datatracker.ietf.org
Sign in
Version 5.3.0, 2014-04-12
Report a bug

Generalized Multiprotocol Label Switching (GMPLS) User-Network Interface (UNI): Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Support for the Overlay Model
RFC 4208

Document type: RFC - Proposed Standard (October 2005)
Document stream: IETF
Last updated: 2013-03-02
Other versions: plain text, pdf, html

IETF State: (None)
Consensus: Unknown
Document shepherd: No shepherd assigned

IESG State: RFC 4208 (Proposed Standard)
Responsible AD: Alex Zinin
Send notices to: kireeti@juniper.net, adrian@olddog.co.uk

Network Working Group                                         G. Swallow
Request for Comments: 4208                            Cisco Systems, Inc
Category: Standards Track                                       J. Drake
                                                                  Boeing
                                                            H. Ishimatsu
                                                           G1M Co., Ltd.
                                                              Y. Rekhter
                                                   Juniper Networks, Inc
                                                            October 2005

           Generalized Multiprotocol Label Switching (GMPLS)
                     User-Network Interface (UNI):
      Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)
                     Support for the Overlay Model

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   Generalized Multiprotocol Label Switching (GMPLS) defines both
   routing and signaling protocols for the creation of Label Switched
   Paths (LSPs) in various switching technologies.  These protocols can
   be used to support a number of deployment scenarios.  This memo
   addresses the application of GMPLS to the overlay model.

Swallow, et al.             Standards Track                     [Page 1]
RFC 4208         RSVP-TE Support for the Overlay Model      October 2005

Table of Contents

   1. Introduction ....................................................2
      1.1. GMPLS User-Network Interface (GMPLS UNI) ...................4
   2. Addressing ......................................................5
   3. ERO Processing ..................................................6
      3.1. Path Message without ERO ...................................6
      3.2. Path Message with ERO ......................................6
      3.3. Explicit Label Control .....................................7
   4. RRO Processing ..................................................7
   5. Notification ....................................................7
   6. Connection Deletion .............................................8
      6.1. Alarm-Free Connection Deletion .............................8
      6.2. Connection Deletion with PathErr ...........................8
   7. VPN Connections .................................................9
   8. Security Considerations ........................................10
   9. Acknowledgments ................................................10
   10. References ....................................................10
      10.1. Normative References .....................................10
      10.2. Informational References .................................10

1.  Introduction

   Generalized Multiprotocol Label Switching (GMPLS) defines both
   routing and signaling protocols for the creation of Label Switched
   Paths (LSPs) in various transport technologies.  These protocols can
   be used to support a number of deployment scenarios.  In a peer
   model, edge-nodes support both a routing and a signaling protocol.
   The protocol interactions between an edge-node and a core-node are
   the same as between two core-nodes.  In the overlay model, the core-
   nodes act more as a closed system.  The edge-nodes do not participate
   in the routing protocol instance that runs among the core nodes; in
   particular, the edge-nodes are unaware of the topology of the core-
   nodes.  There may, however, be a routing protocol interaction between
   a core-node and an edge-node for the exchange of reachability
   information to other edge-nodes.

Swallow, et al.             Standards Track                     [Page 2]
RFC 4208         RSVP-TE Support for the Overlay Model      October 2005

     Overlay                                                  Overlay
     Network       +----------------------------------+       Network
   +---------+     |                                  |     +---------+
   |  +----+ |     |  +-----+    +-----+    +-----+   |     | +----+  |
   |  |    | |     |  |     |    |     |    |     |   |     | |    |  |
   | -+ EN +-+-----+--+ CN  +----+ CN  +----+  CN +---+-----+-+ EN +- |
   |  |    | |  +--+--|     |    |     |    |     |   |     | |    |  |
   |  +----+ |  |  |  +--+--+    +--+--+    +--+--+   |     | +----+  |

[include full document text]