier.AppendElement("X0Aux", response.X0Aux)
  X1AuxVar = verifier.AppendElement("X1Aux", response.X1Aux)
  X2AuxVar = verifier.AppendElement("X2Aux", response.X2Aux)
  HAuxVar = verifier.AppendElement("HAux", response.HAux)

  # 1. X0 = x0 * generatorG + x0Blinding * generatorH
  verifier.Constrain(X0Var, [(x0Var, genGVar), (x0BlindingVar, genHVar)])
  # 2. 2. X1 = x1 * generatorH
  verifier.Constrain(X1Var, [(x1Var, genHVar)])
  # 3. X2 = x2 * generatorH
  verifier.Constrain(X2Var, [(x2Var, genHVar)])

  # 4. X0Aux = b * x0Blinding * generatorH
  # 4a. HAux = b * generatorH
  verifier.Constrain(HAuxVar, [(bVar, genHVar)])
  # 4b: X0Aux = x0Blinding * HAux (= b * x0Blinding * generatorH)
  verifier.Constrain(X0AuxVar, [(x0BlindingVar, HAuxVar)])

  #5. X1Aux = b * x1 * generatorH
  # 5a. X1Aux = b * X1 (X1 = x1 * generatorH)

Yun & Wood                Expires 9 August 2025                [Page 31]
Internet-Draft                     ARC                     February 2025

  verifier.Constrain(X1AuxVar, [(t1Var, genHVar)])
  # 5b. X1Aux = t1 * generatorH (t1 = b * x1)
  verifier.Constrain(X1AuxVar, [(bVar, X1Var)])

  # 6. X2Aux = b * x2 * generatorH
  # 6a. X2Aux = b * X2 (X2 = x2 * generatorH)
  verifier.Constrain(X2AuxVar, [(bVar, X2Var)])
  # 6b. X2Aux = t2 * H (t2 = b * x2)
  verifier.Constrain(X2AuxVar, [(t2Var, genHVar)])

  # 7. U = b * generatorG
  verifier.Constrain(UVar, [(bVar, genGVar)])
  # 8. encUPrime = b * (X0 + x1 * Enc(m1) + x2 * Enc(m2))
  # simplified: encUPrime = b * X0 + t1 * m1Enc + t2 * m2Enc, since t1 = b * x1 and t2 = b * x2
  verifier.Constrain(encUPrimeVar, [(bVar, X0Var), (t1Var, m1EncVar), (t2Var, m2EncVar)])

  return verifier.Verify(response.proof)

5.4.  Presentation Proof

   The presentation proof is a proof of knowledge of (m1, r, z) used in
   the presentation, and a proof that the nonce used to make the tag is
   in the range of [0, presentationLimit).

   Statements to prove:

   1. m1Commit = m1 * U + z * generatorH
   2. V = z * X1 - r * generatorG
   3. G.HashToGroup(presentationContext, "Tag") = m1 * tag + nonce * tag
   4. m1Tag = m1 * tag

5.4.1.  Presentation Proof Creation

presentationProof = MakePresentationProof(U, UPrimeCommit, m1Commit, tag, generatorT, credential, V, r, z, nonce, m1Tag)

Inputs:
- U: Element, re-randomized from the U in the response.
- UPrimeCommit: Element, a public key to the MACGGM output UPrime.
- m1Commit: Element, a public key to the client secret (m1).
- tag: Element, the tag element used for enforcing the presentation limit.
- generatorT: Element, used for presentation tag computation.
- credential:
  - m1: Scalar, client's first secret.
  - U: Element, a randomized generator for the response. `b*G`.
  - UPrime: Element, the MAC over the server's private keys and the client's secrets.
  - X1: Element, server public key 1.
- V: Element, a proof helper element.
- r: Scalar (private), a randomly generated element used in presentation.

Yun & Wood                Expires 9 August 2025                [Page 32]
Internet-Draft                     ARC                     February 2025

- z: Scalar (private), a randomly generated element used in presentation.
- nonce: Int, the nonce associated with the presentation.
- m1Tag: Element, helper element for the proof.

