Analysis on IPv6 Transition in Third Generation Partnership Project (3GPP) Networks
RFC 4215
|
Document |
Type |
|
RFC - Informational
(October 2005; No errata)
|
|
Last updated |
|
2018-12-20
|
|
Stream |
|
IETF
|
|
Formats |
|
plain text
pdf
html
bibtex
|
Stream |
WG state
|
|
(None)
|
|
Document shepherd |
|
No shepherd assigned
|
IESG |
IESG state |
|
RFC 4215 (Informational)
|
|
Consensus Boilerplate |
|
Unknown
|
|
Telechat date |
|
|
|
Responsible AD |
|
David Kessens
|
|
Send notices to |
|
(None)
|
Network Working Group J. Wiljakka, Ed.
Request for Comments: 4215 Nokia
Category: Informational October 2005
Analysis on IPv6 Transition in
Third Generation Partnership Project (3GPP) Networks
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
This document analyzes the transition to IPv6 in Third Generation
Partnership Project (3GPP) packet networks. These networks are based
on General Packet Radio Service (GPRS) technology, and the radio
network architecture is based on Global System for Mobile
Communications (GSM) or Universal Mobile Telecommunications System
(UMTS)/Wideband Code Division Multiple Access (WCDMA) technology.
The focus is on analyzing different transition scenarios and
applicable transition mechanisms and finding solutions for those
transition scenarios. In these scenarios, the User Equipment (UE)
connects to other nodes, e.g., in the Internet, and IPv6/IPv4
transition mechanisms are needed.
Table of Contents
1. Introduction ....................................................2
1.1. Scope of This Document .....................................3
1.2. Abbreviations ..............................................3
1.3. Terminology ................................................5
2. Transition Mechanisms and DNS Guidelines ........................5
2.1. Dual Stack .................................................5
2.2. Tunneling ..................................................6
2.3. Protocol Translators .......................................6
2.4. DNS Guidelines for IPv4/IPv6 Transition ....................6
3. GPRS Transition Scenarios .......................................7
3.1. Dual Stack UE Connecting to IPv4 and IPv6 Nodes ............7
3.2. IPv6 UE Connecting to an IPv6 Node through an IPv4
Network ....................................................8
Wiljakka Informational [Page 1]
RFC 4215 IPv6 Transition in 3GPP Networks October 2005
3.2.1. Tunneling Inside the 3GPP Operator's Network ........9
3.2.2. Tunneling Outside the 3GPP Operator's Network ......10
3.3. IPv4 UE Connecting to an IPv4 Node through an IPv6
Network ...................................................10
3.4. IPv6 UE Connecting to an IPv4 Node ........................11
3.5. IPv4 UE Connecting to an IPv6 Node ........................12
4. IMS Transition Scenarios .......................................12
4.1. UE Connecting to a Node in an IPv4 Network through IMS ....12
4.2. Two IPv6 IMS Connected via an IPv4 Network ................15
5. About 3GPP UE IPv4/IPv6 Configuration ..........................15
6. Summary and Recommendations ....................................16
7. Security Considerations ........................................17
8. References .....................................................17
8.1. Normative References ......................................17
8.2. Informative References ....................................18
9. Contributors ...................................................20
10. Authors and Acknowledgements ..................................20
1. Introduction
This document describes and analyzes the process of transition to
IPv6 in Third Generation Partnership Project (3GPP) General Packet
Radio Service (GPRS) packet networks [3GPP-23.060], in which the
radio network architecture is based on Global System for Mobile
Communications (GSM) or Universal Mobile Telecommunications System
(UMTS)/Wideband Code Division Multiple Access (WCDMA) technology.
This document analyzes the transition scenarios that may come up in
the deployment phase of IPv6 in 3GPP packet data networks.
The 3GPP network architecture is described in [RFC3314], and relevant
transition scenarios are documented in [RFC3574]. The reader of this
specification should be familiar with the material presented in these
documents.
The scenarios analyzed in this document are divided into two
categories: general-purpose packet service scenarios, referred to as
GPRS scenarios in this document, and IP Multimedia Subsystem (IMS)
scenarios, which include Session Initiation Protocol (SIP)
considerations. For more information about IMS, see [3GPP-23.228],
[3GPP-24.228], and [3GPP-24.229].
GPRS scenarios are the following:
- Dual Stack User Equipment (UE) connecting to IPv4 and IPv6 nodes
- IPv6 UE connecting to an IPv6 node through an IPv4 network
Show full document text