Enhancing Security and Privacy with In-Network Computing
draft-fink-coin-sec-priv-00

Document Type Active Internet-Draft (individual)
Last updated 2020-03-09
Stream (None)
Intended RFC status (None)
Formats plain text pdf htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
COINRG                                                           I. Fink
Internet-Draft                                                 K. Wehrle
Intended status: Informational                    RWTH Aachen University
Expires: September 10, 2020                                March 9, 2020

        Enhancing Security and Privacy with In-Network Computing
                      draft-fink-coin-sec-priv-00

Abstract

   With the growing interconnection of devices, cyber-security and data
   protection are of increasing importance.  This is especially the case
   regarding cyber-physical systems due to their close entanglement with
   the physical world.  Misbehavior and information leakage can lead to
   financial and physical damage and endanger human lives and well-
   being.  Thus, hard security and privacy requirements are necessary to
   be met.  Furthermore, thorough investigation of incidents is
   essential for ultimate protection.  In-network computing allows the
   processing of traffic and data directly in the network and at line-
   rate.  Thus, the in-network computing paradigm presents a promising
   solution for efficiently providing security and privacy mechanisms as
   well as event analysis.  This document discusses select mechanisms to
   demonstrate how in-network computing concepts can be applied to
   encounter current shortcomings of cyber-security and data privacy.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 10, 2020.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Fink & Wehrle          Expires September 10, 2020               [Page 1]
Internet-Draft       Enhancing Security and Privacy           March 2020

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Protection Mechanisms . . . . . . . . . . . . . . . . . . . .   3
     2.1.  Encryption and Integrity Checking . . . . . . . . . . . .   4
     2.2.  Authorization and Authentication  . . . . . . . . . . . .   4
     2.3.  Behavioral and Enterprise Policies  . . . . . . . . . . .   5
     2.4.  Anonymization . . . . . . . . . . . . . . . . . . . . . .   6
   3.  Intrusion and Anomaly Detection . . . . . . . . . . . . . . .   7
     3.1.  Intrusion Detection . . . . . . . . . . . . . . . . . . .   7
     3.2.  Dead man's switch . . . . . . . . . . . . . . . . . . . .   7
   4.  Incident Reappraisal  . . . . . . . . . . . . . . . . . . . .   8
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
   7.  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . .   8
   8.  Informative References  . . . . . . . . . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  10

1.  Introduction

   Several deficiencies emerge from cyber-physical systems (CPS) such as
   the (Industrial) Internet of Things (IoT).  Everyday things are
   equipped with sensors and CPUs to allow for automatization and make
   life more comfortable.  The deployment of additional sensors supports
   the processing efficiency in Industrial Control Systems (ICS).  The
   entanglement of the sensors with the physical world leads to a high
   sensitivity of the transmitted and collected data.  At the same time,
   devices are increasingly connected to the Internet to enable, e.g.,
   processing of data on cloud servers or exchange with other systems.

   Devices in CPS are often resource-constrained and do not offer the
   possibility to implement elaborate security mechanisms.  Furthermore,
   legacy devices and communication protocols are often still in use in
   industrial networks but were not designed to face the security and
Show full document text