Outputs:
- proof: ZKProof
  - challenge: Scalar, the challenge used in the proof of valid presentation.
  - response0: Scalar, the response corresponding to m1.
  - response1: Scalar, the response corresponding to z.
  - response2: Scalar, the response corresponding to -r.
  - response3: Scalar, the response corresponding to nonce.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()
- contextString: public input

def MakePresentationProof(U, UPrimeCommit, m1Commit, tag, generatorT, presentationContext, credential, V, r, z, nonce, m1Tag)
  prover = Prover(contextString + "PresentationProof")

  m1Var = prover.AppendScalar("m1", credential.m1)
  zVar = prover.AppendScalar("z", z)
  rNegVar = prover.AppendScalar("-r", -r)
  nonceVar = prover.AppendScalar("nonce", nonce)

  genGVar = prover.AppendElement("genG", generatorG)
  genHVar = prover.AppendElement("genH", generatorH)
  UVar = prover.AppendElement("U", U)
  _ = prover.AppendElement("UPrimeCommit", UPrimeCommit)
  m1CommitVar = prover.AppendElement("m1Commit", m1Commit)
  VVar = prover.AppendElement("V", V)
  X1Var = prover.AppendElement("X1", credential.X1)
  tagVar = prover.AppendElement("tag", tag)
  genTVar = prover.AppendElement("genT", generatorT)
  m1TagVar = prover.AppendElement("m1Tag", m1Tag)

  # 1. m1Commit = m1 * U + z * generatorH
  prover.Constrain(m1CommitVar, [(m1Var, UVar), (zVar, genHVar)])
  # 2. V = z * X1 - r * generatorG
  prover.Constrain(VVar, [(zVar, X1Var), (rNegVar, genGVar)])
  # 3. G.HashToGroup(presentationContext, "Tag") = m1 * tag + nonce * tag
  prover.Constrain(genTVar, [(m1Var, tagVar), (nonceVar, tagVar)])
  # 4. m1Tag = m1 * tag
  prover.Constrain(m1TagVar, [(m1Var, tagVar)])

  return prover.Prove()

Yun & Wood                Expires 9 August 2025                [Page 33]
Internet-Draft                     ARC                     February 2025

5.4.2.  Presentation Proof Verification

validity = VerifyPresentationProof(serverPrivateKey, serverPublicKey, requestContext, presentationContext, presentation, m1Tag)

Inputs:
- serverPrivateKey:
  - x0: Scalar (private), server private key 0.
  - x1: Scalar (private), server private key 1.
  - x2: Scalar (private), server private key 2.
  - x0Blinding: Scalar (private), blinding value for x0.
- serverPublicKey:
  - X0: Element, server public key 0.
  - X1: Element, server public key 1.
  - X2: Element, server public key 2.
- requestContext: Data, context for the credential request.
- presentationContext: Data (public), used for presentation tag computation.
- presentation:
  - U: Element, re-randomized from the U in the response.
  - UPrimeCommit: Element, a public key to the issued UPrime.
  - m1Commit: Element, a public key to the client secret (m1).
  - tag: Element, the tag element used for enforcing the presentation limit.
  - presentationProof: ZKProof, a proof of correct generation of the presentation.
    - challenge: Scalar, the challenge used in the proof of valid presentation.
    - response0: Scalar, the response corresponding to m1.
    - response1: Scalar, the response corresponding to z.
    - response2: Scalar, the response corresponding to -r.
    - response3: Scalar, the response corresponding to nonce.
- m1Tag: Element, helper to validate the presentation proof.

Outputs:
- validity: Boolean, True if the proof verifies correctly, False otherwise.

Parameters:
- G: Group
- generatorG: Element, equivalent to G.GeneratorG()
- generatorH: Element, equivalent to G.GeneratorH()
- contextString: public input

def VerifyPresentationProof(serverPrivateKey, serverPublicKey, requestContext, presentationContext, presentation, m1Tag):
  m2 = G.HashToScalar(requestContext, "requestContext")
  V = serverPrivateKey.x0 * presentation.U + serverPrivateKey.x1 * presentation.m1Commit + serverPrivateKey.x2 * m2 * presentation.U - presentation.UPrimeCommit
  generatorT = G.HashToGroup(presentationContext, "Tag")

  verifier = Verifier(contextString + "PresentationProof")

  m1Var = verifier.AppendScalar("m1")
  zVar = verifier.AppendScalar("z")
  rNegVar = verifier.AppendScalar("-r")

