Skip to main content

Transport of Real-time Inter-network Defense (RID) Messages over HTTP/TLS

The information below is for an old version of the document that is already published as an RFC.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 6546.
Author Brian Trammell
Last updated 2020-01-21 (Latest revision 2012-01-25)
Replaces draft-trammell-mile-rfc6046-bis
RFC stream Internet Engineering Task Force (IETF)
Intended RFC status Proposed Standard
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Kathleen Moriarty
IESG IESG state Became RFC 6546 (Proposed Standard)
Action Holders
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD Sean Turner
IESG note
Send notices to (None)
MILE Working Group                                           B. Trammell
Internet-Draft                                                ETH Zurich
Obsoletes: 6046 (if approved)                           January 25, 2012
Intended status: Standards Track
Expires: July 28, 2012

 Transport of Real-time Inter-network Defense (RID) Messages over HTTP/


   The Incident Object Description Exchange Format (IODEF) defines a
   common XML format for document exchange, and Realtime Internetwork
   Defense (RID) defines extensions to IODEF intended for the
   cooperative handling of security incidents within consortia of
   network operators and enterprises.  This document specifies a
   application-layer protocol for RID based upon the passing of RID
   messages over HTTP/TLS.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on July 28, 2012.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   ( in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Trammell                  Expires July 28, 2012                 [Page 1]
Internet-Draft                RID Transport                 January 2012

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

1.  Introduction

   The Incident Object Description Exchange Format (IODEF) [RFC5070]
   describes an XML document format for the purpose of exchanging data
   between Computer Security Incident Response Teams (CSIRTs) or those
   responsible for security incident handling for service providers
   (SPs).  The defined document format provides an easy way for CSIRTs
   to exchange data in a way which can be easily parsed.

   IODEF defines a message format, not a protocol, as the sharing of
   messages is assumed to be out of scope in order to allow CSIRTs to
   exchange and store messages in a way most suited to their established
   incident handling processes.  However, Real-time Inter-network
   Defense (RID) [I-D.ietf-mile-rfc6045-bis] do require a specification
   of a protocol to ensure interoperability among members in a RID
   consortium.  This document specifies the transport of RID messages
   within HTTP [RFC2616] Request and Response messages over TLS
   [RFC5246] (herein, HTTP/TLS).  Note that any IODEF message may also
   be transported using this mechanism, by sending it as a RID Report

1.1.  Changes from RFC6046

   This document contains the following changes with respect to its
   predecessor [RFC6046]:

   o  The intended status of the document is now Standards Track.
   o  The document is updated to refer to the updated RID specification,
      [I-D.ietf-mile-rfc6045-bis], where appropriate.
   o  Language regarding the use of HTTP/1.1 and TCP ports for RID
      transport is clarified.
   o  The RID-Callback-Token entity header field is added to allow
      matching of RID replies during callback, independent of the
      content of the underlying RID message.
   o  The minimum required version of TLS is upgraded to 1.1, and the
      minimum recommend version to 1.2.
   o  Language regarding PKI for RID over HTTPS is clarified, and
      updated to refer to [RFC6125].

   This document, when published, obsoletes [RFC6046] and moves it to
   Historic status.

Trammell                  Expires July 28, 2012                 [Page 2]
Internet-Draft                RID Transport                 January 2012

2.  Terminology and Normative Sections

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   document are to be interpreted as described in [RFC2119].

   RID systems participating in a consortium are required to fully
   implement the protocol in Section 3 in order to interoperate within
   the consortium; the remainder of this document is informative, and
   provides helpful background or explanatory information.

3.  Transmission of RID Messages over HTTP/TLS

   This section specifies the details of the transport of RID messages
   [I-D.ietf-mile-rfc6045-bis] over HTTP/TLS.  In this arrangement, each
   RID server is both an HTTP/TLS server and an HTTP/TLS client.  When a
   RID message is sent, the sending RID system connects to the receiving
   RID system and sends the message, optionally receiving a message in
   reply.  All RID systems MUST be prepared to accept HTTP/TLS
   connections from any RID peer with which it communicates, in order to
   support callback for delayed replies (see below).

   BCP 56 [RFC3205] contains a number of important considerations when
   using HTTP for application protocols.  These include the size of the
   payload for the application, whether the application will use a web
   browser, whether the protocol should be defined on a port other than
   80, and if the security provided through HTTP/TLS suits the needs of
   the new application.

   It is acknowledged within the scope of these concerns that HTTP/TLS
   is not ideally suited for RID transport, as the former is a client-
   server protocol and the latter a message-exchange protocol; however,
   the ease of implementation of RID systems over HTTP/TLS outweighs
   these concerns.  Consistent with BCP 56, RID systems listen for TCP
   connections on port 4590 (see Section 5).  Every RID system
   participating in a consortium SHOULD listen for HTTP/TLS connections
   on the assigned port.  RID systems MAY be configurable to listen on
   ports other than the well-known port; this configuration is out of
   scope for this specification.  RID systems SHOULD NOT use TCP port
   443 (the standard port for HTTP over TLS) for RID messages, to avoid
   confusing standard HTTP/TLS servers for RID systems.

