Use of the SHAKE One-way Hash Functions in the Cryptographic Message Syntax (CMS)
draft-ietf-lamps-cms-shakes-12
The information below is for an old version of the document.
Document | Type |
This is an older version of an Internet-Draft that was ultimately published as RFC 8702.
|
|
---|---|---|---|
Authors | Panos Kampanakis , Quynh Dang | ||
Last updated | 2019-07-11 (Latest revision 2019-06-30) | ||
Replaces | draft-dang-lamps-cms-shakes-hash | ||
RFC stream | Internet Engineering Task Force (IETF) | ||
Formats | |||
Reviews | |||
Additional resources | Mailing list discussion | ||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | Russ Housley | ||
Shepherd write-up | Show Last changed 2018-12-18 | ||
IESG | IESG state | Became RFC 8702 (Proposed Standard) | |
Consensus boilerplate | Yes | ||
Telechat date | (None) | ||
Responsible AD | Roman Danyliw | ||
Send notices to | Russ Housley <housley@vigilsec.com> | ||
IANA | IANA review state | IANA OK - Actions Needed |
draft-ietf-lamps-cms-shakes-12
LAMPS WG P. Kampanakis Internet-Draft Cisco Systems Updates: 3370 (if approved) Q. Dang Intended status: Standards Track NIST Expires: January 1, 2020 June 30, 2019 Use of the SHAKE One-way Hash Functions in the Cryptographic Message Syntax (CMS) draft-ietf-lamps-cms-shakes-12 Abstract This document updates [RFC3370] and describes the conventions for using the SHAKE family of hash functions with the Cryptographic Message Syntax (CMS) as one-way hash functions with the RSA Probabilistic signature and ECDSA signature algorithms, as message digests and message authentication codes. The conventions for the associated signer public keys in CMS are also described. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on January 1, 2020. Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must Kampanakis & Dang Expires January 1, 2020 [Page 1] Internet-Draft SHAKEs in CMS June 2019 include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Change Log . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 5 3. Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 5 4. Use in CMS . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1. Message Digests . . . . . . . . . . . . . . . . . . . . . 7 4.2. Signatures . . . . . . . . . . . . . . . . . . . . . . . 7 4.2.1. RSASSA-PSS Signatures . . . . . . . . . . . . . . . . 7 4.2.2. ECDSA Signatures . . . . . . . . . . . . . . . . . . 8 4.3. Public Keys . . . . . . . . . . . . . . . . . . . . . . . 9 4.4. Message Authentication Codes . . . . . . . . . . . . . . 9 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10 6. Security Considerations . . . . . . . . . . . . . . . . . . . 10 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 10 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 11 8.1. Normative References . . . . . . . . . . . . . . . . . . 11 8.2. Informative References . . . . . . . . . . . . . . . . . 12 Appendix A. ASN.1 Module . . . . . . . . . . . . . . . . . . . . 13 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17 1. Change Log [ EDNOTE: Remove this section before publication. ] o draft-ietf-lamps-cms-shake-12: * Nits identified by Roman, Barry L. in ballot position review. o draft-ietf-lamps-cms-shake-11: * Minor nits. * Nits identified by Roman in AD Review. o draft-ietf-lamps-cms-shake-10: * Updated IANA considerations section to request for OID assignments. o draft-ietf-lamps-cms-shake-09: * Fixed minor text nit. Kampanakis & Dang Expires January 1, 2020 [Page 2] Internet-Draft SHAKEs in CMS June 2019 * Updates in Sec Considerations section. o draft-ietf-lamps-cms-shake-08: * id-shake128-len and id-shake256-len were replaced with id- sha128 with 32 bytes output length and id-shake256 with 64 bytes output length. * Fixed a discrepancy between section 3 and 4.4 about the KMAC OIDs that have parameters as optional. o draft-ietf-lamps-cms-shake-07: * Small nit from Russ while in WGLC. o draft-ietf-lamps-cms-shake-06: * Incorporated Eric's suggestion from WGLC. o draft-ietf-lamps-cms-shake-05: * Added informative references. * Updated ASN.1 so