Yun & Wood                Expires 9 August 2025                [Page 34]
Internet-Draft                     ARC                     February 2025

  nonceVar = verifier.AppendScalar("nonce")

  genGVar = verifier.AppendElement("genG", generatorG)
  genHVar = verifier.AppendElement("genH", generatorH)
  UVar = verifier.AppendElement("U", presentation.U)
  _ = verifier.AppendElement("UPrimeCommit", presentation.UPrimeCommit)
  m1CommitVar = verifier.AppendElement("m1Commit", presentation.m1Commit)
  VVar = verifier.AppendElement("V", presentation.V)
  X1Var = verifier.AppendElement("X1", serverPublicKey.X1)
  tagVar = prover.AppendElement("tag", presentation.tag)
  genTVar = verifier.AppendElement("genT", generatorT)
  m1TagVar = prover.AppendElement("m1Tag", m1Tag)

  # 1. m1Commit = m1 * U + z * generatorH
  verifier.Constrain(m1CommitVar, [(m1Var, UVar), (zVar, genHVar)])
  # 2. V = z * X1 - r * generatorG
  verifier.Constrain(VVar, [(zVar, X1Var), (rNegVar, genGVar)])
  # 3. G.HashToGroup(presentationContext, "Tag") = m1 * tag + nonceVar * tag
  verifier.Constrain(genTVar, [(m1Var, tagVar), (nonceVar, tagVar)])
  # 4. m1Tag = m1 * tag
  prover.Constrain(m1TagVar, [(m1Var, tagVar)])

  return verifier.Verify(presentation.proof)

6.  Ciphersuites

   A ciphersuite (also referred to as 'suite' in this document) for the
   protocol wraps the functionality required for the protocol to take
   place.  The ciphersuite should be available to both the client and
   server, and agreement on the specific instantiation is assumed
   throughout.

   A ciphersuite contains an instantiation of the following
   functionality:

   *  Group: A prime-order Group exposing the API detailed in
      Section 3.1, with the generator element defined in the
      corresponding reference for each group.  Each group also specifies
      HashToGroup, HashToScalar, and serialization functionalities.  For
      HashToGroup, the domain separation tag (DST) is constructed in
      accordance with the recommendations in
      [I-D.irtf-cfrg-hash-to-curve], Section 3.1.  For HashToScalar,
      each group specifies an integer order that is used in reducing
      integer values to a member of the corresponding scalar field.

   This section includes an initial set of ciphersuites with supported
   groups.  It also includes implementation details for each
   ciphersuite, focusing on input validation.

Yun & Wood                Expires 9 August 2025                [Page 35]
Internet-Draft                     ARC                     February 2025

6.1.  ARC(P-384)

   This ciphersuite uses P-384 [NISTCurves] for the Group.  The value of
   the ciphersuite identifier is "P384".  The value of contextString is
   "ARCV1-P384".

   *  Group: P-384 (secp384r1) [NISTCurves]

      -  Order(): Return 0xfffffffffffffffffffffffffffffffffffffffffffff
         fffc7634d81f4372ddf581a0db248b0a77aecec196accc52973.

      -  Identity(): As defined in [NISTCurves].

      -  Generator(): As defined in [NISTCurves].

      -  RandomScalar(): Implemented by returning a uniformly random
         Scalar in the range [0, G.Order() - 1].  Refer to Section 6.2
         for implementation guidance.

      -  HashToGroup(x, info): Use hash_to_curve with suite
         P384_XMD:SHA-384_SSWU_RO_ [I-D.irtf-cfrg-hash-to-curve], input
         x, and DST = "HashToGroup-" || contextString || info.

      -  HashToScalar(x, info): Use hash_to_field from
         [I-D.irtf-cfrg-hash-to-curve] using L = 72, expand_message_xmd
         with SHA-384, input x and DST = "HashToScalar-" ||
         contextString || info, and prime modulus equal to
         Group.Order().

      -  ScalarInverse(s): Returns the multiplicative inverse of input
         Scalar s mod Group.Order().

      -  SerializeElement(A): Implemented using the compressed Elliptic-
         Curve-Point-to-Octet-String method according to [SEC1]; Ne =
         49.