   RID systems MUST implement all REQUIRED functionality for HTTP/1.1
   [RFC2616].  All RID messages sent in HTTP Requests MUST be sent using
   the POST method with a Request-URI of '/'.  As RID documents are XML,
   the RID media type is 'text/xml'; i.e., the 'Content-type' Request
   and Response headers MUST be 'text/xml'.  As RID messages MUST be

Trammell                  Expires July 28, 2012                 [Page 3]
Internet-Draft                RID Transport                 January 2012

   sent using the POST method, the GET and HEAD methods have no
   particular meaning on a RID system; a RID system SHOULD answer 'GET
   /' or 'HEAD /' with 204 No Content.  Other Request-URIs are reserved
   for future use; any access to Request-URIs other than '/' by any
   method on a RID system SHOULD return the appropriate HTTP error (404
   Not Found).

   Since the content of RID messages is essentially declarative, a RID
   system interrupted during transport MAY simply repeat the
   transaction; the sending of a RID message is idempotent.

   As the queries and replies in a RID message exchange may be
   significantly separated in time, RID over HTTP/TLS supports a
   callback mechanism.  In this mechanism, the receiving RID system MAY
   return a 202 Accepted response, called a RID callback, instead of a
   RID message.  The RID callback MUST contain a zero-length entity body
   and a 'RID-Callback-Token' entity header field, itself containing an
   unique token generated by the receiving RID system.

   The RID-Callback-Token is an opaque, whitespace-free string of up to
   255 printable ASCII characters that MUST uniquely identify the
   callback among all callbacks from the receiving RID system to the
   sending RID system.  Due to the amount of time that may be required
   to generate a RID Result or Report response, there is no upper bound
   on the time period for this uniqueness requirement.  The RID-
   Callback-Token in ABNF [RFC5234] form is shown below:

   callback-token = 1*255(VCHAR)

   When performing RID callback, a responding system MUST connect to the
   host at the network-layer address from which the original request was
   sent; there is no mechanism in RID for redirected callback.  This
   callback SHOULD use TCP port 4590 unless configured to use a
   different port.

   While a RID system SHOULD return the reply in an HTTP Response if it
   is available immediately or within a generally accepted HTTP client
   timeout (about thirty seconds), this is not mandatory, and as such
   RID systems MUST be prepared for a query to be met with a 202
   Accepted, an empty Response body, a connection termination and a
   callback.  Note that all RID messages require a response from the
   receiving RID system, so a sending RID system can expect either an
   immediate response or a callback.

   Table 1 lists the allowable RID message types in an HTTP Response for
   a given RID message type in the Request.  A RID system MUST be
   prepared to handle an HTTP Response of the given type(s) when sending
   the corresponding HTTP Request.  A RID system MUST NOT send an HTTP

Trammell                  Expires July 28, 2012                 [Page 4]
Internet-Draft                RID Transport                 January 2012

   Response containing any RID message other than the one corresponding
   to the one sent in the HTTP Request.

     | Request RID type     | Callback | Result | Response RID type |
     | InvestigationRequest |          | 200    | Acknowledgment    |
     | InvestigationRequest |          | 200    | Result            |
     | InvestigationRequest |          | 200    | Report            |
     | InvestigationRequest |          | 202    | [empty]           |
     | TraceRequest         |          | 200    | Acknowledgment    |
     | TraceRequest         |          | 200    | Result            |
     | TraceRequest         |          | 200    | Report            |
     | TraceRequest         |          | 202    | [empty]           |
     | Query                |          | 200    | Acknowledgment    |
     | Query                |          | 200    | Report            |
     | Query                |          | 202    | [empty]           |
     | Acknowledgment       |     X    | 200    | [empty]           |
     | Result               |     X    | 200    | [empty]           |
     | Report               |          | 200    | Acknowledgment    |
     | Report               |          | 200    | [empty]           |
     | Report               |     X    | 200    | [empty]           |

                                  Table 1

   The use of stable DNS names to address RID systems is RECOMMENDED; in
   addition to facilitating connection to RID systems within a
   consortium, these are to be used as reference identifiers for a RID
   system's peers.  For security purposes, RID systems SHOULD NOT return
   3xx Redirection response codes, and SHOULD NOT follow any 3xx
   Redirection.  The protocol provides no in-band method for handling a
   change of address of a RID system.

   If a RID system receives an improper RID message in an HTTP Request,
   it MUST return an appropriate 4xx Client Error result code to the
   requesting RID system.  If a RID system cannot process a RID message
   received in an HTTP Request due to an error on its own side, it MUST
   return an appropriate 5xx Server Error result code to the requesting
   RID system.

