Architectural Guidelines for Multipath TCP Development
RFC 6182
Document | Type | RFC - Informational (March 2011; No errata) | |
---|---|---|---|
Authors | Jana Iyengar , Costin Raiciu , Sebastien Barre , Mark Handley , Alan Ford | ||
Last updated | 2018-12-20 | ||
Replaces | draft-ford-mptcp-architecture | ||
Stream | Internent Engineering Task Force (IETF) | ||
Formats | plain text html pdf htmlized (tools) htmlized bibtex | ||
Reviews | |||
Stream | WG state | (None) | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 6182 (Informational) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Lars Eggert | ||
Send notices to | (None) |
Internet Engineering Task Force (IETF) A. Ford Request for Comments: 6182 Roke Manor Research Category: Informational C. Raiciu ISSN: 2070-1721 M. Handley University College London S. Barre Universite catholique de Louvain J. Iyengar Franklin and Marshall College March 2011 Architectural Guidelines for Multipath TCP Development Abstract Hosts are often connected by multiple paths, but TCP restricts communications to a single path per transport connection. Resource usage within the network would be more efficient were these multiple paths able to be used concurrently. This should enhance user experience through improved resilience to network failure and higher throughput. This document outlines architectural guidelines for the development of a Multipath Transport Protocol, with references to how these architectural components come together in the development of a Multipath TCP (MPTCP). This document lists certain high-level design decisions that provide foundations for the design of the MPTCP protocol, based upon these architectural requirements. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6182. Ford, et al. Informational [Page 1] RFC 6182 MPTCP Architecture March 2011 Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Ford, et al. Informational [Page 2] RFC 6182 MPTCP Architecture March 2011 Table of Contents 1. Introduction ....................................................4 1.1. Requirements Language ......................................5 1.2. Terminology ................................................5 1.3. Reference Scenario .........................................6 2. Goals ...........................................................6 2.1. Functional Goals ...........................................6 2.2. Compatibility Goals ........................................7 2.2.1. Application Compatibility ...........................7 2.2.2. Network Compatibility ...............................8 2.2.3. Compatibility with Other Network Users .............10 2.3. Security Goals ............................................10 2.4. Related Protocols .........................................10 3. An Architectural Basis for Multipath TCP .......................11 4. A Functional Decomposition of MPTCP ............................12 5. High-Level Design Decisions ....................................14 5.1. Sequence Numbering ........................................14 5.2. Reliability and Retransmissions ...........................15 5.3. Buffers ...................................................17 5.4. Signaling .................................................18 5.5. Path Management ...........................................19 5.6. Connection Identification .................................20 5.7. Congestion Control ........................................21 5.8. Security ..................................................21 6. Software Interactions ..........................................23Show full document text