it compiles. * Updated IANA considerations. o draft-ietf-lamps-cms-shake-04: * Added RFC8174 reference and text. * Explicitly explained why RSASSA-PSS-params are omitted in section 4.2.1. * Simplified Public Keys section by removing redundant info from RFCs. o draft-ietf-lamps-cms-shake-03: * Removed paragraph suggesting KMAC to be used in generating k in Deterministic ECDSA. That should be RFC6979-bis. * Removed paragraph from Security Considerations that talks about randomness of k because we are using deterministic ECDSA. * Completed ASN.1 module and fixed KMAC ASN.1 based on Jim's feedback. Kampanakis & Dang Expires January 1, 2020 [Page 3] Internet-Draft SHAKEs in CMS June 2019 * Text fixes. o draft-ietf-lamps-cms-shake-02: * Updates based on suggestions and clarifications by Jim. * Started ASN.1 module. o draft-ietf-lamps-cms-shake-01: * Significant reorganization of the sections to simplify the introduction, the new OIDs and their use in CMS. * Added new OIDs for RSASSA-PSS that hardcodes hash, salt and MGF, according the WG consensus. * Updated Public Key section to use the new RSASSA-PSS OIDs and clarify the algorithm identifier usage. * Removed the no longer used SHAKE OIDs from section 3.1. o draft-ietf-lamps-cms-shake-00: * Various updates to title and section names. * Content changes filling in text and references. o draft-dang-lamps-cms-shakes-hash-00: * Initial version 2. Introduction The Cryptographic Message Syntax (CMS) [RFC5652] is used to digitally sign, digest, authenticate, or encrypt arbitrary message contents. This specification describes the use of the SHAKE128 and SHAKE256 specified in [SHA3] as new hash functions in CMS. In addition, it describes the use of these functions with the RSASSA-PSS signature algorithm [RFC8017] and the Elliptic Curve Digital Signature Algorithm (ECDSA) [X9.62] with the CMS signed-data content type. In the SHA-3 family, two extendable-output functions (SHAKEs), SHAKE128 and SHAKE256, are defined. Four other hash function instances, SHA3-224, SHA3-256, SHA3-384, and SHA3-512, are also defined but are out of scope for this document. A SHAKE is a variable length hash function defined as SHAKE(M, d) where the output is a d-bits-long digest of message M. The corresponding collision and second-preimage-resistance strengths for SHAKE128 are Kampanakis & Dang Expires January 1, 2020 [Page 4] Internet-Draft SHAKEs in CMS June 2019 min(d/2,128) and min(d,128) bits, respectively (Appendix A.1 [SHA3]). And the corresponding collision and second-preimage-resistance strengths for SHAKE256 are min(d/2,256) and min(d,256) bits, respectively. A SHAKE can be used in CMS as the message digest function (to hash the message to be signed) in RSASSA-PSS and ECDSA, message authentication code and as the mask generation function (MGF) in RSASSA-PSS. This specification describes the identifiers for SHAKEs to be used in CMS and their meaning. 2.1. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 3. Identifiers This section identifies eight new object identifiers (OIDs) for using SHAKE128 and SHAKE256 in CMS. Two object identifiers for SHAKE128 and SHAKE256 hash functions are defined in [shake-nist-oids] and we include them here for convenience. id-shake128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 11 } id-shake256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 12 } In this specification, when using the id-shake128 or id-shake256 algorithm identifiers, the parameters MUST be absent. That is, the identifier SHALL be a SEQUENCE of one component, the OID. [I-D.ietf-lamps-pkix-shake] [ EDNOTE: Update reference with the RFC when it is ready ] defines two identifiers for RSASSA-PSS signatures using SHAKEs which we include here for convenience. Kampanakis & Dang Expires January 1, 2020 [Page 5] Internet-Draft SHAKEs in CMS June 2019 id-RSASSA-PSS-SHAKE128 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) algorithms(6) TBD1 } id-RSASSA-PSS-SHAKE256 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) algorithms(6) TBD2 } The same RSASSA-PSS algorithm identifiers