PCE Communication Protocol (PCEP) Extensions for Label Switched Path (LSP) Scheduling with Stateful PCE
RFC 8934

Document Type RFC - Proposed Standard (October 2020; No errata)
Authors Huaimo Chen  , Zhuangyan  , Qin Wu  , Daniele Ceccarelli 
Last updated 2020-10-31
Replaces draft-zhuang-pce-stateful-pce-lsp-scheduling
Stream IETF
Formats plain text html xml pdf htmlized bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Adrian Farrel
Shepherd write-up Show (last changed 2020-03-04)
IESG IESG state RFC 8934 (Proposed Standard)
Consensus Boilerplate Yes
Telechat date
Responsible AD Deborah Brungard
Send notices to Adrian Farrel <adrian@olddog.co.uk>
IANA IANA review state Version Changed - Review Needed
IANA action state RFC-Ed-Ack


Internet Engineering Task Force (IETF)                      H. Chen, Ed.
Request for Comments: 8934                                     Futurewei
Category: Standards Track                                 Y. Zhuang, Ed.
ISSN: 2070-1721                                                    Q. Wu
                                                                  Huawei
                                                           D. Ceccarelli
                                                                Ericsson
                                                            October 2020

  PCE Communication Protocol (PCEP) Extensions for Label Switched Path
                   (LSP) Scheduling with Stateful PCE

Abstract

   This document defines a set of extensions to the stateful PCE
   Communication Protocol (PCEP) to enable Label Switched Path (LSP)
   path computation, activation, setup, and deletion based on scheduled
   time intervals for the LSP and the actual network resource usage in a
   centralized network environment, as stated in RFC 8413.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8934.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction
   2.  Conventions Used in This Document
     2.1.  Terminology
   3.  Motivation and Objectives
   4.  Procedures and Mechanisms
     4.1.  LSP Scheduling Overview
     4.2.  Support of LSP Scheduling
       4.2.1.  LSP Scheduling
       4.2.2.  Periodical LSP Scheduling
     4.3.  Scheduled LSP Creation
     4.4.  Scheduled LSP Modifications
     4.5.  Scheduled LSP Activation and Deletion
   5.  PCEP Objects and TLVs
     5.1.  Stateful PCE Capability TLV
     5.2.  LSP Object
       5.2.1.  SCHED-LSP-ATTRIBUTE TLV
       5.2.2.  SCHED-PD-LSP-ATTRIBUTE TLV
   6.  The PCEP Messages
     6.1.  The PCRpt Message
     6.2.  The PCUpd Message
     6.3.  The PCInitiate Message
     6.4.  The PCReq message
     6.5.  The PCRep Message
     6.6.  The PCErr Message
   7.  Security Considerations
   8.  Manageability Consideration
     8.1.  Control of Function and Policy
     8.2.  Information and Data Models
     8.3.  Liveness Detection and Monitoring
     8.4.  Verify Correct Operations
     8.5.  Requirements on Other Protocols
     8.6.  Impact on Network Operations
   9.  IANA Considerations
     9.1.  PCEP TLV Type Indicators
       9.1.1.  SCHED-PD-LSP-ATTRIBUTE TLV Opt Field
       9.1.2.  Schedule TLVs Flag Field
     9.2.  STATEFUL-PCE-CAPABILITY TLV Flag Field
     9.3.  PCEP-ERROR Object Error Types and Values
   10. References
     10.1.  Normative References
     10.2.  Informative References
   Acknowledgments
   Contributors
   Authors' Addresses

1.  Introduction

   The PCE Communication Protocol (PCEP) defined in [RFC5440] is used
   between a Path Computation Element (PCE) and a Path Computation
   Client (PCC) (or other PCE) to enable path computation of
   Multiprotocol Label Switching (MPLS) Traffic Engineering Label
   Switched Paths (TE LSPs).

   [RFC8231] describes a set of extensions to PCEP to provide stateful
   control.  A stateful PCE has access to not only the information
   carried by the network's Interior Gateway Protocol (IGP) but also the
   set of active paths and their reserved resources for its
   computations.  The additional state allows the PCE to compute
   constrained paths while considering individual LSPs and their
   interactions.

   Traditionally, the usage and allocation of network resources,
   especially bandwidth, can be supported by a Network Management System
   (NMS) operation such as path pre-establishment.  However, this does
   not provide efficient usage of network resources.  The established
   paths reserve the resources forever, so they cannot be used by other
   services even when they are not used for transporting any service.
Show full document text