      -  DeserializeElement(buf): Implemented by attempting to
         deserialize a 49-byte array to a public key using the
         compressed Octet-String-to-Elliptic-Curve-Point method
         according to [SEC1], and then performs partial public-key
         validation as defined in section 5.6.2.3.4 of [KEYAGREEMENT].
         This includes checking that the coordinates of the resulting
         point are in the correct range, that the point is on the curve,
         and that the point is not the point at infinity.  Additionally,
         this function validates that the resulting element is not the
         group identity element.  If these checks fail, deserialization
         returns an InputValidationError error.

Yun & Wood                Expires 9 August 2025                [Page 36]
Internet-Draft                     ARC                     February 2025

      -  SerializeScalar(s): Implemented using the Field-Element-to-
         Octet-String conversion according to [SEC1]; Ns = 48.

      -  DeserializeScalar(buf): Implemented by attempting to
         deserialize a Scalar from a 48-byte string using Octet-String-
         to-Field-Element from [SEC1].  This function can fail if the
         input does not represent a Scalar in the range [0, G.Order() -
         1].

6.2.  Random Scalar Generation

   Two popular algorithms for generating a random integer uniformly
   distributed in the range [0, G.Order() -1] are as follows:

6.2.1.  Rejection Sampling

   Generate a random byte array with Ns bytes, and attempt to map to a
   Scalar by calling DeserializeScalar in constant time.  If it
   succeeds, return the result.  If it fails, try again with another
   random byte array, until the procedure succeeds.  Failure to
   implement DeserializeScalar in constant time can leak information
   about the underlying corresponding Scalar.

   As an optimization, if the group order is very close to a power of 2,
   it is acceptable to omit the rejection test completely.  In
   particular, if the group order is p, and there is an integer b such
   that |p - 2^b| is less than 2^(b/2), then RandomScalar can simply
   return a uniformly random integer of at most b bits.

6.2.2.  Random Number Generation Using Extra Random Bits

   Generate a random byte array with L = ceil(((3 *
   ceil(log2(G.Order()))) / 2) / 8) bytes, and interpret it as an
   integer; reduce the integer modulo G.Order() and return the result.
   See [I-D.irtf-cfrg-hash-to-curve], Section 5 for the underlying
   derivation of L.

7.  Security Considerations

   For arguments about correctness, unforgeability, anonymity, and blind
   issuance of the ARC protocol, see the "Formal Security Definitions
   for Keyed-Verification Anonymous Credentials" in [KVAC].

   This section elaborates on unlinkability properties for ARC and other
   implementation details necessary for these properties to hold.

Yun & Wood                Expires 9 August 2025                [Page 37]
Internet-Draft                     ARC                     February 2025

7.1.  Credential Issuance Unlinkability

   Client credential requests are constructed such that the server
   cannot distinguish between any two credential requests from the same
   client and two requests from different clients.  We refer to this
   property as issuance unlinkability.  This property is achieved by the
   way the credential requests are constructed.  In particular, each
   credential request consists of two Pedersen commitments with fresh
   blinding factors, which are used to commit to a freshly generated
   client secret and request context.  The resulting request is
   therefore perfetly hiding, and independent from other requests from
   the same client.  More details about this unlinkability property can
   be found in [KVAC] and [REVISITING_KVAC].

7.2.  Presentation Unlinkability

   Client credential presentations are constructed so that all
   presentations are indistinguishable, even if coming from the same
   user.  We refer to this property as presentation unlinkability.  This
   property is achieved by the way the credential presentations are
   constructed.  The presentation elements [U, UPrimeCommit, m1Commit]
   are indistinguishable from all other presentations made from
   credentials issued with the same server keys, as detailed in [KVAC].

   The indistinguishability set for these presentation elements is
   sum_{i=0}^c(p_i), where c is the number of credentials issued with
   the same server keys, and p_i is the number of presentations made for
   each of those credentials.

   The presentation elements [tag, nonce, presentationContext,
   presentationProof] are indistinguishable from all presentations made
   from credentials issued with the same server keys for that
   presentationContext, with the exception of presentations with the
   same nonce (since those presentations can be ascertained as being
   generated from different credentials, as long as the presentation tag
   is unique).

