Asynchronous Layered Coding (ALC) Protocol Instantiation
RFC 3450
Document | Type |
RFC - Experimental
(December 2002; No errata)
Obsoleted by RFC 5775
Was draft-ietf-rmt-pi-alc (rmt WG)
|
|
---|---|---|---|
Authors | Lorenzo Vicisano , Jon Crowcroft , Luigi Rizzo , Mike Luby , Jim Gemmell | ||
Last updated | 2015-10-14 | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Stream | WG state | (None) | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 3450 (Experimental) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Allison Mankin | ||
IESG note | Responsible: RFC Editor | ||
Send notices to | <Roger.Kermode@motorola.com> |
Network Working Group M. Luby Request for Comments: 3450 Digital Fountain Category: Experimental J. Gemmell Microsoft L. Vicisano Cisco L. Rizzo Univ. Pisa J. Crowcroft Cambridge Univ. December 2002 Asynchronous Layered Coding (ALC) Protocol Instantiation Status of this Memo This memo defines an Experimental Protocol for the Internet community. It does not specify an Internet standard of any kind. Discussion and suggestions for improvement are requested. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2002). All Rights Reserved. Abstract This document describes the Asynchronous Layered Coding (ALC) protocol, a massively scalable reliable content delivery protocol. Asynchronous Layered Coding combines the Layered Coding Transport (LCT) building block, a multiple rate congestion control building block and the Forward Error Correction (FEC) building block to provide congestion controlled reliable asynchronous delivery of content to an unlimited number of concurrent receivers from a single sender. Table of Contents 1. Introduction.................................................2 1.1 Delivery service models...................................3 1.2 Scalability...............................................5 1.3 Environmental Requirements and Considerations.............6 2. Architecture Definition......................................8 2.1 LCT building block........................................9 2.2 Multiple rate congestion control building block..........10 2.3 FEC building block.......................................11 2.4 Session Description......................................13 Luby, et. al. Experimental [Page 1] RFC 3450 ALC protocol instantiation December 2002 2.5 Packet authentication building block.....................14 3. Conformance Statement.......................................14 4. Functionality Definition....................................14 4.1 Packet format used by ALC................................15 4.2 Detailed Example of Packet format used by ALC............16 4.3 Header-Extension Fields..................................23 4.4 Sender Operation.........................................26 4.5 Receiver Operation.......................................27 5. Security Considerations.....................................29 6. IANA Considerations.........................................31 7. Intellectual Property Issues................................31 8. Acknowledgments.............................................31 9. References..................................................31 Authors' Addresses.............................................33 Full Copyright Statement.......................................34 1. Introduction This document describes a massively scalable reliable content delivery protocol, Asynchronous Layered Coding (ALC), for multiple rate congestion controlled reliable content delivery. The protocol is specifically designed to provide massive scalability using IP multicast as the underlying network service. Massive scalability in this context means the number of concurrent receivers for an object is potentially in the millions, the aggregate size of objects to be delivered in a session ranges from hundreds of kilobytes to hundreds of gigabytes, each receiver can initiate reception of an object asynchronously, the reception rate of each receiver in the session is the maximum fair bandwidth available between that receiver and the sender, and all of this can be supported using a single sender. Because ALC is focused on reliable content delivery, the goal is to deliver objects as quickly as possible to each receiver while at the same time remaining network friendly to competing traffic. Thus, the congestion control used in conjunction with ALC should strive to maximize use of available bandwidth between receivers and the sender while at the same time backing off aggressively in the face of competing traffic. The sender side of ALC consists of generating packets based on objects to be delivered within the session and sending the appropriately formatted packets at the appropriate rates to theShow full document text