Problem Statement and Goals for Active-Active Connection at the Transparent Interconnection of Lots of Links (TRILL) Edge
RFC 7379
Internet Engineering Task Force (IETF) Y. Li
Request for Comments: 7379 W. Hao
Category: Informational Huawei Technologies
ISSN: 2070-1721 R. Perlman
EMC
J. Hudson
Brocade
H. Zhai
JIT
October 2014
Problem Statement and Goals for Active-Active Connection at the
Transparent Interconnection of Lots of Links (TRILL) Edge
Abstract
The IETF TRILL (Transparent Interconnection of Lots of Links)
protocol provides support for flow-level multipathing with rapid
failover for both unicast and multi-destination traffic in networks
with arbitrary topology. Active-active connection at the TRILL edge
is the extension of these characteristics to end stations that are
multiply connected to a TRILL campus. This informational document
discusses the high-level problems and goals when providing active-
active connection at the TRILL edge.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7379.
Li, et al. Informational [Page 1]
RFC 7379 Problems of Active-Active Connection October 2014
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................3
1.1. Terminology ................................................3
2. Target Scenario .................................................4
2.1. LAALP and Edge Group Characteristics .......................6
3. Problems in Active-Active Connection at the TRILL Edge ..........7
3.1. Frame Duplications .........................................7
3.2. Loopback ...................................................8
3.3. Address Flip-Flop ..........................................8
3.4. Unsynchronized Information among Member RBridges ...........8
4. High-Level Requirements and Goals for Solutions .................9
5. Security Considerations ........................................10
6. References .....................................................11
6.1. Normative References ......................................11
6.2. Informative References ....................................12
Acknowledgments ...................................................12
Authors' Addresses ................................................13
Li, et al. Informational [Page 2]
RFC 7379 Problems of Active-Active Connection October 2014
1. Introduction
The IETF TRILL (Transparent Interconnection of Lots of Links)
[RFC6325] protocol provides loop-free and per-hop-based multipath
data forwarding with minimum configuration. TRILL uses IS-IS [IS-IS]
[RFC6165] [RFC7176] as its control-plane routing protocol and defines
a TRILL-specific header for user data. In a TRILL campus,
communications between TRILL switches can:
1) use multiple parallel links and/or paths,
2) spread load over different links and/or paths at a fine-grained
flow level through equal-cost multipathing of unicast traffic and
multiple distribution trees for multi-destination traffic, and
3) rapidly reconfigure to accommodate link or node failures or
Show full document text