can be used for identifying public keys and signatures. [I-D.ietf-lamps-pkix-shake] [ EDNOTE: Update reference with the RFC when it is ready ] also defines two algorithm identifiers of ECDSA signatures using SHAKEs which we include here for convenience. id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) algorithms(6) TBD3 } id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) algorithms(6) TBD4 } The parameters for the four RSASSA-PSS and ECDSA identifiers MUST be absent. That is, each identifier SHALL be a SEQUENCE of one component, the OID. Two object identifiers for KMACs using SHAKE128 and SHAKE256 as defined in by the National Institute of Standards and Technology (NIST) in [shake-nist-oids] and we include them here for convenience. id-KmacWithSHAKE128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 19 } id-KmacWithSHAKE256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 20 } The parameters for id-KmacWithSHAKE128 and id-KmacWithSHAKE256 are OPTIONAL. Kampanakis & Dang Expires January 1, 2020 [Page 6] Internet-Draft SHAKEs in CMS June 2019 Section 4.1, Section 4.2.1, Section 4.2.2 and Section 4.4 specify the required output length for each use of SHAKE128 or SHAKE256 in message digests, RSASSA-PSS, ECDSA and KMAC. 4. Use in CMS 4.1. Message Digests The id-shake128 and id-shake256 OIDs (Section 3) can be used as the digest algorithm identifiers located in the SignedData, SignerInfo, DigestedData, and the AuthenticatedData digestAlgorithm fields in CMS [RFC5652]. The encoding MUST omit the parameters field and the output size, d, for the SHAKE128 or SHAKE256 message digest MUST be 256 or 512 bits, respectively. The digest values are located in the DigestedData field and the Message Digest authenticated attribute included in the signedAttributes of the SignedData signerInfo. In addition, digest values are input to signature algorithms. The digest algorithm MUST be the same as the message hash algorithms used in signatures. 4.2. Signatures In CMS, signature algorithm identifiers are located in the SignerInfo signatureAlgorithm field of SignedData content type and countersignature attribute. Signature values are located in the SignerInfo signature field of SignedData content type and countersignature attribute. Conforming implementations that process RSASSA-PSS and ECDSA with SHAKE signatures when processing CMS data MUST recognize the corresponding OIDs specified in Section 3. When using RSASSA-PSS or ECDSA with SHAKEs, the RSA modulus and ECDSA curve order SHOULD be chosen in line with the SHAKE output length. In the context of this document SHAKE128 OIDs are RECOMMENDED for 2048 or 3072-bit RSA modulus or curves with group order of 256-bits. SHAKE256 OIDs are RECOMMENDED for 4096-bit RSA modulus and higher or curves with group order of 384-bits and higher. 4.2.1. RSASSA-PSS Signatures The RSASSA-PSS algorithm is defined in [RFC8017]. When id-RSASSA- PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256 specified in Section 3 is used, the encoding MUST omit the parameters field. That is, the AlgorithmIdentifier SHALL be a SEQUENCE of one component, id-RSASSA- PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256. [RFC4055] defines RSASSA- PSS-params that are used to define the algorithms and inputs to the Kampanakis & Dang Expires January 1, 2020 [Page 7] Internet-Draft SHAKEs in CMS June 2019 algorithm. This specification does not use parameters because the hash, mask generation algorithm, trailer and salt are embedded in the OID definition. The hash algorithm to hash a message being signed and the hash algorithm as the mask generation function used in RSASSA-PSS MUST be the same: both SHAKE128 or both SHAKE256. The output length of the hash algorithm which hashes the message SHALL be 32 (for SHAKE128) or 64 bytes (for SHAKE256). The mask generation function takes an octet string of variable length and a desired output length as input, and outputs an octet string of the desired length. In RSASSA-PSS with SHAKEs, the SHAKEs MUST be used natively as the MGF function, instead of the