Mobile Network Tracing
RFC 2041

Document Type RFC - Informational (October 1996; No errata)
Was draft-rfced-info-noble (individual)
Last updated 2013-03-02
Stream Legacy
Formats plain text html pdf htmlized bibtex
Stream Legacy state (None)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state RFC 2041 (Informational)
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                           B. Noble
Request for Comments: 2041                    Carnegie Mellon University
Category: Informational                                        G. Nguyen
                                      University of California, Berkeley
                                                       M. Satyanarayanan
                                              Carnegie Mellon University
                                                                 R. Katz
                                      University of California, Berkeley
                                                            October 1996

                         Mobile Network Tracing

Status of this Memo

   This memo provides information for the Internet community.  This memo
   does not specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.

Abstract

   Mobile networks are both poorly understood and difficult to
   experiment with.  This RFC argues that mobile network tracing
   provides both tools to improve our understanding of wireless
   channels, as well as to build realistic, repeatable testbeds for
   mobile software and systems.  The RFC is a status report on our work
   tracing mobile networks.  Our goal is to begin discussion on a
   standard format for mobile network tracing as well as a testbed for
   mobile systems research.  We present our format for collecting mobile
   network traces, and tools to produce from such traces analytical
   models of mobile network behavior.

   We also describe a set of tools to provide network modulation based
   on collected traces.  Modulation allows the emulation of wireless
   channel latency, bandwidth, loss, and error rates on private, wired
   networks.  This allows system designers to test systems in a
   realistic yet repeatable manner.

Noble, et. al.               Informational                      [Page 1]
RFC 2041                 Mobile Network Tracing             October 1996

1. Introduction

   How does one accurately capture and reproduce the observed behavior
   of a network?  This is an especially challenging problem in mobile
   computing because the network quality experienced by a mobile host
   can vary dramatically over time and space.  Neither long-term average
   measures nor simple analytical models can capture the variations in
   bandwidth, latency, and signal degradation observed by such a host.
   In this RFC, we describe a solution based on network tracing.  Our
   solution consists of two phases:  trace recording and trace
   modulation.

   In the trace recording phase, an experimenter with an instrumented
   mobile host physically traverses a path of interest to him.  During
   the traversal, packets from a known workload are generated from a
   static host.  The mobile host records observations of both packets
   received from the known workload as well as the device
   characteristics during the workload.  At the end of the traversal,
   the list of observations represents an accurate trace of the observed
   network behavior for this traversal.  By performing multiple
   traversals of the same path, and by using different workloads, one
   can obtain a trace family that collectively characterizes network
   quality on that path.

   In the trace modulation phase, mobile system and application software
   is subjected to the network behavior observed in a recorded trace.
   The mobile software is run on a LAN-attached host whose kernel is
   modified to read a file containing the trace (possibly postprocessed
   for efficiency,) and to delay, drop or otherwise degrade packets in
   accordance with the behavior described by the trace.  The mobile
   software thus experiences network quality indistinguishable from that
   recorded in the trace.  It is important to note that trace modulation
   is fully transparent to mobile software --- no source or binary
   changes have to be made.

   Trace-based approaches have proved to be of great value in areas such
   as file system design [2, 10, 11] and computer architecture.  [1, 5,
   13] Similarly, we anticipate that network tracing will prove valuable
   in many aspects of mobile system design and implementation.  For
   example, detailed analyses of traces can provide insights into the
   behavior of mobile networks and validate predictive models.  As
   another example, it can play an important role in stress testing and
   debugging by providing the opportunity to reproduce the network
   conditions under which a bug was originally uncovered.  As a third
   example, it enables a system under development to be subjected to
   network conditions observed in distant real-life environments.  As a
   final example, a set of traces can be used as a benchmark family for
   evaluating and comparing the adaptive capabilities of alternative

Noble, et. al.               Informational                      [Page 2]
RFC 2041                 Mobile Network Tracing             October 1996
Show full document text