IKEv2-Derived Shared Secret Key for the One-Way Active Measurement Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP)
RFC 7717

Document Type RFC - Proposed Standard (December 2015; No errata)
Last updated 2015-12-20
Replaces draft-bi-ippm-ipsec
Stream IETF
Formats plain text pdf html bibtex
Stream WG state Submitted to IESG for Publication Nov 2014
Document shepherd Brian Trammell
Shepherd write-up Show (last changed 2015-01-06)
IESG IESG state RFC 7717 (Proposed Standard)
Consensus Boilerplate Yes
Telechat date
Responsible AD Spencer Dawkins
Send notices to (None)
IANA IANA review state Version Changed - Review Needed
IANA action state RFC-Ed-Ack
Internet Engineering Task Force (IETF)               K. Pentikousis, Ed.
Request for Comments: 7717                                          EICT
Updates: 4656, 5357                                             E. Zhang
Category: Standards Track                                         Y. Cui
ISSN: 2070-1721                                      Huawei Technologies
                                                           December 2015

                  IKEv2-Derived Shared Secret Key for
          the One-Way Active Measurement Protocol (OWAMP) and
              Two-Way Active Measurement Protocol (TWAMP)

Abstract

   The One-Way Active Measurement Protocol (OWAMP) and Two-Way Active
   Measurement Protocol (TWAMP) security mechanisms require that both
   the client and server endpoints possess a shared secret.  This
   document describes the use of keys derived from an IKEv2 security
   association (SA) as the shared key in OWAMP or TWAMP.  If the shared
   key can be derived from the IKEv2 SA, OWAMP or TWAMP can support
   certificate-based key exchange; this would allow for more operational
   flexibility and efficiency.  The key derivation presented in this
   document can also facilitate automatic key management.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7717.

Pentikousis, et al.          Standards Track                    [Page 1]
RFC 7717              Shared Secret Key for O/TWAMP        December 2015

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5
   4.  O/TWAMP Security  . . . . . . . . . . . . . . . . . . . . . .   5
     4.1.  O/TWAMP-Control Security  . . . . . . . . . . . . . . . .   5
     4.2.  O/TWAMP-Test Security . . . . . . . . . . . . . . . . . .   6
     4.3.  O/TWAMP Security Root . . . . . . . . . . . . . . . . . .   7
   5.  O/TWAMP for IPsec Networks  . . . . . . . . . . . . . . . . .   7
     5.1.  Shared Key Derivation . . . . . . . . . . . . . . . . . .   7
     5.2.  Server Greeting Message Update  . . . . . . . . . . . . .   8
     5.3.  Set-Up-Response Update  . . . . . . . . . . . . . . . . .   9
     5.4.  O/TWAMP over an IPsec Tunnel  . . . . . . . . . . . . . .  11
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  11
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  13
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  14
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  15

Pentikousis, et al.          Standards Track                    [Page 2]
RFC 7717              Shared Secret Key for O/TWAMP        December 2015

1.  Introduction

   The One-Way Active Measurement Protocol (OWAMP) [RFC4656] and the
   Two-Way Active Measurement Protocol (TWAMP) [RFC5357] can be used to
   measure network performance parameters such as latency, bandwidth,
   and packet loss by sending probe packets and monitoring their
   experience in the network.  In order to guarantee the accuracy of
   network measurement results, security aspects must be considered.
   Otherwise, attacks may occur and the authenticity of the measurement
   results may be violated.  For example, if no protection is provided,
Show full document text