MGF1 algorithm that uses the hash function in multiple iterations as specified in Section B.2.1 of [RFC8017]. In other words, the MGF is defined as the SHAKE128 or SHAKE256 output of the mgfSeed for id-RSASSA-PSS- SHAKE128 and id-RSASSA-PSS-SHAKE256, respectively. The mgfSeed is the seed from which mask is generated, an octet string [RFC8017]. As explained in Step 9 of section 9.1.1 of [RFC8017], the output length of the MGF is emLen - hLen - 1 bytes. emLen is the maximum message length ceil((n-1)/8), where n is the RSA modulus in bits. hLen is 32 and 64-bytes for id-RSASSA-PSS-SHAKE128 and id-RSASSA-PSS-SHAKE256, respectively. Thus when SHAKE is used as the MGF, the SHAKE output length maskLen is (8*emLen - 264) or (8*emLen - 520) bits, respectively. For example, when RSA modulus n is 2048, the output length of SHAKE128 or SHAKE256 as the MGF will be 1784 or 1528-bits when id-RSASSA-PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256 is used, respectively. The RSASSA-PSS saltLength MUST be 32 bytes for id-RSASSA-PSS-SHAKE128 or 64 bytes for id-RSASSA-PSS-SHAKE256. Finally, the trailerField MUST be 1, which represents the trailer field with hexadecimal value 0xBC [RFC8017]. 4.2.2. ECDSA Signatures The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in [X9.62]. When the id-ecdsa-with-shake128 or id-ecdsa-with-shake256 (specified in Section 3) algorithm identifier appears, the respective SHAKE function is used as the hash. The encoding MUST omit the parameters field. That is, the AlgorithmIdentifier SHALL be a SEQUENCE of one component, the OID id-ecdsa-with-shake128 or id- ecdsa-with-shake256. For simplicity and compliance with the ECDSA standard specification, the output size of the hash function must be explicitly determined. Kampanakis & Dang Expires January 1, 2020 [Page 8] Internet-Draft SHAKEs in CMS June 2019 The output size, d, for SHAKE128 or SHAKE256 used in ECDSA MUST be 256 or 512 bits, respectively. Conforming CA implementations that generate ECDSA with SHAKE signatures in certificates or CRLs SHOULD generate such signatures with a deterministically generated, non-random k in accordance with all the requirements specified in [RFC6979]. They MAY also generate such signatures in accordance with all other recommendations in [X9.62] or [SEC1] if they have a stated policy that requires conformance to those standards. Those standards have not specified SHAKE128 and SHAKE256 as hash algorithm options. However, SHAKE128 and SHAKE256 with output length being 32 and 64 octets, respectively can be used instead of 256 and 512-bit output hash algorithms such as SHA256 and SHA512. 4.3. Public Keys In CMS, the signer's public key algorithm identifiers are located in the OriginatorPublicKey's algorithm attribute. The conventions and encoding for RSASSA-PSS and ECDSA public keys algorithm identifiers are as specified in Section 2.3 of [RFC3279], Section 3.1 of [RFC4055] and Section 2.1 of [RFC5480]. Traditionally, the rsaEncryption object identifier is used to identify RSA public keys. The rsaEncryption object identifier continues to identify the public key when the RSA private key owner does not wish to limit the use of the public key exclusively to RSASSA-PSS with SHAKEs. When the RSA private key owner wishes to limit the use of the public key exclusively to RSASSA-PSS, the AlgorithmIdentifier for RSASSA-PSS defined in Section 3 SHOULD be used as the algorithm attribute in the OriginatorPublicKey sequence. Conforming client implementations that process RSASSA-PSS with SHAKE public keys in CMS message MUST recognize the corresponding OIDs in Section 3. Conforming implementations MUST specify and process the algorithms explicitly by using the OIDs specified in Section 3 when encoding ECDSA with SHAKE public keys in CMS messages. The identifier parameters, as explained in Section 3, MUST be absent. 