Recommendations for RSVP-TE and Segment Routing LSP co-existence
draft-sitaraman-sr-rsvp-coexistence-rec-02

Document Type Active Internet-Draft (teas WG)
Last updated 2017-04-28 (latest revision 2017-02-17)
Stream IETF
Intended RFC status (None)
Formats plain text pdf html bibtex
Stream WG state Candidate for WG Adoption
Document shepherd No shepherd assigned
IESG IESG state I-D Exists
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to (None)
TEAS Working Group                                     H. Sitaraman, Ed.
Internet-Draft                                                 V. Beeram
Intended status: Informational                          Juniper Networks
Expires: August 21, 2017                                        I. Minei
                                                            Google, Inc.
                                                            S. Sivabalan
                                                     Cisco Systems, Inc.
                                                       February 17, 2017

    Recommendations for RSVP-TE and Segment Routing LSP co-existence
             draft-sitaraman-sr-rsvp-coexistence-rec-02.txt

Abstract

   Operators are looking to introduce services over Segment Routing (SR)
   LSPs in networks running Resource Reservation Protocol (RSVP-TE)
   LSPs.  In some instances, operators are also migrating existing
   services from RSVP-TE to SR LSPs.  For example, there might be
   certain services that are well suited for SR and need to co-exist
   with RSVP-TE in the same network.  In other cases, services running
   on RSVP-TE might be migrated to run over SR.  Such introduction or
   migration of traffic to SR might require co-existence with RSVP-TE in
   the same network for an extended period of time depending on the
   operator's intent.  The following document provides solution options
   for keeping the traffic engineering database (TED) consistent across
   the network, accounting for the different bandwidth utilization
   between SR and RSVP-TE.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 21, 2017.

Sitaraman, et al.        Expires August 21, 2017                [Page 1]
Internet-Draft       RSVP-TE and SR LSP co-existence       February 2017

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Conventions used in this document . . . . . . . . . . . . . .   3
   3.  Solution options  . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Static partitioning of bandwidth  . . . . . . . . . . . .   3
     3.2.  Centralized management of available capacity  . . . . . .   4
     3.3.  Flooding SR utilization in IGP  . . . . . . . . . . . . .   4
     3.4.  Running SR over RSVP-TE . . . . . . . . . . . . . . . . .   5
     3.5.  TED consistency by reflecting SR traffic  . . . . . . . .   5
   4.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   7
   5.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .   7
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   8
     8.2.  Informative References  . . . . . . . . . . . . . . . . .   8
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   Introduction of SR [I-D.ietf-spring-segment-routing] in the same
   network domain as RSVP-TE [RFC3209] presents the problem of
   accounting for SR traffic and making RSVP-TE aware of the actual
   available bandwidth on the network links.  RSVP-TE is not aware of
   how much bandwidth is being consumed by SR services on the network
   links and hence both at computation time (for a distributed
   computation) and at signaling time RSVP-TE LSPs will incorrectly
Show full document text