   The indistinguishability set for those presentation elements is
   sum_{i=0}^c(p_i[presentationContext]) - k[presentationContext], where
   c is the number of credentials issued with the same server keys,
   p_i[presentationContext] is the number of presentations made for each
   of those credentials with the same presentationContext, and k is the
   number of presentations with the same nonce for that
   presentationContext.  As long as the nonces are generated randomly
   from the range defined by the presentation limit,
   k[presentationContext] should be roughly equal to
   sum_{i=0}^c(p_i[presentationContext]) / n, where n is the
   presentation limit.  Therefore, the indistinguishability set can be

Yun & Wood                Expires 9 August 2025                [Page 38]
Internet-Draft                     ARC                     February 2025

   represented as sum_{i=0}^c(p_i[presentationContext])(1 - 1/n), where
   a larger presentation limit results in a larger indistinguishability
   set and therefore stronger unlinkability properties.

   [[OPEN ISSUE: hide the nonce and replace the tag proof with a range
   proof built from something like Bulletproofs.]]

7.3.  Timing Leaks

   To ensure no information is leaked during protocol execution, all
   operations that use secret data MUST run in constant time.  This
   includes all prime-order group operations and proof-specific
   operations that operate on secret data, including proof generation
   and verification.

8.  Alternatives considered

   ARC uses the MACGGM algebraic MAC as its underlying primitive, as
   detailed in [KVAC] and [REVISITING_KVAC].  This offers the benefit of
   having a lower credential size than MACDDH, which is an alternative
   algebraic MAC detailed in [KVAC].

   The BBS anonymous credential scheme, as detailed in [BBS] and its
   variants, is efficient and publicly verifiable, but requires pairings
   for verification.  This is problematic for adoption because pairings
   are not supported as widely in software and hardware as non-pairing
   elliptic curves.

   It is possible to construct a keyed-verification variant of BBS which
   doesn't use pairings, as discussed in [BBDT17] and [REVISITING_KVAC].
   However these keyed-verification BBS variants require more analysis,
   proofs of security properties, and review to be considered mature
   enough for safe deployment.

9.  IANA Considerations

   This document has no IANA actions.

10.  Test Vectors

   This section contains test vectors for the ARC ciphersuites specified
   in this document.

10.1.  ARCV1-P384

Yun & Wood                Expires 9 August 2025                [Page 39]
Internet-Draft                     ARC                     February 2025

   // ServerKey
   x0 = 504650f53df8f16f6861633388936ea23338fa65ec36e0290022b48eb562889
   d89dbfa691d1cde91517fa222ed7ad364
   x1 = 803d955f0e073a04aa5d92b3fb739f56f9db001266677f62c095021db018cd8
   cbb55941d4073698ce45c405d1348b7b1
   x2 = a097e722ed2427de86966910acba9f5c350e8040f828bf6ceca27405420cdf3
   d63cb3aef005f40ba51943c8026877963
   xb = 3a349db178a923aa7dff7d2d15d89756fd293126bb49a6d793cd77d7db960f5
   692fec3b7ec07602c60cd32aee595dffd
   X0 = 02caa111a43a5909de4af5cb836897334e5a34857ffc3565223cad95a20f1f3
   2303eb8f7594b286238f243eca1a79c60b8
   X1 = 03ef0f59c9b0cc51c9e603dfcaa9a3e3719e186252b64f9ce1ebec352c5b605
   b805af308a9bd697df7c97b0f1147108c3a
   X2 = 028a9547a39d925bdd054706aa5ff7616c28aca94c92041c678970c52ee6572
   2f2c54d4f6cecba66abd721ecbcdb2b8a04

