A new Designated Forwarder Election for the EVPN
draft-ietf-bess-evpn-df-election-03

Document Type Active Internet-Draft (bess WG)
Last updated 2017-10-10
Replaces draft-mohanty-bess-evpn-df-election
Stream IETF
Intended RFC status Proposed Standard
Formats plain text pdf html bibtex
Stream WG state WG Document
Document shepherd No shepherd assigned
IESG IESG state I-D Exists
Consensus Boilerplate Yes
Telechat date
Responsible AD (None)
Send notices to (None)
BESS Working Group                                            S. Mohanty
Internet-Draft                                                  K. Patel
Intended status: Standards Track                              A. Sajassi
Expires: April 13, 2018                              Cisco Systems, Inc.
                                                                J. Drake
                                                  Juniper Networks, Inc.
                                                           A. Przygienda
                                                                Juniper
                                                        October 10, 2017

            A new Designated Forwarder Election for the EVPN
                 draft-ietf-bess-evpn-df-election-03

Abstract

   This document describes an improved EVPN Designated Forwarder
   Election (DF) algorithm which can be used to enhance operational
   experience in terms of convergence speed and robustness over a WAN
   deploying EVPN

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 13, 2017.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Mohanty, et al.          Expires April 13, 2018                 [Page 1]
Internet-Draft   An Improved EVPN DF Election Algorithm     October 2017

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Finite State Machine  . . . . . . . . . . . . . . . . . .   4
     1.2.  Requirements Language . . . . . . . . . . . . . . . . . .   4
   2.  The modulus based DF Election Algorithm . . . . . . . . . . .   4
   3.  Problems with the modulus based DF Election Algorithm . . . .   5
   4.  Highest Random Weight . . . . . . . . . . . . . . . . . . . .   6
   5.  HRW and Consistent Hashing  . . . . . . . . . . . . . . . . .   7
   6.  HRW Algorithm for EVPN DF Election  . . . . . . . . . . . . .   7
   7.  Protocol Considerations . . . . . . . . . . . . . . . . . . .   9
     7.1.  Finite State Machine  . . . . . . . . . . . . . . . . . .  10
   8.  Auto-Derivation of ES-Import Route Target . . . . . . . . . .  12
   9.  Operational Considerations  . . . . . . . . . . . . . . . . .  12
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  12
   11. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  12
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  13
     12.1.  Normative References . . . . . . . . . . . . . . . . . .  13
     12.2.  Informative References . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14

1.  Introduction

   Ethernet MPLS VPN (EVPN) [RFC7432] is an emerging technology that is
   gaining prominence in Internet Service Provider IP/MPLS networks.  In
   EVPN, mac addresses are disseminated as routes across the
   geographical area via the Border Gateway Protocol, BGP [RFC4271]
   using the familiar L3VPN model [RFC4364].  An EVPN instance that
   spans across PEs is defined as an EVI.  Constrained Route
   Distribution [RFC4684] can be used in conjunction to selectively
   advertise the routes to where they are needed.  One of the major
   advantages of EVPN over VPLS [RFC4761],[RFC6624] is that it provides
   a solution for minimizing flooding of unknown traffic and also
   provides all Active mode of operation so that the traffic can truly
   be multi-homed.  In technologies such as EVPN or VPLS, managing
   Broadcast, Unknown Unicast and multicast traffic (BUM) is a key
   requirement.  In the case where the customer edge (CE) router is
Show full document text