Video Traffic Models for RTP Congestion Control Evaluations
RFC 8593

Document Type RFC - Informational (May 2019; No errata)
Last updated 2019-05-14
Replaces draft-zhu-rmcat-video-traffic-source
Stream IETF
Formats plain text pdf html bibtex
Reviews
Stream WG state Submitted to IESG for Publication (wg milestone: Dec 2018 - Submit requirements ... )
Document shepherd Colin Perkins
Shepherd write-up Show (last changed 2018-12-10)
IESG IESG state RFC 8593 (Informational)
Consensus Boilerplate Yes
Telechat date
Responsible AD Mirja K├╝hlewind
Send notices to Colin Perkins <csp@csperkins.org>
IANA IANA review state IANA OK - No Actions Needed
IANA action state No IANA Actions
Internet Engineering Task Force (IETF)                            X. Zhu
Request for Comments: 8593                                       S. Mena
Category: Informational                                    Cisco Systems
ISSN: 2070-1721                                                Z. Sarker
                                                             Ericsson AB
                                                                May 2019

      Video Traffic Models for RTP Congestion Control Evaluations

Abstract

   This document describes two reference video traffic models for
   evaluating RTP congestion control algorithms.  The first model
   statistically characterizes the behavior of a live video encoder in
   response to changing requests on the target video rate.  The second
   model is trace-driven and emulates the output of actual encoded video
   frame sizes from a high-resolution test sequence.  Both models are
   designed to strike a balance between simplicity, repeatability, and
   authenticity in modeling the interactions between a live video
   traffic source and the congestion control module.  Finally, the
   document describes how both approaches can be combined into a hybrid
   model.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are candidates for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8593.

Zhu, et al.                   Informational                     [Page 1]
RFC 8593              Video Traffic Models for RTP              May 2019

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Desired Behavior of a Synthetic Video Traffic Model . . . . .   4
   4.  Interactions between Synthetic Video Traffic Source and
       Other Components at the Sender  . . . . . . . . . . . . . . .   5
   5.  A Statistical Reference Model . . . . . . . . . . . . . . . .   7
     5.1.  Time-Damped Response to Target-Rate Update  . . . . . . .   9
     5.2.  Temporary Burst and Oscillation during the Transient
           Period  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     5.3.  Output-Rate Fluctuation at Steady State . . . . . . . . .   9
     5.4.  Rate Range Limit Imposed by Video Content . . . . . . . .  10
   6.  A Trace-Driven Model  . . . . . . . . . . . . . . . . . . . .  10
     6.1.  Choosing the Video Sequence and Generating the Traces . .  11
     6.2.  Using the Traces in the Synthetic Codec . . . . . . . . .  13
       6.2.1.  Main Algorithm  . . . . . . . . . . . . . . . . . . .  13
       6.2.2.  Notes to the Main Algorithm . . . . . . . . . . . . .  14
     6.3.  Varying Frame Rate and Resolution . . . . . . . . . . . .  15
   7.  Combining the Two Models  . . . . . . . . . . . . . . . . . .  16
   8.  Reference Implementation  . . . . . . . . . . . . . . . . . .  17
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  17
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  17
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  17
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  17
     11.2.  Informative References . . . . . . . . . . . . . . . . .  18
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  19

Zhu, et al.                   Informational                     [Page 2]
RFC 8593              Video Traffic Models for RTP              May 2019

1.  Introduction

   When evaluating candidate congestion control algorithms designed for
   real-time interactive media, it is important to account for the
   characteristics of traffic patterns generated from a live video
   encoder.  Unlike synthetic traffic sources that can conform perfectly
Show full document text