Use cases for DDoS Open Threat Signaling
draft-ietf-dots-use-cases-16

Document Type Active Internet-Draft (dots WG)
Last updated 2018-09-28 (latest revision 2018-07-19)
Replaces draft-mglt-dots-use-cases
Stream IETF
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream WG state WG Document (wg milestone: Mar 2018 - Use case document to... )
Document shepherd Roman Danyliw
IESG IESG state I-D Exists
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to Roman Danyliw <rdd@cert.org>
DOTS                                                          R. Dobbins
Internet-Draft                                            Arbor Networks
Intended status: Informational                                D. Migault
Expires: January 20, 2019                                       Ericsson
                                                               S. Fouant

                                                            R. Moskowitz
                                                          HTT Consulting
                                                               N. Teague
                                                                Verisign
                                                                  L. Xia
                                                                  Huawei
                                                            K. Nishizuka
                                                      NTT Communications
                                                           July 19, 2018

                Use cases for DDoS Open Threat Signaling
                      draft-ietf-dots-use-cases-16

Abstract

   The DDoS Open Threat Signaling (DOTS) effort is intended to provide
   protocols to facilitate interoperability across disparate DDoS
   mitigation solutions.  This document presents use cases which
   describe the interactions expected between the DOTS components as
   well as DOTS messaging exchanges.  These use cases are meant to
   identify the interacting DOTS components, how they collaborate and
   what are the typical information to be exchanged.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 20, 2019.

Dobbins, et al.         Expires January 20, 2019                [Page 1]
Internet-Draft               DOTS Use Cases                    July 2018

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology and Acronyms  . . . . . . . . . . . . . . . . . .   3
   3.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Upstream DDoS Mitigation by an Upstream Internet Transit
           Provider  . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.2.  DDoS Mitigation by a Third Party DDoS Mitigation Service
           Provider  . . . . . . . . . . . . . . . . . . . . . . . .   7
     3.3.  DDoS Orchestration  . . . . . . . . . . . . . . . . . . .   9
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .  12
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   6.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  12
   7.  Informative References  . . . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  13

1.  Introduction

   At the time of writing, distributed denial-of-service (DDoS) attack
   mitigation solutions are largely based upon siloed, proprietary
   communications schemes with vendor lock-in as a side-effect.  This
   can result in the configuration, provisioning, operation, and
   activation of these solutions being a highly manual and often time-
   consuming process.  Additionally, coordinating multiple DDoS
   mitigation solutions simultaneously is fraught with both technical
   and process-related hurdles.  This greatly increases operational
   complexity which, in turn, can degrade the efficacy of mitigations.

   The DDoS Open Threat Signaling (DOTS) effort is intended to specify
   protocols that facilitate interoperability between diverse DDoS
   mitigation solutions and ensure greater integration in term of
   mitigation requests and attack characterization patterns.  As DDoS
Show full document text