   // CredentialRequest
   m1 = 5a32aaf031be0555089356d299ce24b0eedfe7939e2382934ab5b0f76aae441
   24955d2c5ebf9b41d88786259c34692d2
   m2 = ae93d3ea7e5856d5d951a0ae87f8845d767df2e97dd669c8025715e604cb1c4
   3569792b6864f592fed3abe29b9ebc950
   r1 = df2c61be3c0b37bc73dc89fc386c96b3008035081690bfde3b1e68b91443c22
   cc791d244340fe957d5aa44d7313740df
   r2 = 10fcb00134739cc403f27a79588ca05ad59c5e6ff560cc597c2b8ca25256c72
   0bceca2ab03921492c5e9e4ad3b558002
   m1_enc = 030a5167977e0c038a98fce96e127fc228aa58526f71a920044b74b2f22
   dd5839f0e1cf871e6419a1f522e94510ccf2d92
   m2_enc = 03a0fea0d3e83ee67b36cb86d8380d4b8420a75e23eb5dcb560a79e74d1
   36cf3c382bff7576f7e50c2cd3d247b56dbf56d
   proof = 6e2a6a8906c53eedc0620b8f635871aa2550acc551f0a61c05d7519cf605
   5e28ebb737c44a7ba12376e8d4b21f79a0e91326907d2e24bdd176e575938fb5bf79
   e4370e8031f3ba8143efa71622daea5338da386ab16ef76f72f6743b529dd603cb5a
   3273dfdf24ec13c5b99c2a63a3e8640fd48530940f8faa7b623c882610bc29fbf74d
   5c4a704db897798413c6db335357aef367aec11dba86cb07c30e5b46468ea788ccb4
   3dcb8f39656328894b9c10465fb34cbb16304d1aa023353a85ef9afac0b123b5fc73
   f1f8b7fc84e86e3981bb88e1557d7331bfac74ef986eb54902246a90ba5462ffd2b4
   716030b7dd2b

   // CredentialResponse
   b = b8b2e8c2103ad6f1970e873420d82a21e699140babbe599f7dd8f6e3e8f615e5
   f201d1c2b0bc2f821f19e80a0a0e1e7b
   U = 02be890d43908e52ed43ae7bc7098f3a7694617fe44a88c33c6fa4eb9e942c0b
   2bb9d2fd56a44e1d6094fc7b9e8b949055
   enc_U_prime = 027f43377c69a2ad931cc21a9cc4d6ea85f84d517d197db721c931
   276a9ed543a78055ddeb9cac6be3af34c212bca5f403
   X0_aux = 02890d3f4287e7878ce88b2bc1cc818b2c40fee0f93187af43acb479259
   979cef1c39d609ea69cc7d6ba1e2a55d107653f
   X1_aux = 0345f2be0dd21d49437a82b221f7a9f074b352e8698fe6ffa08aecad480

Yun & Wood                Expires 9 August 2025                [Page 40]
Internet-Draft                     ARC                     February 2025

   e96e93a25b6dacd4531fc961e78cfb5503f0e69
   X2_aux = 020f31991b9a40be69bc06ef30c250d9353a824f4da88cc43e63bf92bc8
   ac8bca7e26bffed33a32cc124fd1fb6c73f8b77
   H_aux = 03c7714830e1d72604e52fec595c7a399fe0f3276766f84425fd1f98764a
   c76dab631c6dfd05e0200c4ffe6d6967304882
   proof = 6e9e4447f3f25c407deb3ab2db763a66e38f14de53367c7bd278af37a130
   ff5bd036e6967235f7d992c76cb3ec708569382040ab8d01958366ce5dc3e5de6f4c
   9702ecc483518ae51785eb2157d1bcbadc4ead4897a8bbee36104468e9824c31804c
   5f610bcbc752c2fa2e72a86f6ef82097712775dbfb8e83db2f6e19c09000b36a0250
   56788238280c09a3c63c0705b6b17d42d50f2cf069b58a2a97cd1b51eeb92c117455
   107881658393aef153156bcb2975aa33188f833c270dfd6588b9c559d3d48ecbfb84
   ef558e0cf510bd06cd479710b20e488f4cf5e73e736958affe74e53cf755a7a4b6c1
   08a4ef43de1204c6c83746d463c58683b448a188aa0bd2e0cb5f9bc920b5bb40a4e9
   720bf8fa832614e9b53b1edcbc43496e459dec881e0aa5e1876e71e1125ebfae3e0d
   e69d8fa45953e748adc562ea1e56d7f1eac95063ecd440c360294cc9cb8b4c27235a
   8bf212631c466e9c0200f15498559ff4f7ac82dfdbe161dd06ae97dfd208d4b986e2
   9a6f8e8b8f191b1ca70e95eb8068