4.4. Message Authentication Codes KMAC message authentication code (KMAC) is specified in [SP800-185]. In CMS, KMAC algorithm identifiers are located in the AuthenticatedData macAlgorithm field. The KMAC values are located in the AuthenticatedData mac field. Kampanakis & Dang Expires January 1, 2020 [Page 9] Internet-Draft SHAKEs in CMS June 2019 When the id-KmacWithSHAKE128 or id-KmacWithSHAKE256 OID is used as the MAC algorithm identifier, the parameters field is optional (absent or present). If absent, the SHAKE256 output length used in KMAC is 256 or 512 bits, respectively, and the customization string is an empty string by default. Conforming implementations that process KMACs with the SHAKEs when processing CMS data MUST recognize these identifiers. When calculating the KMAC output, the variable N is 0xD2B282C2, S is an empty string, and L, the integer representing the requested output length in bits, is 256 or 512 for KmacWithSHAKE128 or KmacWithSHAKE256, respectively, in this specification. 5. IANA Considerations One object identifier for the ASN.1 module in Appendix A was requested for the SMI Security for S/MIME Module Identifiers (1.2.840.113549.1.9.16.0) registry: +---------+----------------------+--------------------+ | Decimal | Description | References | +---------+----------------------+--------------------+ | TBD | CMSAlgsForSHAKE-2019 | [EDNOTE: THIS RFC] | +---------+----------------------+--------------------+ 6. Security Considerations This document updates [RFC3370]. The security considerations section of that document applies to this specification as well. NIST has defined appropriate use of the hash functions in terms of the algorithm strengths and expected time frames for secure use in Special Publications (SPs) [SP800-78-4] and [SP800-107]. These documents can be used as guides to choose appropriate key sizes for various security scenarios. When more than two parties share the same message-authentication key, data origin authentication is not provided. Any party that knows the message-authentication key can compute a valid MAC, therefore the content could originate from any one of the parties. 7. Acknowledgements This document is based on Russ Housley's draft [I-D.housley-lamps-cms-sha3-hash]. It replaces SHA3 hash functions by SHAKE128 and SHAKE256 as the LAMPS WG agreed. Kampanakis & Dang Expires January 1, 2020 [Page 10] Internet-Draft SHAKEs in CMS June 2019 The authors would like to thank Russ Housley for his guidance and very valuable contributions with the ASN.1 module. Valuable feedback was also provided by Eric Rescorla. 8. References 8.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>. [RFC3370] Housley, R., "Cryptographic Message Syntax (CMS) Algorithms", RFC 3370, DOI 10.17487/RFC3370, August 2002, <https://www.rfc-editor.org/info/rfc3370>. [RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 4055, DOI 10.17487/RFC4055, June 2005, <https://www.rfc-editor.org/info/rfc4055>. [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk, "Elliptic Curve Cryptography Subject Public Key Information", RFC 5480, DOI 10.17487/RFC5480, March 2009, <https://www.rfc-editor.org/info/rfc5480>. [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, September 2009, <https://www.rfc-editor.org/info/rfc5652>. [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016, <https://www.rfc-editor.org/info/rfc8017>. [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>. [SHA3] National Institute of Standards and Technology, U.S. Department of Commerce, "SHA-3 Standard - Permutation- Based Hash and Extendable-Output Functions", FIPS PUB 202, August 2015. Kampanakis & Dang Expires January 1, 2020 [Page 11] Internet-Draft SHAKEs in CMS June 2019 [SP800-185] National Institute of Standards and Technology, "SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash. NIST SP 800-185", December 2016, <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/ NIST.SP.800-185.pdf>. 