Network Mobility Route Optimization Solution Space Analysis
RFC 4889

Document Type RFC - Informational (July 2007; Errata)
Last updated 2013-03-02
Stream IETF
Formats plain text pdf html
Stream WG state (None)
Consensus Unknown
Document shepherd No shepherd assigned
IESG IESG state RFC 4889 (Informational)
Telechat date
Responsible AD Jari Arkko
Send notices to nemo-chairs@ietf.org,chanwah.ng@sg.panasonic.com,fanzhao@ucdavis.edu,watari@kddilabs.jp,pthubert@cisco.com
Network Working Group                                              C. Ng
Request for Comments: 4889                      Panasonic Singapore Labs
Category: Informational                                          F. Zhao
                                                                UC Davis
                                                               M. Watari
                                                           KDDI R&D Labs
                                                              P. Thubert
                                                           Cisco Systems
                                                               July 2007

      Network Mobility Route Optimization Solution Space Analysis

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The IETF Trust (2007).

Abstract

   With current Network Mobility (NEMO) Basic Support, all
   communications to and from Mobile Network Nodes must go through the
   Mobile Router and Home Agent (MRHA) tunnel when the mobile network is
   away.  This results in increased length of packet route and increased
   packet delay in most cases.  To overcome these limitations, one might
   have to turn to Route Optimization (RO) for NEMO.  This memo
   documents various types of Route Optimization in NEMO and explores
   the benefits and tradeoffs in different aspects of NEMO Route
   Optimization.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Benefits of NEMO Route Optimization  . . . . . . . . . . . . .  4
   3.  Different Scenarios of NEMO Route Optimization . . . . . . . .  6
     3.1.  Non-Nested NEMO Route Optimization . . . . . . . . . . . .  6
     3.2.  Nested Mobility Optimization . . . . . . . . . . . . . . .  8
       3.2.1.  Decreasing the Number of Home Agents on the Path . . .  8
       3.2.2.  Decreasing the Number of Tunnels . . . . . . . . . . .  9
     3.3.  Infrastructure-Based Optimization . . . . . . . . . . . .  9
     3.4.  Intra-NEMO Optimization  . . . . . . . . . . . . . . . . . 10
   4.  Issues of NEMO Route Optimization  . . . . . . . . . . . . . . 11

Ng, et al.                   Informational                      [Page 1]
RFC 4889                 NEMO RO Space Analysis                July 2007

     4.1.  Additional Signaling Overhead  . . . . . . . . . . . . . . 11
     4.2.  Increased Protocol Complexity and Processing Load  . . . . 12
     4.3.  Increased Delay during Handoff . . . . . . . . . . . . . . 12
     4.4.  Extending Nodes with New Functionalities . . . . . . . . . 13
     4.5.  Detection of New Functionalities . . . . . . . . . . . . . 14
     4.6.  Scalability  . . . . . . . . . . . . . . . . . . . . . . . 14
     4.7.  Mobility Transparency  . . . . . . . . . . . . . . . . . . 14
     4.8.  Location Privacy . . . . . . . . . . . . . . . . . . . . . 15
     4.9.  Security Consideration . . . . . . . . . . . . . . . . . . 15
     4.10. Support of Legacy Nodes  . . . . . . . . . . . . . . . . . 15
   5.  Analysis of Solution Space . . . . . . . . . . . . . . . . . . 16
     5.1.  Which Entities Are Involved? . . . . . . . . . . . . . . . 16
       5.1.1.  Mobile Network Node and Correspondent Node . . . . . . 16
       5.1.2.  Mobile Router and Correspondent Node . . . . . . . . . 17
       5.1.3.  Mobile Router and Correspondent Router . . . . . . . . 17
       5.1.4.  Entities in the Infrastructure . . . . . . . . . . . . 18
     5.2.  Who Initiates Route Optimization? When?  . . . . . . . . . 18
     5.3.  How Is Route Optimization Capability Detected? . . . . . . 19
     5.4.  How is the Address of the Mobile Network Node
           Represented? . . . . . . . . . . . . . . . . . . . . . . . 20
     5.5.  How Is the Mobile Network Node's Address Bound to
           Location?  . . . . . . . . . . . . . . . . . . . . . . . . 20
       5.5.1.  Binding to the Location of Parent Mobile Router  . . . 21
       5.5.2.  Binding to a Sequence of Upstream Mobile Routers . . . 23
       5.5.3.  Binding to the Location of Root Mobile Router  . . . . 24
     5.6.  How Is Signaling Performed?  . . . . . . . . . . . . . . . 26
     5.7.  How Is Data Transmitted? . . . . . . . . . . . . . . . . . 27
     5.8.  What Are the Security Considerations?  . . . . . . . . . . 28
       5.8.1.  Security Considerations of Address Binding . . . . . . 28
       5.8.2.  End-to-End Integrity . . . . . . . . . . . . . . . . . 30
       5.8.3.  Location Privacy . . . . . . . . . . . . . . . . . . . 30
   6.  Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 31
   7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 32
Show full document text