YANG Data Model for Traffic Engineering (TE) Topologies
RFC 8795

Document Type RFC - Proposed Standard (August 2020; No errata)
Authors Xufeng Liu  , Igor Bryskin  , Vishnu Beeram  , Tarek Saad  , Himanshu Shah  , Oscar de Dios 
Last updated 2020-08-06
Replaces draft-liu-teas-yang-te-topo
Stream Internent Engineering Task Force (IETF)
Formats plain text html xml pdf htmlized (tools) htmlized bibtex
Yang Validation 0 errors, 0 warnings.
Additional Resources
- Yang catalog entry for ietf-te-topology-state@2019-02-07.yang
- Yang catalog entry for ietf-te-topology@2019-02-07.yang
- Yang impact analysis for draft-ietf-teas-yang-te-topo
- Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Lou Berger
Shepherd write-up Show (last changed 2019-04-12)
IESG IESG state RFC 8795 (Proposed Standard)
Action Holders
Consensus Boilerplate Yes
Telechat date
Responsible AD Deborah Brungard
Send notices to Lou Berger <lberger@labn.net>
IANA IANA review state IANA OK - Actions Needed
IANA action state RFC-Ed-Ack

Internet Engineering Task Force (IETF)                            X. Liu
Request for Comments: 8795                                Volta Networks
Category: Standards Track                                     I. Bryskin
ISSN: 2070-1721                             Futurewei Technologies, Inc.
                                                               V. Beeram
                                                                 T. Saad
                                                        Juniper Networks
                                                                 H. Shah
                                                     O. Gonzalez de Dios
                                                             August 2020

        YANG Data Model for Traffic Engineering (TE) Topologies


   This document defines a YANG data model for representing, retrieving,
   and manipulating Traffic Engineering (TE) Topologies.  The model
   serves as a base model that other technology-specific TE topology
   models can augment.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction
     1.1.  Terminology
     1.2.  Tree Structure
     1.3.  Prefixes in Data Node Names
   2.  Characterizing TE Topologies
   3.  Modeling Abstractions and Transformations
     3.1.  TE Topology
     3.2.  TE Node
     3.3.  TE Link
     3.4.  Transitional TE Link for Multi-layer Topologies
     3.5.  TE Link Termination Point (LTP)
     3.6.  TE Tunnel Termination Point (TTP)
     3.7.  TE Node Connectivity Matrix
     3.8.  TTP Local Link Connectivity List (LLCL)
     3.9.  TE Path
     3.10. TE Inter-layer Lock
     3.11. Underlay TE Topology
     3.12. Overlay TE Topology
     3.13. Abstract TE Topology
   4.  Model Applicability
     4.1.  Native TE Topologies
     4.2.  Customized TE Topologies
     4.3.  Merging TE Topologies Provided by Multiple Providers
     4.4.  Dealing with Multiple Abstract TE Topologies Provided by
           the Same Provider
   5.  Modeling Considerations
     5.1.  Network Topology Building Blocks
     5.2.  Technology-Agnostic TE Topology Model
     5.3.  Model Structure
     5.4.  Topology Identifiers
     5.5.  Generic TE Link Attributes
     5.6.  Generic TE Node Attributes
     5.7.  TED Information Sources
     5.8.  Overlay/Underlay Relationship
     5.9.  Templates
     5.10. Scheduling Parameters
     5.11. Notifications
   6.  Guidance for Writing Technology-Specific TE Topology
   7.  TE Topology YANG Module
   8.  Security Considerations
   9.  IANA Considerations
   10. References
     10.1.  Normative References
     10.2.  Informative References
   Appendix A.  Complete Model Tree Structure
   Appendix B.  Companion YANG Data Model for Non-NMDA-Compliant
     B.1.  TE Topology State YANG Module
   Appendix C.  Example: YANG Data Model for Technology-Specific
   Authors' Addresses

1.  Introduction

   The Traffic Engineering Database (TED) is an essential component of
   Traffic Engineered (TE) systems that are based on MPLS-TE [RFC2702]
   and GMPLS [RFC3945].  The TED is a collection of all TE information
   about all TE nodes and TE links in the network.  The TE topology is a
   schematic arrangement of TE nodes and TE links present in a given
   TED.  There could be one or more TE topologies present in a given TE
   system.  A TE topology is the topology on which path computational
   algorithms are run to compute TE paths.

   This document defines a YANG data model [RFC7950] for representing,
Show full document text