   // Credential
   m1 = 5a32aaf031be0555089356d299ce24b0eedfe7939e2382934ab5b0f76aae441
   24955d2c5ebf9b41d88786259c34692d2
   U = 02be890d43908e52ed43ae7bc7098f3a7694617fe44a88c33c6fa4eb9e942c0b
   2bb9d2fd56a44e1d6094fc7b9e8b949055
   U_prime = 02bec70edf38a3f5c77d5c6f39afd5f94cd266f958c804a954f6104b57
   a2c8310862a790cbc6b519f8db989d59aebaf081
   X1 = 03ef0f59c9b0cc51c9e603dfcaa9a3e3719e186252b64f9ce1ebec352c5b605
   b805af308a9bd697df7c97b0f1147108c3a

   // Presentation1
   presentation_context = 746573742070726573656e746174696f6e20636f6e746
   57874
   a = ad00ec0f71b7a8fb7c0aef35c7243e17b78e57df8f0a95d102ff12bbb97e15ed
   35c23e54f9b4483d30b76772ee60d886
   r = e5cab8c896187b61abe017e57022528742252210dd60ddbbf1a57e3b144e26dd
   693b7644a9626a8c36896ede53d12930
   z = f61f4c924d3ef04b31e9196935ff27c5f5a4bbcf14e55e357df9f5ccb5ded37b
   2b14bc2e1a68e31f86416f0606ee75d1
   U = 03383b2ad2831739bc86c0c98119f256e54c9d89a762a9fc91b3904eb3aee726
   0350a19085ea093a8059369219f03da2c3
   U_prime_commit = 034af7c09ee5150fc914a3bb0adf17f7e90af3c4d9246ec8c51
   1f938467174113513b7577329cecd2a7bff0b97e43a9808
   m1_commit = 02fb95e1d8010da0c63d38ca212c1f76d768cecc8aa26ab07e775570
   70c8343e1da571230f071a15a03973cd57dc33ebf4
   nonce = 0x0
   tag = 0247e3fd325bc774c27329a78a62f616f5e409d3a4857609cecde3251140f2
   bb101905c4cbe66fe06a779e44f5d9e97f08
   proof = 87d00bb26882f9795f7aecebf37b05e0b60c5295242d67b3d37d2225e3a8
   e67c6ba62896e06530b10296f631ee155be7e8e313c65e587ac6c540c2d2d00f6414

Yun & Wood                Expires 9 August 2025                [Page 41]
Internet-Draft                     ARC                     February 2025

   9d27fff086f8c20bcaa31bfae49e233955fe2a9740a7fa08f777efb039bec4c2e07e
   3ee0dde1531578b338e0efda7b0ee28a5bad12586ded3c6b563e1529b29afee4a585
   49d5be6fcb2252ddce23cf234a36a4fee968e57544d5977b7657c764eb767df50b73
   9740dd268926ab22c8feb2c3e42d772e14a29166e8029c9425ef0000000000000000
   00000000000000000000000000000000000000000000000000000000000000000000
   000000000004

   // Presentation2
   presentation_context = 746573742070726573656e746174696f6e20636f6e746
   57874
   a = a8e630484ba024bf9363805bc7a45f1695bcf45150a61f5c44a6cfbf343cd9e0
   f593f127b6f49bec0f9b20f0550504a2
   r = df6d39c3c0716d7cf8093073168bf967d7ed72750b6d366ed0febdc539b52d89
   434f468a578c59d7ca9015b7da240ad6
   z = 1b8e374ed4390e5a9023b309ecb94c0791eedfb168c556ff5ca3b89d047f482c
   9279b47f584aab6c7f895f7674251771
   U = 020c627c7ced92dd621860017ed29361bb78c4a17c8f7deb79f0c49a47723898
   99a7e3b7b21e6a6c73abfca1332dc7df6e
   U_prime_commit = 023d7eb948df3f49abe39e8ef32f4bb1bcca0f13f04836efd8b
   7bc9bd0a73f915531ce845dc8c334d03c13647e5e4cc908
   m1_commit = 036eea98df5b8248262fc5b511eef49bef1c2ec2a724df3e3a811296
   fcf7891298d99a22f05ef0b08a2d00857117d88ac7
   nonce = 0x1
   tag = 03f9ceb1690ef6cd9c1b7d4c29dc86cf25565e4045ae431f8d28029e0405f9
   ac251ef5a9e873f4a038ecd5a1e43d56bf5d
   proof = da57015f71962f554d69220ee28618189b0a0c55ff9e6dc9d043d4a21b18
   49be20ff10a5fc509d0c80b3e90d40421e95aa7d66fbf923dc72de9bf826b35f628c
   69031fe4b8e899158fc7b4c9eae7965c3b5fb61096dd29cb950a8cc3f03f29ce00bd
   0f6d548de12f1c0f87caca4382ec202bca6d82f95636b8268464ed0702b1ec96d8a9
   1661d01ccfccf1f0bb8137be558a76edf2d6eb3c065026a941e99bc4a5a758fcab2e
   5a33d83d24ef70da15eb4fc512fd74f468be64c56f41e971d22725a8fea08e69d0aa
   b296ddf11d79e7e764f5f3aa00619235f71f78dfd91ee421371afd0c4c600a6e6c38
   305d8c830ae2

