The Link Layer service in a Quantum Internet
draft-dahlberg-ll-quantum-03

Document Type Active Internet-Draft (individual)
Last updated 2019-10-10
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Quantum Internet Research Group                             AD. Dahlberg
Internet-Draft                                            MS. Skrzypczyk
Intended status: Experimental                            SW. Wehner, Ed.
Expires: April 12, 2020           QuTech, Delft University of Technology
                                                        October 10, 2019

              The Link Layer service in a Quantum Internet
                      draft-dahlberg-ll-quantum-03

Abstract

   In a classical network the link layer is responsible for transferring
   a datagram between two nodes that are connected by a single link,
   possibly including switches.  In a quantum network however, the link
   layer will need to provide a robust entanglement generation service
   between two quantum nodes which are connected by a quantum link.
   This service can be used by higher layers to produce entanglement
   between distant nodes or to perform other operations such as qubit
   transmission, without full knowledge of the underlying hardware and
   its parameters.  This draft defines what can be expected from the
   service provided by a link layer for a Quantum Network and defines an
   interface between higher layers and the link layer.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 12, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents

Dahlberg, et al.         Expires April 12, 2020                 [Page 1]
Internet-Draft      Link Layer in a Quantum Internet        October 2019

   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Desired service . . . . . . . . . . . . . . . . . . . . . . .   3
   4.  Interface . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     4.1.  Higher layers to link layer . . . . . . . . . . . . . . .   4
       4.1.1.  Header specification  . . . . . . . . . . . . . . . .   4
     4.2.  Link layer to higher layers . . . . . . . . . . . . . . .   7
       4.2.1.  Header specification  . . . . . . . . . . . . . . . .   8
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  13
   7.  Informative References  . . . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14

1.  Introduction

   The most important fundamental operation in a quantum network is the
   generation of entanglement between nodes.  Short-distance
   entanglement can be used to generate long-distance entanglement with
   the use of an operation called entanglement swap [1] (also formalised
   in [2]).  If nodes A and B share an entangled pair and similarly for
   B and C, B can perform a so called Bell measurement [3] and send the
   measurement outcome (2 bits) over a classical channel to A or C such
   that in the end A and C share an entangled pair.  Furthermore, long-
   distance entanglement does in turn enable long-distance qubit
   transmission by the use of quantum teleportation [3] (also formalised
   in [2]).  Node A can teleport an unknown qubit state to B by
   consuming an entangled pair between A and B and sending two classical
   bits to B.  For an overview of quantum networking and its
   applications we refer to [5].

   Long lived entanglement between distant nodes capable of storing such
   entanglement has been demonstrated over a distance of up to 1.3 km
   [4], in a proof-of-principle experiment.  This entanglement was also
   heralded, that is, there exits a so-called heralding signal that
   indicates success in entanglement production without consuming such
Show full document text