Secure IoT Bootstrapping: A Survey
draft-sarikaya-t2trg-sbootstrapping-03

Document Type Active Internet-Draft (individual)
Last updated 2017-02-01
Stream (None)
Intended RFC status (None)
Formats plain text pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                        B. Sarikaya
Internet-Draft                                                    Huawei
Intended status: Informational                                  M. Sethi
Expires: August 5, 2017                                         Ericsson
                                                               AR. Sangi
                                                     Huawei Technologies
                                                        February 1, 2017

                   Secure IoT Bootstrapping: A Survey
                 draft-sarikaya-t2trg-sbootstrapping-03

Abstract

   This document presents a survey of secure bootstrapping mechanisms
   available for smart objects that are part of an Internet of Things
   (IoT) network.  It aims to provide a structured classification of the
   available mechanisms.  The document does not prescribe any one secure
   bootstrapping mechanism and rather presents IoT developers with
   different options to choose from, depending on their use-case,
   security requirements and the user interface available on their smart
   objects.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 5, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of

Sarikaya, et al.         Expires August 5, 2017                 [Page 1]
Internet-Draft         IoT Bootstrapping Analysis          February 2017

   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Classification of available mechanisms  . . . . . . . . . . .   5
   4.  IoT Device Bootstrapping Methods  . . . . . . . . . . . . . .   6
     4.1.  Managed Methods . . . . . . . . . . . . . . . . . . . . .   6
     4.2.  Peer to Peer or Adhoc Methods . . . . . . . . . . . . . .  10
     4.3.  Leap-of-faith/Opportunistic Methods . . . . . . . . . . .  12
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  14
   8.  Informative References  . . . . . . . . . . . . . . . . . . .  14
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  19

1.  Introduction

   An Internet of Things (IoT) network consists of connected things that
   cooperate together to accomplish tasks such as smart buildings, smart
   environment monitoring system, and intelligent transport systems.
   The size of an IoT network varies from a couple of devices to tens of
   thousands depending on the application.  A smart object, or a thing,
   or a device in an IoT network is typically produced by a variety of
   vendors and are typically heterogeneous in terms of the constraints
   on their power supply, communication capability, computation capacity
   and memory available.  Due to this heterogeneity, a wide variety of
   bootstrapping mechanisms are proposed and used for these smart
   objects.

   Before classifying and describing the various methods of
   bootstrapping, it is important to discuss what is meant by the term
   bootstrapping.  In order to understand the term bootstrapping, we
   need to discuss some important preliminaries first.  We start by
   discussing the meaning of identity and identifiers.  The dictionary
   defines identity as "something that distinguishes an entity from
   other entities".  Dick Hardt (an advocate of identity 2.0 concept) in
Show full document text