11.  Acknowledgments

   The authors would like to acknowledge helpful conversations with
   Tommy Pauly about rate limiting and Privacy Pass integration.

12.  References

12.1.  Normative References

Yun & Wood                Expires 9 August 2025                [Page 42]
Internet-Draft                     ARC                     February 2025

   [I-D.irtf-cfrg-hash-to-curve]
              Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R. S.,
              and C. A. Wood, "Hashing to Elliptic Curves", Work in
              Progress, Internet-Draft, draft-irtf-cfrg-hash-to-curve-
              16, 15 June 2022, <https://datatracker.ietf.org/doc/html/
              draft-irtf-cfrg-hash-to-curve-16>.

   [KEYAGREEMENT]
              Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
              Davis, "Recommendation for pair-wise key-establishment
              schemes using discrete logarithm cryptography", National
              Institute of Standards and Technology,
              DOI 10.6028/nist.sp.800-56ar3, April 2018,
              <https://doi.org/10.6028/nist.sp.800-56ar3>.

   [RFC8017]  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
              "PKCS #1: RSA Cryptography Specifications Version 2.2",
              RFC 8017, DOI 10.17487/RFC8017, November 2016,
              <https://www.rfc-editor.org/rfc/rfc8017>.

12.2.  Informative References

   [BBDT17]   "Improved Algebraic MACs and Practical Keyed-Verification
              Anonymous Credentials", n.d., <https://link.springer.com/
              chapter/10.1007/978-3-319-69453-5_20>.

   [BBS]      "Short Group Signatures", n.d.,
              <https://eprint.iacr.org/2004/174>.

   [BLIND-RSA]
              Denis, F., Jacobs, F., and C. A. Wood, "RSA Blind
              Signatures", RFC 9474, DOI 10.17487/RFC9474, October 2023,
              <https://www.rfc-editor.org/rfc/rfc9474>.

   [KVAC]     "Keyed-Verification Anonymous Credentials from Algebraic
              MACs", n.d., <https://eprint.iacr.org/2013/516>.

   [NISTCurves]
              "Digital signature standard (DSS)", National Institute of
              Standards and Technology (U.S.),
              DOI 10.6028/nist.fips.186-4, 2013,
              <https://doi.org/10.6028/nist.fips.186-4>.

   [OPRFS]    Davidson, A., Faz-Hernandez, A., Sullivan, N., and C. A.
              Wood, "Oblivious Pseudorandom Functions (OPRFs) Using
              Prime-Order Groups", RFC 9497, DOI 10.17487/RFC9497,
              December 2023, <https://www.rfc-editor.org/rfc/rfc9497>.

Yun & Wood                Expires 9 August 2025                [Page 43]
Internet-Draft                     ARC                     February 2025

   [REVISITING_KVAC]
              "Revisiting Keyed-Verification Anonymous Credentials",
              n.d., <https://eprint.iacr.org/2024/1552>.

   [SEC1]     Standards for Efficient Cryptography Group (SECG), "SEC 1:
              Elliptic Curve Cryptography",
              <https://www.secg.org/sec1-v2.pdf>.

Authors' Addresses

   Cathie Yun
   Apple, Inc.
   Email: cathie@apple.com

   Christopher A. Wood
   Apple, Inc.
   Email: caw@heapingbits.net

Yun & Wood                Expires 9 August 2025                [Page 44]