   Note that HTTP provides no mechanism for signaling to a server that a
   response body is not a valid RID message.  If an RID system receives
   an improper RID message in an HTTP Response, or cannot process a RID
   message received in an HTTP Response due to an error on its own side,
   it MUST log the error and present it to the RID system administrator
   for handling; the error logging format is an implementation detail
   and is considered out of scope for this specification.

Trammell                  Expires July 28, 2012                 [Page 5]
Internet-Draft                RID Transport                 January 2012

   RID systems MUST support and SHOULD use HTTP/1.1 persistent
   connections as described in [RFC2616].  RID systems MUST support
   chunked transfer encoding on the HTTP server side to allow the
   implementation of clients that do not need to pre-calculate message
   sizes before constructing HTTP headers.

   RID systems MUST use TLS version 1.1 [RFC4346] or higher for
   confidentiality, identification, and authentication, when sending RID
   messages over HTTPS.  HTTPS is specified in Section 2 of [RFC2818].
   RID systems MUST use mutual authentication; that is, both RID systems
   acting as HTTPS clients and RID systems acting as HTTPS servers MUST
   be identified by an X.509 certificate [RFC5280].  Mutual
   authentication requires full path validation on each certificate, as
   defined in [RFC5280].

   The TLS session MUST use non-NULL ciphersuites for authentication,
   integrity, and confidentiality.  Sessions MAY be renegotiated within
   these constraints.

   All RID systems MUST be identified by a certificate containing a
   DNS-ID identifier [RFC5280] as in section 6.4 of [RFC6125]; RID
   systems MUST verify the reference identifiers of their peers against
   those stored in the certificates presented.  The inclusion of Common
   Names (CN-IDs) in certificates identifying RID systems is NOT
   RECOMMENDED.  Wildcards MUST NOT appear in the DNS-ID or CN-ID of a
   certificate identifying a RID system.  Additional general information
   on the use of PKI with RID systems is detailed in Section 9.3 of

   RID systems MUST support TLS version 1.1 and SHOULD support TLS
   version 1.2 [RFC5246]; RID systems MUST NOT request, offer, or use
   any version of SSL, or any version of TLS prior to 1.1, due to known
   security vulnerabilities in prior versions of the protocol; see
   Appendix E of [RFC5246] for more.

4.  Security Considerations

   In addition to the final paragraphs in Section 3 on the use of TLS to
   secure RID message transport, all security considerations of related
   documents apply, especially the Incident Object Description Exchange
   Format (IODEF) [RFC5070] and Real-time Inter-network Defense (RID)
   [I-D.ietf-mile-rfc6045-bis].  The protocol described herein is built
   on the foundation of these documents; the security considerations
   contained therein are incorporated by reference.

Trammell                  Expires July 28, 2012                 [Page 6]
Internet-Draft                RID Transport                 January 2012

5.  IANA Considerations

   Consistent with BCP 56 [RFC3205], since RID over HTTP/TLS is a
   substantially new service, and should be controlled at the consortium
   member network's border differently than HTTP/TLS, it requires a new
   port number.  IANA has assigned port 4590/tcp to RID with service
   name RID over HTTP/TLS.

   [NOTE to IANA: Since this document obsoletes RFC 6046, please update
   the reference in the Port Numbers registry for 4590/tcp to point to
   this document.]

6.  Acknowledgments

   The author would like to thank David Black for the review, and
   Kathleen Moriarty for work on earlier revisions of this

7.  References

7.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

   [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

   [RFC5070]  Danyliw, R., Meijer, J., and Y. Demchenko, "The Incident
              Object Description Exchange Format", RFC 5070,
              December 2007.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, May 2008.

   [RFC6125]  Saint-Andre, P. and J. Hodges, "Representation and
              Verification of Domain-Based Application Service Identity
              within Internet Public Key Infrastructure Using X.509

Trammell                  Expires July 28, 2012                 [Page 7]
Internet-Draft                RID Transport                 January 2012

              (PKIX) Certificates in the Context of Transport Layer
              Security (TLS)", RFC 6125, March 2011.

              Moriarty, K., "Real-time Inter-network Defense (RID)",
              draft-ietf-mile-rfc6045-bis-08 (work in progress),
              January 2012.

7.2.  Informative References

   [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC3205]  Moore, K., "On the use of HTTP as a Substrate", BCP 56,
              RFC 3205, February 2002.

   [RFC4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.1", RFC 4346, April 2006.

   [RFC6046]  Moriarty, K. and B. Trammell, "Transport of Real-time
              Inter-network Defense (RID) Messages", RFC 6046,
              November 2010.

Author's Address

   Brian Trammell
   Swiss Federal Institute of Technology Zurich
   Gloriastrasse 35
   8092 Zurich

   Phone: +41 44 632 70 13

Trammell                  Expires July 26, 2012                 [Page 8]