8.2. Informative References [I-D.housley-lamps-cms-sha3-hash] Housley, R., "Use of the SHA3 One-way Hash Functions in the Cryptographic Message Syntax (CMS)", draft-housley- lamps-cms-sha3-hash-00 (work in progress), March 2017. [I-D.ietf-lamps-pkix-shake] Kampanakis, P. and Q. Dang, "Internet X.509 Public Key Infrastructure: Additional Algorithm Identifiers for RSASSA-PSS and ECDSA using SHAKEs", draft-ietf-lamps-pkix- shake-11 (work in progress), June 2019. [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April 2002, <https://www.rfc-editor.org/info/rfc3279>. [RFC5753] Turner, S. and D. Brown, "Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)", RFC 5753, DOI 10.17487/RFC5753, January 2010, <https://www.rfc-editor.org/info/rfc5753>. [RFC5911] Hoffman, P. and J. Schaad, "New ASN.1 Modules for Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911, DOI 10.17487/RFC5911, June 2010, <https://www.rfc-editor.org/info/rfc5911>. [RFC6268] Schaad, J. and S. Turner, "Additional New ASN.1 Modules for the Cryptographic Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)", RFC 6268, DOI 10.17487/RFC6268, July 2011, <https://www.rfc-editor.org/info/rfc6268>. [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August 2013, <https://www.rfc-editor.org/info/rfc6979>. Kampanakis & Dang Expires January 1, 2020 [Page 12] Internet-Draft SHAKEs in CMS June 2019 [SEC1] Standards for Efficient Cryptography Group, "SEC 1: Elliptic Curve Cryptography", May 2009, <http://www.secg.org/sec1-v2.pdf>. [shake-nist-oids] National Institute of Standards and Technology, "Computer Security Objects Register", October 2017, <https://csrc.nist.gov/Projects/Computer-Security-Objects- Register/Algorithm-Registration>. [SP800-107] National Institute of Standards and Technology (NIST), "SP800-107: Recommendation for Applications Using Approved Hash Algorithms", May 2014, <https://csrc.nist.gov/csrc/media/publications/sp/800-107/ rev-1/final/documents/draft_revised_sp800-107.pdf>. [SP800-78-4] National Institute of Standards and Technology (NIST), "SP800-78-4: Cryptographic Algorithms and Key Sizes for Personal Identity Verification", May 2014, <https://csrc.nist.gov/csrc/media/publications/sp/800- 78/4/final/documents/sp800_78-4_revised_draft.pdf>. [X9.62] American National Standard for Financial Services (ANSI), "X9.62-2005 Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA)", November 2005. Appendix A. ASN.1 Module This appendix includes the ASN.1 modules for SHAKEs in CMS. This module includes some ASN.1 from other standards for reference. CMSAlgsForSHAKE-2019 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-shakes-2019(TBD) } DEFINITIONS EXPLICIT TAGS ::= BEGIN -- EXPORTS ALL; IMPORTS DIGEST-ALGORITHM, MAC-ALGORITHM, SMIME-CAPS FROM AlgorithmInformation-2009 Kampanakis & Dang Expires January 1, 2020 [Page 13] Internet-Draft SHAKEs in CMS June 2019 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-algorithmInformation-02(58) } RSAPublicKey, rsaEncryption, id-ecPublicKey FROM PKIXAlgs-2009 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-algorithms2008-02(56) } ; -- -- Message Digest Algorithms (mda-) -- used in SignedData, SignerInfo, DigestedData, -- and the AuthenticatedData digestAlgorithm -- fields in CMS -- MessageDigestAlgs DIGEST-ALGORITHM ::= { -- This expands MessageAuthAlgs from [RFC5652] -- and MessageDigestAlgs in [RFC5753] mda-shake128 | mda-shake256, ... } -- -- One-Way Hash Functions -- SHAKE128 mda-shake128 DIGEST-ALGORITHM ::= { IDENTIFIER id-shake128 -- with output length 32 bytes. } id-shake128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) hashAlgs(2) 11 } -- SHAKE256 mda-shake256 DIGEST-ALGORITHM ::= { IDENTIFIER id-shake256 -- with output length 64 bytes. } id-shake256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) hashAlgs(2) 12 } -- -- Public key algorithm identifiers located in the -- OriginatorPublicKey's algorithm attribute in CMS. -- And Signature identifiers used in SignerInfo -- signatureAlgorithm field of SignedData content Kampanakis & Dang Expires January 1, 2020 [Page 14] Internet-Draft SHAKEs in CMS June 2019 -- type and countersignature attribute in CMS. -- -- From RFC5280, for reference. -- rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 } -- When the rsaEncryption algorithm identifier is used -- for a public key, the AlgorithmIdentifier parameters -- field MUST contain