Encapsulating IPsec ESP in UDP for Load-balancing
draft-xu-ipsecme-esp-in-udp-lb-05

Document Type Active Internet-Draft (individual)
Last updated 2020-09-13
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf htmlized (tools) htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                              X. Xu
Internet-Draft                                              Alibaba, Inc
Intended status: Standards Track                                S. Hegde
Expires: March 14, 2021                                          Juniper
                                                                D. Zhang
                                                                  L. Xia
                                                                  Huawei
                                                      September 10, 2020

           Encapsulating IPsec ESP in UDP for Load-balancing
                   draft-xu-ipsecme-esp-in-udp-lb-05

Abstract

   IPsec Virtual Private Network (VPN) is widely used by enterprises to
   interconnect their geographical dispersed branch office locations
   across the Wide Area Network (WAN) or the Internet, especially in the
   Software-Defined-WAN (SD-WAN) era.  In addition, IPsec is also
   increasingly used by cloud providers to encrypt IP traffic traversing
   data center interconnect WAN so as to meet the security and
   compliance requirements, especially in financial cloud and
   governmental cloud environments.  To fully utilize the bandwidth
   available in the WAN or the Internet, load balancing of IPsec traffic
   over Equal Cost Multi-Path (ECMP) and/or Link Aggregation Group (LAG)
   is much attractive to those enterprises and cloud providers.  This
   document defines a method to encapsulate IPsec Encapsulating Security
   Payload (ESP) packets over UDP tunnels for improving load-balancing
   of IPsec ESP traffic.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 14, 2021.

Xu, et al.               Expires March 14, 2021                 [Page 1]
Internet-Draft Encapsulating ESP in UDP for Load-balancingSeptember 2020

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Encapsulation in UDP  . . . . . . . . . . . . . . . . . . . .   3
   4.  Processing Procedures . . . . . . . . . . . . . . . . . . . .   5
   5.  Congestion Considerations . . . . . . . . . . . . . . . . . .   6
   6.  Applicability Statements  . . . . . . . . . . . . . . . . . .   6
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   6
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   6
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     10.1.  Normative References . . . . . . . . . . . . . . . . . .   6
     10.2.  Informative References . . . . . . . . . . . . . . . . .   7
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   7

1.  Introduction

   IPsec Virtual Private Network (VPN) is widely used by enterprises to
   interconnect their geographical dispersed branch office locations
   across the Wide Area Network (WAN) or the Internet, especially in the
   Software-Defined-WAN (SD-WAN) era.  In addition, IPsec is also
   increasingly used by cloud providers to encrypt IP traffic traversing
   data center interconnect WAN so as to meet the security and
   compliance requirements, especially in financial cloud and
   governmental cloud environments.  To fully utilize the bandwidth
   available in the WAN or the Internet, load balancing of IPsec traffic
   over Equal Cost Multi-Path (ECMP) and/or Link Aggregation Group (LAG)
   is much attractive to those enterprises and cloud providers.  Since
Show full document text