HTTP SEARCH Method
draft-snell-search-method-01

Document Type Active Internet-Draft (individual)
Last updated 2018-09-19
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Individual Submission                                         J. Reschke
Internet-Draft
Intended status: Standards Track                             A. Malhotra
Expires: March 23, 2019
                                                                J. Snell
                                                      September 19, 2018

                           HTTP SEARCH Method
                      draft-snell-search-method-01

Abstract

   This specification updates the definition and semantics of the HTTP
   SEARCH request method originally defined by [RFC5323].

Status of This Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 23, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Reschke, et al.          Expires March 23, 2019                 [Page 1]
Internet-Draft             HTTP SEARCH Method             September 2018

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  SEARCH  . . . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  The "Accept-Search" Header Field  . . . . . . . . . . . . . .   5
   4.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     4.1.  Simple SEARCH with a Direct Response  . . . . . . . . . .   5
     4.2.  Simple SEARCH with indirect response (303 See Other)  . .   6
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   7.  Normative References  . . . . . . . . . . . . . . . . . . . .   7
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   8

1.  Introduction

   This specification updates the HTTP SEARCH method originally defined
   in [RFC5323].

   Many existing HTTP-based applications use the HTTP GET and POST
   methods in various ways to implement the functionality provided by
   SEARCH.

   Using a GET request with some combination of query parameters
   included within the request URI (as illustrated in the example below)
   is arguably the most common mechanism for implementing search in web
   applications.  With this approach, implementations are required to
   parse the request URI into distinct path (everything before the '?')
   and query elements (everything after the '?').  The path identifies
   the resource processing the query (in this case 'http://example.org/
   feed') while the query identifies the specific parameters of the
   search operation.

   A typical use of HTTP GET for requesting a search

   GET /feed?q=foo&limit=10&sort=-published HTTP/1.1
   Host: example.org

   While there are definite advantages to using GET requests in this
   manner, the disadvantages should not be overlooked.  Specifically:

   o  Without specific knowledge of the resource and server to which the
      GET request is being sent, there is no way for the client to know
      that a search operation is being requested.  Identical requests
      sent to two different servers can implement entirely different
      semantics.

   o  Encoding query parameters directly into the request URI
      effectively casts every possible combination of query inputs as

Reschke, et al.          Expires March 23, 2019                 [Page 2]
Internet-Draft             HTTP SEARCH Method             September 2018

      distinct resources.  For instance, because mechanisms such as HTTP
      caching handle request URIs as opaque character sequences, queries
      such as 'http://example.org/?q=foo' and
      'http://example.org/?q=Foo' will be treated as entirely separate
      resources even if they yield identical results.

   o  While most modern browser and server implementations allow for
      long request URIs, there is no standardized minimum or maximum
      length for URIs in general.  Many resource constrained devices
      enforce strict limits on the maximum number of characters that can
      be included in a URI.  Such limits can prove impractical for large
Show full document text