NULL. -- id-RSASSA-PSS-SHAKE128 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) algorithms(6) TBD1 } id-RSASSA-PSS-SHAKE256 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) algorithms(6) TBD2 } -- When the id-RSASSA-PSS-* algorithm identifiers are used -- for a public key or signature in CMS, the AlgorithmIdentifier -- parameters field MUST be absent. The message digest algorithm -- used in RSASSA-PSS MUST be SHAKE128 or SHAKE256 with a 32 or -- 64 byte outout length, respectively. The mask generation -- function MUST be SHAKE128 or SHAKE256 with an output length -- of (8*ceil((n-1)/8) - 264) or (8*ceil((n-1)/8) - 520) bits, -- respectively, where n is the RSA modulus in bits. -- The RSASSA-PSS saltLength MUST be 32 or 64 bytes, respectively. -- The trailerField MUST be 1, which represents the trailer -- field with hexadecimal value 0xBC. Regardless of -- id-RSASSA-PSS-* or rsaEncryption being used as the -- AlgorithmIdentifier of the OriginatorPublicKey, the RSA -- public key MUST be encoded using the RSAPublicKey type. -- From RFC4055, for reference. -- RSAPublicKey ::= SEQUENCE { -- modulus INTEGER, -- -- n -- publicExponent INTEGER } -- -- e id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) algorithms(6) TBD3 } id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) algorithms(6) TBD4 } -- When the id-ecdsa-with-shake* algorithm identifiers are -- used in CMS, the AlgorithmIdentifier parameters field -- MUST be absent and the signature algorithm should be -- deterministic ECDSA [RFC6979]. The message digest MUST Kampanakis & Dang Expires January 1, 2020 [Page 15] Internet-Draft SHAKEs in CMS June 2019 -- be SHAKE128 or SHAKE256 with a 32 or 64 byte outout -- length, respectively. In both cases, the ECDSA public key, -- MUST be encoded using the id-ecPublicKey type. -- From RFC5480, for reference. -- id-ecPublicKey OBJECT IDENTIFIER ::= { -- iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 } -- The id-ecPublicKey parameters must be absent or present -- and are defined as -- ECParameters ::= CHOICE { -- namedCurve OBJECT IDENTIFIER -- -- -- implicitCurve NULL -- -- -- specifiedCurve SpecifiedECDomain -- } -- -- Message Authentication (maca-) Algorithms -- used in AuthenticatedData macAlgorithm in CMS -- MessageAuthAlgs MAC-ALGORITHM ::= { -- This expands MessageAuthAlgs from [RFC5652] and [RFC6268] maca-KMACwithSHAKE128 | maca-KMACwithSHAKE256, ... } SMimeCaps SMIME-CAPS ::= { -- The expands SMimeCaps from [RFC5911] maca-KMACwithSHAKE128.&smimeCaps | maca-KMACwithSHAKE256.&smimeCaps, ... } -- -- KMAC with SHAKE128 maca-KMACwithSHAKE128 MAC-ALGORITHM ::= { IDENTIFIER id-KMACWithSHAKE128 PARAMS TYPE KMACwithSHAKE128-params ARE optional -- If KMACwithSHAKE128-params parameters are absent -- the SHAKE128 output length used in KMAC is 256 bits -- and the customization string is an empty string. IS-KEYED-MAC TRUE SMIME-CAPS {IDENTIFIED BY id-KMACWithSHAKE128} } id-KMACWithSHAKE128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) hashAlgs(2) 19 } Kampanakis & Dang Expires January 1, 2020 [Page 16] Internet-Draft SHAKEs in CMS June 2019 KMACwithSHAKE128-params ::= SEQUENCE { kMACOutputLength INTEGER DEFAULT 256, -- Output length in bits customizationString OCTET STRING DEFAULT ''H } -- KMAC with SHAKE256 maca-KMACwithSHAKE256 MAC-ALGORITHM ::= { IDENTIFIER id-KMACWithSHAKE256 PARAMS TYPE KMACwithSHAKE256-params ARE optional -- If KMACwithSHAKE256-params parameters are absent -- the SHAKE256 output length used in KMAC is 512 bits -- and the customization string is an empty string. IS-KEYED-MAC TRUE SMIME-CAPS {IDENTIFIED BY id-KMACWithSHAKE256} } id-KMACWithSHAKE256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) hashAlgs(2) 20 } KMACwithSHAKE256-params ::= SEQUENCE { kMACOutputLength INTEGER DEFAULT 512, -- Output length in bits customizationString OCTET STRING DEFAULT ''H } END Authors' Addresses Panos Kampanakis Cisco Systems Email: pkampana@cisco.com Quynh Dang NIST 100 Bureau Drive Gaithersburg, MD 20899 Email: quynh.Dang@nist.gov Kampanakis & Dang Expires January 1, 2020 [Page 17]